GSM охранная система для дома на базе Arduino. Домашняя сигнализация или использование датчика движения и LCD монитора с Arduino Схема сигнализации для дома на ардуино

Сегодня речь пойдет о том, как с помощью Ардуино собрать охранную систему . Наша «охрана» будет сторожить один контур и управлять одним оповещателем.

Для Ардуино это не проблема, и, как вы увидите по коду программы и по схеме устройства, можно легко увеличить количество охраняемых точек доступа и количество устройств оповещения или индикации.
Охранную систему можно применить для охраны как больших объектов (зданий и сооружений), так и небольших предметов (шкатулок, сейфов), и даже переносных кейсов и чемоданов. Хотя с последними надо быть поосторожнее, если вы установите систему охраны, например, на чемодан, с которым решите отправиться в путешествие, и система оповещения сработает в каком-нибудь аэропорту, то, думаю, вам предстоит серьезная беседа с местной службой безопасности:-)

Упрощенно принцип работы устройства выглядит следующим образом (рис. 1). После включения питания устройство переходит в рабочий режим и ждет постановки на охрану. Постановка и снятие с охраны осуществляются одной кнопкой. Для повышения безопасности эту кнопку лучше расположить внутри охраняемого помещения (сейфа или шкатулки). Перед включением режима охраны дверь нужно приоткрыть. При включении режима охраны (нажатии на кнопку) электронная схема ждет, пока вы не закроете дверь в помещение (дверцу сейфа, крышку шкатулки, и т.д.).

На двери (или дверце) должен быть установлен концевой выключатель любого типа, об этом позднее. Замыкаясь (или размыкаясь), концевой выключатель сообщит устройству, что охраняемый контур замкнут, и устройство перейдет в режим охраны. О переходе в режим охраны система оповестит двумя короткими сигналами (как в автомобильных сигнализациях). В этом режиме устройство «ловит» открытие двери. После открытия двери система ждет несколько секунд (это величина настраиваемая, для помещений около десяти секунд, для шкатулки одна-две) отключения режима охраны, если этого не происходит, включается сирена. Алгоритм и схема разработаны так, что отключить сирену можно, только полностью разобрав корпус и отключив питание.

Устройство охранной системы очень простое (рис. 2). В основе плата Ардуино . Концевые выключатели подключаются, как обычная кнопка, через подтягивающие резисторы. На концевиках остановлюсь отдельно. Они бывают нормально замкнутые и нормально разомкнутые. Можно в качестве концевика включить обычную кнопку, только ход обычной кнопки очень велик, люфт двери обычно больше. Поэтому необходимо придумать какой-нибудь толкатель для кнопки и подпружинить, чтобы не сломать кнопку дверью. Ну и если не лень, то можно дойти до магазина и купить магнитный выключатель (геркон) (рис. 3), он не боится пыли и загрязнений.

Подойдет и концевой выключатель для автосигнализации (рис. 4). Следует отметить, программа написана под геркон. При закрытой двери его контакт замкнут. Если использовать выключатель от автосигнализации, то при закрытой двери он будет скорее всего разомкнут, и в соответствующих местах кода нужно будет поменять 0 на 1 и наоборот.

В качестве сирены предлагаю использовать оповещатель звуковой ПКИ-1 ИВОЛГА белорусского производства (рис. 5). Напряжение питания 9 - 15 В, рабочий ток 20 - 30 мА. Это позволяет использовать его с батарейным питанием. При этом он «выдает» 95 - 105 дБ.

При таких характеристиках от батарейки «Крона» он будет звучать несколько десятков минут. Я его нашел в интернете за 110 руб. Там же геркон с магнитом стоит около 30 руб. Выключатель от автосигнализации в автозапчастях был куплен за 28 руб. Транзистор КТ315 можно взять с любой буквой или заменить на любой современный маломощный кремниевый транзистор соответствующей проводимости. Если громкости одного оповещателя не хватит (кто знает, может, вы захотите, чтобы было слышно за многие километры), можно подключить несколько оповещателей параллельно или взять более мощный, только в этом случае и транзистор нужно заменить на более мощный (например, знакомую нам транзисторную сборку ULN2003). В качестве разъемов для подключения геркона и сирены я применил самые простые разъемы для аудио/видеоустройств - цена на радиорынке 5 руб. за пару.

