Ферментативный катализ. Химическая природа ферментов и их биологическая роль. Отличия ферментов от неорганических катализаторов. Специфичность ферментов. Большая энциклопедия нефти и газа

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Вопрос 18. Сходство и отличие ферментов и неорганических катализаторов. Зависимость скорости ферментативных реакций от температуры, рН. Виды специфичности.

Строение простых и сложных ферментов (на примере гидролаз, дегидрогеназ).

По составу ферменты делятся на простые и сложные.

Простые ферменты состоят из аминокислот. К ним относятся ферменты желудочно-кишечного тракта – α-амилаза, пепсин, трипсин, липаза и др. Все эти ферменты относятся к 3 классу – гидролаз.

Сложные ферменты состоят из белковой части – апофермента и небелковой – кофактора. Каталитически активный комплекс «фермент – кофактор» называется холоферментом. В качестве кофакторов могут выступать как ионы металлов, так и органические соединения, многие из которых являются производными витаминов.

Например, оксидоредуктазы используют в качестве кофакторов Fe²+, Сu²+, Mn²+, киназы Mg²+; для глутатионпероксидазы – фермента, обезвреживающего перекись водорода, требуется селен.

Коферменты – это органические вещества, которые непрочно связаны с белковой частью. Например, НАД-зависимые дегидрогеназы состоят из белка и коферментов НАД, НАДФ, производных витамина РР.

Простетическая группа – это коферменты, которые прочно (часто ковалентно) связаны с апоферментом. Например, флавиновые дегидрогеназы состоят из белка и простетических групп ФАД, ФМН, производных витамина В 2 . Апофермент определяет направленность или специфичность действия фермента.

. Общие свойства ферментов: специфичность, влияние температуры, pH среды на активность ферментов.

На активность ферментов оказывают влияние температура, рН среды, ионная сила растворов.

Так как ферменты по химической природе являются белками, повышение температуры свыше 45-50˚С приводит к тепловой денатурации и ферменты инактивируются (исключение – миокиназа мышц, папаин).

Низкие температуры не разрушают ферменты, а только приостанавливают их действие. Оптимальная температура для проявления активности фермента равна 37-40˚С.

На активность ферментов оказывает влияние реакция среды. Значение рН среды, при котором фермент проявляет максимальную активность, называют оптимумом рН среды для действия данного фермента. РН-оптимум действия ферментов лежит в пределах физиологических значений 6,0-8,0. Исключения: пепсин, рН-оптимум которого равен 2,0; аргиназа – рН-оптимум равен 10,0.

Ферменты обладают специфичностью. Различают несколько видов специфичности:

1. Абсолютная специфичность – фермент взаимодействует только с одним субстратом. Например, уреаза ускоряет гидролиз мочевины, но не расщепляет тиомочевину.

2. Стереоспецифичность – фермент взаимодействует с определенным оптическим и геометрическим изомером.

3. Абсолютная групповая специфичность – ферменты специфичны в отношении характера связи, а также тех соединений, которые образуют эту связь. Например, α-амилаза расщепляет α-гликозидную связь в молекуле мальтозы, состоящей из двух молекул глюкозы, но не расщепляет молекулу сахарозы, состоящую из молекулы глюкозы и молекулы фруктозы.

4. Относительная групповая специфичность. В этом случае ферменты специфичны только в отношении связи, но безразличны к тем соединениям, которые образуют эту связь. Например, протеазы ускоряют гидролиз пептидных связей в различных белках, липазы ускоряют расщепление сложноэфирных связей в жирах.

Вопрос 19 Активаторы и ингибиторы ферментов. Механизм их действия. Обратимое и необратимое, конкурентное и неконкурентное ингибирование. Использование принципа конкурентного ингибирования в медицине.

.Активаторы и ингибиторы ферментов, механизмы их влияния и значение.

На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.

Активирование ферментов могут вызывать:

1. Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.

2. Частичный их протеолиз.

Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.

Пепсиноген НСl пепсин + пептид


Трипсиноген энтерокиназа трипсин + пептид

Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.

3. Фосфорилирование и дефосфорилирование. Например:

неакт. липаза + АТФ → липаза-фосфат (акт. липаза);

липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

Ингибиторы по характеру своего действия подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.

Обратимые ингибиторы – это соединения, которые нековалентно взаимодействуют с ферментом и могут отщепляться от фермента.

Необратимые ингибиторы – это соединения, которые образуют ковалентные, прочные связи с ферментом.

Необратимое ингибирование может быть специфическим и неспецифическим.

При специфическом ингибировании ингибиторы тормозят действие определенных ферментов, связывая отдельные функциональные группы активного центра. Например, тиоловые яды ингибируют ферменты, в активный центр которых входят SН-группы; угарный газ (СО) ингибирует ферменты, имеющие в активном центре Fe²+.