Корпус устройства можно склеить из пластика или фанеры; если охраняется серьезный объект, то его лучше сделать металлическим. Батареи или аккумуляторы питания для повышения надежности и безопасности желательно разместить внутри корпуса.

Для упрощения программного кода не были использованы элементы энергосбережения, и батареек надолго не хватает. Можно оптимизировать код, а еще лучше радикально переделать, применив обработку событий по прерываниям и спящий режим МК. В этом случае питания от двух квадратных батареек, включенных последовательно (9 В), должно хватить на несколько месяцев.

Теперь код

// постоянные
const int button = 12; // пин для кнопки
const int gerkon = 3; // пин для геркона
const int sirena = 2; // пин упр-ния сиреной
const int led = 13; // пин индикатора
// переменные
int buttonState = 0; // состояние кнопки
int gerkonState = 0; // состояние геркона
int N = 0; // счетчик кнопки отключения охраны
void setup() {
// управление сиреной и индикатором - выход
pinMode(sirena, OUTPUT);
pinMode(led, OUTPUT); // кнопка и геркон - входы
pinMode(gerkon, INPUT);
pinMode(button, INPUT);
}
void loop(){
digitalWrite(led, HIGH);
while(buttonState= =0){ // цикл ожидания, пока не нажмем кнопку
buttonState = digitalRead(button); // для перехода в режим охраны
}
digitalWrite(led, LOW);
buttonState = 0; // обнуляем значение кнопки
while(gerkonState= =0){ // цикл, пока не закроем дверь
}
delay (500); // :-)
digitalWrite(sirena, HIGH); // Код
delay (100); // индикации
digitalWrite(sirena, LOW); // включения
delay (70); // режима
digitalWrite(sirena, HIGH); // охраны
delay (100); // оповещение
digitalWrite(sirena, LOW); // звуковое
while(gerkonState= =1){ // ждем открытия двери
gerkonState = digitalRead(gerkon);
}
for (int i=0; i <= 5; i++){ // 7,5 секунды на нажатие
buttonState = digitalRead(button); // секретной кнопки
if (buttonState = = HIGH) { // отслеживаем свой - чужой
N=N+1;
}
delay(1500); // секретная фича:-)))
}
if (N > 0) { // самое главное
digitalWrite(sirena, LOW); // не включаем сирену
}
else {
digitalWrite(sirena, HIGH); // или включаем сирену
}
digitalWrite(led, HIGH); // включаем индикатор N = 0;
buttonState = 0;
delay(15000); // напоминание «чайникам», которым нравится
digitalWrite(led, LOW); // давить на кнопки без перерыва delay (1000);

Доброе время суток 🙂 Сегодня поговорим о сигнализации. На рынке услуг полно фирм, организацией, которые занимаются установкой и обслуживанием охранных систем. Эти фирмы предлагают покупателю широкий выбор сигнализацией. Однако их стоимость далеко не копеечная. Но что же делать человеку, у которого не так уж и много личных средств, что можно потратить на охранную сигнализацию? Думаю, вывод напрашивается сам собой – сделать сигнализацию своими руками . В этой статье приведён пример того, как можно сделать свою собственную кодовую охранную систему используя плату Arduino uno и несколько магнитных датчиков.

Систему можно дезактивировать вводом пароля с клавиатуры и нажатием кнопки ‘* ‘. Если хотите изменить текущий пароль, можете сделать это нажав на клавишу ‘B ‘, а если хотите пропустить или прервать операцию, можете сделать это нажав на клавишу ‘#’. В системе есть зуммер для воспроизведения различных звуков при выполнении той либо иной операции.

Активируется система нажатием кнопки ‘A’. Система даёт 10 секунд на то, чтобы покинуть помещение. После прошествии 10 секунд сигнализация будет активирована. Количество магнитных датчиков будет зависит от вашего собственного желания. В проекте задействованы 3 датчика (для двух окон и двери). Когда окно открывается система активируется, и включается сигнал тревоги идущий с зуммера. Систему можно дезактивировать путем набора пароля. Когда открывается дверь, сигнализация даёт вошедшему 20 секунд для ввода пароля. Система использует ультразвуковой датчик, что может обнаруживать движение.