Неспецифические ингибиторы тормозят действие всех ферментов. К ним относятся все денатурирующие факторы (высокая температура, органические и минеральные кислоты, соли тяжелых металлов и др.).

Обратимое ингибирование может быть конкурентным. При этом ингибитор является структурным аналогом субстрата и конкурирует с ним за связывание в субстратсвязывающем участке активного центра.

Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата.

Сукцинатдегидрогеназа (СДГ) – фермент цитратного цикла, дегидрирует сукцинат, превращая его в фумарат. Малонат, который структурно похож на сукцинат, связывается в активном центре СДГ, но не может дегидрироваться. Поэтому малонат – конкурентный ингибитор СДГ.

Многие лекарственные препараты являются конкурентными ингибиторами ферментов. Например, сульфаниламидные препараты, являясь структурными аналогами парааминобензойной кислоты (ПАБК) – основного фактора роста болезнетворных микроорганизмов, конкурируют с ней за связывание в субстратсвязывающем участке активного центра фермента. На этом основано противомикробное действие сульфаниламидных препаратов.

Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа 2.Селективность 3. Оптимум pH 4. Интервалы температуры 5.Изменение структуры kat в ходе реакции 6. Увеличение скорости реакции.


Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа Низкомолекулярные вещества, образованные 1 или нескольки- ми элементами. Белки – высокомолекуляр- ные полимеры 2.Селективность Низкая, универсальный kat – Pt ускоряет множ. реакций. Высокая. На каждую р-цию нужен свой фермент. 3. Оптимум pH Сильнокислая или щелочнаяНебольшой интервал, у кажд. органа – свой. 4. Интервалы температуры Очень широкие.35 – 42 градуса, затем денатурируют. 5.Изменение структуры kat в ходе реакции Изменяется незначительно, или не изменяется вовсе. Сильно изменяются и восстанавливаются в исходную структуру по окончании реакции. 6. Увеличение скорости реакции. В 100 – раз От 10 в 8 степени до 10 в 12 степени раз.




Общие: способны к растворению в воде и образованию коллоидных растворов; увеличивают скорость реакции; не расходуются в реакции; амфотерны; их присутствие не влияет на свойства продуктов реакции; характерно протекание цветных реакций; изменяют энергию активации, при которой может произойти реакция; не изменяют сколько-нибудь значительно температуру, при которой происходит реакция; способны к денатурации и гидролизу.


Специфические: Сочетание высочайшей активности с соблюдением строгого ряда условий; Специфичность действия по принципу «ключ – замок» или «рука – перчатка»; Стабильность; Обратимость действия: Е + S ES E + P,где Е – энзим; S – субстрат, P – продукт реакции, ES – фермент-субстратный комплекс.


Роль ферментов в жизнедеятельности организмов: Врожденные нарушения обмена; Взаимопревращения веществ; Биохимическая революция; Превращение энергии; Биосинтез; Фармакология; Ультраструктура мембран; Генетический аппарат; Питание; Клеточный метаболизм; Катализ; Физиологическая регуляция; Бактериальное брожение.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Практикум

По общей и экологической биохимии

«Ферменты. Ферментативная кинетика»

Минск МГЭУ


УДК 577:574 (076.5)

Республики Беларусь по экологическому образованию

Бокуть С.Б., зав. кафедрой биохимии и биофизики, доцент, к.б.н.,

Сяхович В.Э., ст.

Богданова Н.В., преподаватель кафедры биохимии и биофизики,

Докучаева Е.А., преподаватель кафедры биохимии и биофизики,

Дроздов А.С., аспирант кафедры биохимии и биофизики

Рецензенты:

Кафедра клинической лабораторной диагностики Государственного учреждения высшего образования «Белорусская медицинская академия последипломного образования»;

Г.И. Новик, заведующая лабораторией «Коллекция микроорганизмов»

Государственного научного учреждения «Институт микробиологии Национальной академии наук Беларуси», кандидат биологических наук

П69 Практикум по общей и экологической биохимии. Часть II: «Фермен-ты. Ферментативная кинетика» / Бокуть С.Б. и др. – Мн., 2013 – 74 с.

Практикум содержит учебно-методические материалы для проведения лабораторных работ по курсу «Общая и экологическая биохимия» со студентами 2-го курса. Для каждой лабораторной работы приводятся основы теории по определенной теме, контрольные вопросы для подготовки к занятию, список рекомендуемой литературы, перечень заданий к занятию, описание используемых в лабораторной работе приборов, материалов и реактивов. Включены материалы, описывающие классификацию ферментов, принципы методов определения их активности, а также основы кинетики ферментативных реакций.

Соответствует учебной программе курса «Общая и экологическая биохимия» для студентов МГЭУ имени А.Д. Сахарова.