Видео работы устройства

Поделка изготовлена в ознакомительных/обучающих целях. Если хотите использовать её у себя дома, будет необходимо её доработать. Заключить управляющий блок в металлический корпус и обезопасить линию питания от возможного повреждения.

Давайте начинать!

Шаг 1: Что нам будет нужно

  • плата Arduino uno;
  • высококонтрастный LCD дисплей 16×2;
  • клавиатура 4×4;
  • 10~20кОм потенциометр;
  • 3 магнитных датчика (они же герконы);
  • 3 2-х пиновых винтовых клеммы;
  • HC-SR04 ультразвуковой датчик;

Если вы хотите собрать систему без использования Arduino, вам также потребуется следующее:

  • DIP разъём для atmega328 + микроконтроллер atmega328;
  • 16MГц кварцевый резонатор;
  • 2 шт. 22pF керамических, 2 шт. 0.22uF электролитических конденсатора;
  • 1 шт. 10кОм резистор;
  • гнездо под питание (DC power jack);
  • макетная плата;
  • 5В блок питания;

И одна коробка, чтобы всё это упаковать!

Инструменты:

  • Что-то, чем можно разрезать пластиковую коробку;
  • Термоклеевой пистолет;
  • Дрель/шуруповерт.

Шаг 2: Схема сигнализации

Схема соединения довольно простая.

Небольшое уточнение:

Высококонтрастный LCD:

  • Pin1 — Vdd к GND;
  • Pin2 — Vss к 5В;
  • Pin3 — Vo (к центральному выводу потенциометра);
  • Pin4 — RS к 8 выводу Arduino;
  • Pin5 — RW к GND;
  • Pin6 — EN к 7 выводу Arduino;
  • Pin11 — D4 к 6 выводу Arduino;
  • Pin12 — D5 к 5 выводу Arduino;
  • Pin13 — D6 к 4 выводу Arduino;
  • Pin14 — D7 к 3 выводу Arduino;
  • Pin15 — Vee (к правому или левому выводу потенциометра) .

Клавиатура 4×4:

От левого к правому:

  • Pin1 к A5 выводу Arduino;
  • Pin2 к A4 выводу Arduino;
  • Pin3 к A3 выводу Arduino;
  • Pin4 к A2 выводу Arduino;
  • Pin5 к 13 выводу Arduino;
  • Pin6 к 12 выводу Arduino;
  • Pin7 к 11 выводу Arduino;
  • Pin8 к 10 выводу Arduino.

Шаг 3: Прошивка

В шаге представлен код, что используется встроенным !

Скачайте плагин codebender. Нажмите на кнопку «Run» в Arduino и прошейте свою плату этой программой. На этом всё. Вы только что запрограммировали Arduino! Если хотите внести изменения в код, нажмите кнопку»Edit».

Примечание: Если вы не будете использовать Codebender IDE для программирования платы Arduino, вам будет нужно установить дополнительные библиотеки в Arduino IDE.

Шаг 4: Изготавливаем собственную управляющую плату

После того, как удачно собрали и протестировали новый проект на базе Arduino uno, можете начать изготовление собственной платы.

Несколько советов, для более успешного завершения затеянного:

  • 10кОм резистор должен монтироваться между 1 (reset) и 7 (Vcc) выводами микроконтроллера Atmega328.
  • 16MГц кварцевый резонатор должен подсоединятся к выводам 9 и 10, отмеченными, как XTAL1 и XTAL2
  • Соедините каждый вывод резонатора с 22pF конденсаторами. Свободные выводы конденсаторов заведите на 8 вывод (GND) микроконтроллера.
  • Не забудьте соединить вторую линию питания ATmega328 с блоком питания, выводы 20-Vcc и 22-GND.
  • Дополнительную информацию по выводам микроконтроллера можете найти на втором изображении.
  • Если планируете использовать блок питания с напряжением выше 6В, необходимо воспользоваться линейный регулятором LM7805 и двумя 0.22uF электролитическими конденсаторами, которые следует смонтировать на входе и выходе регулятора. Это важно! Не подавайте больше, чем 6В на плату!!! В противном случае вы спалите свой микроконтроллер Atmega и LCD дисплей.

Шаг 5: Размещаем схему в корпусе

Инфракрасные (ИК, IR) датчики обычно используются для измерения расстояний, но их также можно использовать и для обнаружения объектов. Подключив несколько ИК-датчиков к Arduino, мы можете создать охранную сигнализацию.

Обзор

Инфракрасные (ИК, IR) датчики обычно используются для измерения расстояний, но их также можно использовать и для обнаружения объектов. ИК-датчики состоят из инфракрасного передатчика и инфракрасного приемника. Передатчик выдает импульсы инфракрасного излучения в то время, как приемник детектирует любые отражения. Если приемник обнаруживает отражение, это означает, что перед датчиком на некотором расстоянии есть какой-то объект. Если отражения нет, нет и объекта.

IR-датчик, который мы будем использовать в данном проекте, обнаруживает отражение в определенном диапазоне. Эти датчики имеют небольшое линейное устройство с зарядовой связью (CCD), которое детектирует угол, с которым ИК-излучение возвращается к датчику. Как показано на рисунке ниже, датчик передает инфракрасный импульс в пространство, а когда перед датчиком появляется объект, импульс отражается обратно к датчику под углом, пропорциональным расстоянию между объектом и датчиком. Приемник датчика детектирует и выводит угол, и, используя это значение, вы можете рассчитать расстояние.

Подключив пару ИК-датчиков к Arduino, мы можем сделать простую охранную сигнализацию. Мы установим датчики на дверной косяк, и, правильно выровняв датчики, мы сможем обнаружить, когда кто-то проходит через дверь. Когда это произойдет, сигнал на выходе ИК-датчика изменится, а мы обнаружим это изменение, постоянно считывая выходной сигнал датчиков с помощью Arduino. В данном примере мы знаем, что объект проходит через дверь, когда показание на выходе ИК-датчика превышает 400. Когда это произойдет, Arduino включит сигнал тревоги. Чтобы сбросить срабатывание сигнализации, пользователь может нажать на кнопку.

Комплектующие

  • 2 x ИК-датчик расстояния;
  • 1 x Arduino Mega 2560;
  • 1 x зуммер;
  • 1 x кнопка;
  • 1 x резистор 470 Ом;
  • 1 x NPN транзистор;
  • перемычки.

Схема соединений

Схема для данного проекта показана на рисунке ниже. Выходы двух ИК-датчиков подключены к выводам A0 и A1 . Два других вывода подключены к выводам 5V и GND. 12-вольтовый зуммер подключен к выводу 3 через транзистор, а кнопка, используемая для отключения сигнализации, подключена к выводу 4.


На приведенной ниже фотографии показано, как мы наклеили датчики на дверной косяк для этого эксперимента. Разумеется, в случае постоянного использования вы установили бы датчики по-другому.


Установка

  1. Подключите выводы 5V и GND платы Arduino к выводам питания и GND датчиков. Вы также можете подавать на них внешнее питание.
  2. Подключите выходные выводы датчиков к выводам A0 и A1 платы Arduino.
  3. Подключите вывод 3 Arduino к базе транзистора через резистор 1 кОм.
  4. Подайте напряжение 12 В на коллектор транзистора.
  5. Подключите положительный вывод 12-вольтового зуммера к эмиттеру, а отрицательный - к шине земли.
  6. Подключите вывод 4 к выводу 5V через кнопку. В целях безопасности, во избежание протекания большого тока это всегда лучше делать через дополнительный небольшой резистор.
  7. Подключите плату Arduino к компьютеру через USB кабель и загрузите программу в микроконтроллер, используя Arduino IDE.
  8. Подайте на плату Arduino питание, используя блок питания, аккумулятор или USB кабель/