Ó С.Б. Бокуть, В.Э. Сяхович, Н.В. Богданова, Е.А. Докучаева, А.С. Дроздов 2012

Ó Международный государственный экологический университет им. А.Д. Сахарова, 2012


Лабораторная работа № 4

Оборудование и материалы:

· Спектрофотометр Solar PV 1251B

· Термостат

· Плитка электрическая

· Пипетки стеклянные на 1 мл и 5 мл

· Микропипетки автоматические

· Цилиндры мерные на 250 мл и 100 мл

· Стакан на 300 мл

· Пробирки стеклянные

· Штативы для пробирок

· Стеклянные палочки

· Предметные стекла

Реактивы:

· Крахмал, 1% раствор

· Гидроксид натрия (NaOH), 10% раствор

· Сульфат меди (CuSO 4), 1% раствор

· Раствор Люголя (йод, 1% раствор в KJ, 2,5%)

· Соляная кислота (HCl), 10% раствор

· Вода дистиллированная


Теоретическая часть

Ферменты

Живые системы состоят из достаточно ограниченного набора химических элементов, на долю которых (C, H, O, N, P, S) приходится более 99% общей массы клеток. Поскольку химический состав клеток, существенно отличается от химического состава земной коры, это означает, что биологические системы способны осуществлять химические реакции особого рода.

Если не принимать во внимание воду, почти все молекулы клетки относятся к соединениям углерода. Среди химических элементов Земли именно углерод занимает особое место по способности образовывать множество малых и больших молекул (макромолекул ). Из-за малого размера атома и наличия на внешней оболочке четырех электронов атомы углерода могут образовывать прочные ковалентные связи с другими атомами, а также друг с другом, что приводит к формированию колец или длинных цепей и, как следствие, созданию больших и сложных молекул.

Одно из часто встречающихся определений биологических систем сводится к тому, что живые организмы представляют собой автономные самовоспроизводящиеся химические системы, построенные из специфического и вместе с тем достаточно ограниченного набора углеродсодержащих малых молекул и макромолекул .

Итак, основу жизнедеятельности любого организма составляют химические процессы особого рода. Практически все реакции в живой клетке протекают с участием высокоэффективных природных биокатализаторов, называемых ферментами , или энзимами . Рассматривая клеточные метаболические пути, может показаться, что клетка обладает возможностью осуществлять любую необходимую ей реакцию, используя для этой цели соответствующий фермент. В действительности это не так. Хотя ферменты и являются мощными катализаторами, они могут ускорять только те реакции, которые «разрешены» с точки зрения термодинамики. Среди множества энергетически возможных реакций ферменты избирательно преобразуют соответствующие «реагенты», называемые субстратами , по физиологически полезному пути. Таким образом, ферменты управляют всеми метаболическими процессами организма.

До недавнего времени считалось, что абсолютно все биокатализаторы являются веществами белковой природы. Однако в 80-е годы ХХ столетия были обнаружены специфические низкомолекулярные РНК, обладающие каталитической активностью. Эти каталитические РНК по аналогии получили название рибозимов . Остальные известные на данный момент биокатализаторы клетки, число которых превышает 2500, имеют белковую природу и характеризуются всеми свойствами белков. К настоящему времени расшифрованы аминокислотные последовательности сотен различных ферментов, многие получены в кристаллическом виде, по данным рентгеноструктурного анализа установлена трех­мерная пространственная структура и описаны механизмы их действия и изучается их роль в клеточных метаболических превращениях.

Подобно неорганическим катализаторам, ферменты: не расходуются в процессе реакции, увеличивают скорость как прямой, так и обратной реакции, не изменяют положения равновесия. Однако белковая природа ферментов обусловливает появление у них ряда свойств, в целом нехарактерных для неорганических катализаторов.

Отличие ферментов от неорганических катализаторов

1. Ферменты имеют более высокую каталитическую активность (в миллионы раз превышающую действие неорганических катализаторов). Например, гидролиз белка в присутствии неорганических кислот и щелочей протекает при 100°С в течение нескольких десятков часов. При участии ферментов этот процесс сокращается до десятков минут при 30–40°С;

2. Каталитическая активность ферментов проявляется в очень мягких условиях (умеренные температуры 37–40°С, нормальное давление, близкие к нейтральным значения рН среды 6,0–8,0);

3. Ферменты обладают высокой специфичностью действия, т.е. каждый фермент катализирует в основном только строго определенную химическую реакцию (для сравнения, платина в органическом синтезе катализирует несколько десятков химических превращений);

4. Скорость ферментативных реакций подчиняется определенным кинетическим закономерностям;

5. Ряд ферментов при формировании третичной и четвертичной структуры подвергаются пост-трансляционной модификации;

6. Размеры молекулы ферментов обычно намного превышают размеры их субстратов;

7. Активность ферментов в клетках строго контролируется и регулируется.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.