Код

const int buzzer=3; // вывод 3 – это выход на зуммер const int pushbutton=4; // вывод 4 – это вход для кнопки void setup() { pinMode(buzzer,OUTPUT); // настроить вывод 3 на выход pinMode(pushbutton,INPUT); // настроить вывод 4 на вход } void loop() { // прочитать выходной сигнал обоих датчиков и сравнить результат с пороговым значением int sensor1_value = analogRead(A0); int sensor2_value = analogRead(A1); if (sensor1_value > 400 || sensor2_value > 400) { while(true) { digitalWrite(buzzer,HIGH); // включить сигнал тревоги if(digitalRead(pushbutton) == HIGH) break; } } else { digitalWrite(buzzer,LOW); // выключить сигнал тревоги } }

Видео

В прошлой статье мы учились пользоваться GSM модулем SIM800L и сделали простенькую конструкцию управления нагрузкой удалённо, сегодня мы сделаем уже что-то поинтереснее, а именно охранную GSM сигнализацию на модуле SIM800L из Aliexpress и Arduino, которую можно применить для охраны квартиры, дачи, гаража и других объектов, а при её срабатывании она оповестит звонком или СМС сообщением.

Что нам понадобится чтобы сделать GSM сигнализацию:

  • GSM/GPRS модуль SIM800L;
  • Arduino Nano, UNO или другая Ардуинка;
  • Понижающий DC-DC преобразователь;
  • Аккумулятор 3,7 В;
  • Резисторы на 10 к – 7 шт;
  • Блок питания.

Как сделать охранную GSM сигнализацию на модуле SIM800L и Arduino, описание работы:

Подключаем модуль SIM800L, Arduino, датчики и др. по схеме ниже, всё собирается на макетной плате чтобы в любое время можно было что-то поменять, размещаем в любой подходящий корпус и выводим провода из корпуса для охранных датчиков и на БП. Аккумулятор тоже размещаем в корпусе, он нужен чтобы когда пропадает в доме электроэнергия то устройство переходило в автономный режим питаясь от аккумуляторной батареи. На повышающем преобразователе настраиваем на выходе 4,2 вольта, при таком напряжении работает GSM SIM модуль и при этом подзаряжается аккумулятор, а также этого напряжения хватает для работы Arduino Nano.

К схеме можно подключить 5 любых датчиков, это как герконы, датчик влажности, дыма, движения и т.п. которые поддерживают релейное срабатывание, так как данная схема настроена на срабатывание сигнализации на разрыв цепи любого из пяти датчиков но при желании скетч можно переделать на замыкание.

При срабатывании первого датчика идёт дозвон на указанный номер, потом сбрасывает вызов и идёт звонок на второй номер, это сделано в случае если первый номер на данный момент не будет доступен. При срабатывании остальных 4-х охранных датчиков отсылается только СМС сообщение в котором прописывается номер или название сработавшей зоны, также это сообщение будет послано на два телефонных номера.

В скетче можно вписать номера телефонов и дать свои имена охраняемым зонам, вместо «Alarm! Zone1», «Alarm! Zone2», «Alarm! Zone3»… Вы можете написать название объекта куда поставили конкретный датчик, например «Alarm! Okno», «Alarm! Dverj» и др., пишите названия зоны только на латинице. Также в скетче выставляется время отзвонки владельцу, то есть через какое количество часов сообщать Вам о том что вся система работает и всё в порядке, по умолчанию установлено перезванивать через каждые 144 часа.

Всё, мы сделали несложную охранную GSM сигнализацию на модуле SIM800L и Arduino, скетч и схему можно дорабатывать, например, модуль SIM800L поддерживает возможность подключения к нему громкоговорителя и микрофона, что позволит прослушивать охраняемое помещение, а также вывести на громкоговоритель свой голос.

Скачать скетч для Ардуино.

Её автор хотел выполнить самоделку, чтобы она была дешевой и беспроводной.
Эта самоделка использует PIR датчик движения, а передача информации происходит при помощи RF модуля.

Автор хотел воспользоваться инфракрасным модулем, но так как он имеет ограниченную дальность действия, и плюс может работать только на линии прямой видимости приемником, поэтому он выбрал RF модуль, при помощи которого можно добиться дальности приблизительно 100 метров.


Для того, чтобы посетителям было удобнее просматривать сборку сигнализации, я решил поделить статью на 5 этапов:
Этап 1: Создание передатчика.
Этап 2: Создание приемника.
Этап 3: Установка программного обеспечения.
Этап 4: Тестирование собранных модулей.
Этап 5: Сборка корпуса и установка в него модуля.

Все что понадобилось автору, это:
- 2 платы ARDUINO UNO/ARDUINO MINI/ARDUINO NANO для приёмника и передатчика;
- RF приёмопередающий модуль (433 MHZ);
- PIR датчик движения;
- 9В батарейки (2 штуки) и коннекторы к ним;
- Зуммер;
- Светодиод;
- Резистор с сопротивлением 220 Ом;
- Макетная плата;
- Джамперы/провода/перемычки;
- Монтажная плата;
- Межплатные штыревые соединители;
- Переключатели;
- Корпуса для приёмника и передатчика;
- Цветная бумага;
- Монтажный скотч;
- Наборной скальпель;
- Термоклеевой пистолет;
- Паяльник;
- Кусачки /инструмент для снятия изоляции;
- Ножницы по металлу.


Этап 1.
Начинаем создание передатчика.
Ниже предоставлена схема работы датчика движения.


Сам передатчик состоит из:
- Датчика движения;
- Платы Arduino;
- Модуль передатчика.


Сам датчик имеет три вывода:
- VCC;
- GND;
- OUT.

После чего, проверил работу датчика


Внимание!!!
Перед загрузкой прошивки, автор убеждается в том, что в настройках Arduino IDE верно установлена текущая плата и последовательный порт. После чего загрузил скетч:

Позже, как датчик движения зафиксирует движение перед собой, засветится светодиод, а также в мониторе вы сможете увидеть соответствующее сообщение.


По схеме чуть ниже.


Передатчик имеет 3 вывода (VCC, GND, и Data), соединяем их:
- VCC > 5В выводом на плате;
- GND > GND ;
- Data > 12 выводом на плате.

Этап 2.


Сам приёмник состоит из:
- Модуля RF приёмника;
- Платы Arduino
- Зуммера (динамика).

Схема Приемника:


Приемник, как и передатчик, имеет 3 вывода (VCC, GND, и Data), соединяем их:
- VCC > 5В выводом на плате;
- GND > GND ;
- Data > 12 выводом на плате.


Этап 3.
Основой всей прошивки автор выбрал файл-библиотеки. Скачал, который он , и поместил его в папку с библиотеками Arduino.

ПО для передатчика.
Перед тем, как загружать код прошивки в плату, автор выставил следующие параметры IDE:
- Board -> Arduino Nano (или та плата, которую вы используете);
- Serial Port ->


После установки параметров, автор скачал файл прошивки Wireless_tx и загрузил его на плату:

ПО для приемника
Автор повторяет те же действия и для принимающей платы:
- Board -> Arduino UNO (или та плата, которую вы используете);
- Serial Port -> COM XX (проверьте com порт, к которому подключено ваша плата).



После того как автор установил параметры, скачивает файл wireless_rx и загружает его в плату:


После, при помощи программы, которую можно скачать , автор сгенерировал звук для зуммера.

Этап 4.
Далее, после загрузки ПО автор решил проверить, все ли работает должным образом. Автор подсоединил источники питания, и провел рукой перед датчиком, и у него заработал зуммер, а значит все работает как надо.


Этап 5.
Финальная сборка передатчика
Сначала автор срезал выступающие выводы с приемника, передатчика, плат arduino, и т. д.


После чего, соединил плату arduino с датчиком движения и RF передатчиком при помощи джамперов.


Далее автор начал делать корпус для передатчика.

Сначала он вырезал: отверстие для выключателя, а также круглое отверстие для датчика движения,после чего приклеил его к корпусу.




Потом автор свернул лист цветной бумаги, и приклеил на лицевую крышку образа, для того чтобы скрыть внутренние части самоделки.


После чего, автор начал вставлять электронную начинку внутрь корпуса, при помощи двухстороннего скотча.



Финальная сборка приемника
Автор решил соединить плату Arduino с монтажной платой резиновой лентой, а также установим RF приемник.


Далее автор вырезает на другом корпусе два отверстия, одно для зуммера, другое для выключателя.


И приклеивает.

Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.