Изгиб с кручением бруса круглого поперечного сечения. Пространственный (сложный) изгиб. Расчёт безмоментных оболочек вращения

В случае расчета круглого бруса при действии изгиба и круче­ния (рис. 34.3) необходимо учитывать нормальные и касательные на­пряжения, т. к. максимальные значения напряжений в обоих случаях возникают на поверхности. Расчет следует вести по теории проч­ности, заменяя сложное напряженное состояние равноопасным про­стым.

Максимальное напряжение кручения в сечении

Максимальное напряжение изгиба в сечении

По одной из теорий прочности в зависимости от материала бруса рассчитывают эквивалентное напряжение для опасного сечения и проверяют брус на прочность, используя допускаемое напряжение изгиба для материала бруса.

Для круглого бруса моменты сопротивления сечения следую­щие:

При расчете по третьей теории прочности, теории максималь­ных касательных напряжений, эквивалентное напряжение рассчи­тывается по формуле

Теория применима для пластичных материалов.

При расчете по теории энергии формоизменения эквивалентное напряжение рассчитывается по формуле

Теория применима для пластичных и хрупких материалов.


теории максималь­ных касательных напряжений:

Эквивалентное напряжение при расчете по теории энергии формоизменения:

где - эквивалентный момент.

Условие прочности

Примеры решения задач

Пример 1. Для заданного напряженного состояния (рис. 34.4), пользуясь гипотезой максимальных касательных напряжений, вычислить ко­эффициент запаса прочности, если σ Т = 360 Н/мм 2 .

1. Чем характеризуется и как изображается напряженное состо­яние в точке?

2. Какие площадки и какие напряжения называют главными?



3. Перечислите виды напряженных состояний.

4. Чем характеризуется деформированное состояние в точке?

5. В каких случаях возникают предельные напряженные состо­яния у пластичных и хрупких материалов?

6. Что такое эквивалентное напряжение?

7. Поясните назначение теорий прочности.

8. Напишите формулы для расчета эквивалентных напряжений при расчетах по теории максимальных касательных напряжений и теории энергии формоизменения. Поясните, как ими пользоваться.

ЛЕКЦИЯ 35

Тема 2.7. Расчет бруса круглого поперечного сечения при сочетании основных деформаций

Знать формулы для эквивалентных напряжений по гипотезам наибольших касательных напряжений и энергии формоизменения.

Уметь рассчитывать брус круглого поперечного сечения на прочность при сочетании основных деформаций.

Формулы для расчета эквивалентных напряжений

Эквивалентное напряжение по гипотезе максимальных каса­тельных напряжений

Эквивалентное напряжение по гипотезе энергии формоизмене­ния

Условие прочности при совместном действии изгибаи кручения

где М ЭКВ - эквивалентный момент.

Эквивалентный момент по гипотезе максимальных касательных напряжений

Эквивалентный момент по гипотезе энергии формоизменения

Особенность расчета валов

Большинство валов испытывают сочетание деформаций изгиба и кручения. Обычно валы - прямые брусья с круглым или кольце­вым сечением. При расчете валов касательные напряжения от дей­ствия поперечных сил не учитывают из-за их незначительности.

Расчеты проводят по опасным поперечным сечениям. При про­странственном нагружении вала пользуются гипотезой независимо­сти действия сил и изгибающие моменты рассматривают в двух вза­имно перпендикулярных плоскостях, а суммарный изгибающий мо­мент определяют геометрическим суммированием.

Примеры решения задач

Пример 1. В опасном поперечном сечении круглого бруса воз­никают внутренние силовые факторы (рис. 35.1) М х; М у; M z .

М х и М у - изгибающие моменты в плоскостях уОх и zOx со­ответственно; M z - крутящий момент. Проверить прочность по ги­потезе наибольших касательных напряжений, если [σ ] = 120 МПа. Исходные данные: М х = 0,9 кН м; М у = 0,8 кН м; M z = 2,2 кН*м; d = 60 мм.

Решение

Строим эпюры нормальных напряжений от действия изгибаю­щих моментов относительно осей Ох и Оу и эпюру касательных на­пряжений от кручения (рис. 35.2).

Максимальное касательное напряжение возникает на поверхно­сти. Максимальные нормальные напряжения от момента М х возни­кают в точке А, максимальные нормальные напряжения от момента М у в точке В. Нормальные напряжения складываются, потому что изгибающие моменты во взаимно перпендикулярных плоскостях гео­метрически суммируются.

Суммарный изгибающий момент:

Рассчитываем эквивалентный момент по теории максимальных касательных напряжений:

Условие прочности:

Момент сопротивления сечения: W oce в oe = 0,1 60 3 = 21600мм 3 .

Проверяем прочность:

Прочность обеспечена.

Пример 2. Из условия прочности рассчитать необходимый диа­метр вала. На валу установлены два колеса. На колеса действуют две окружные силы F t 1 = 1,2кН; F t 2 = 2кН и две радиальные силы в вертикальной плоскости F r 1 = 0,43кН; F r 2 = 0,72кН (рис. 35.3). Диаметры колес соответственно равны d 1 = 0,1м; d 2 = 0,06 м.

Принять для материала вала [σ ] = 50МПа.

Расчет провести по гипотезе максимальных каса­тельных напряжений. Весом вала и колес пренебречь.

Решение

Указание. Используем принцип независимости действия сил, составляем расчетные схемы вала в вертикальной и горизонтальной плоскостях. Определяем реакции в опорах в горизонтальной и вертикальной плоскостях в отдельности. Строим эпюры изгиба­ющих моментов (рис. 35.4). Под действием окружных сил вал скручивается. Определяем действующий на валу крутящий момент.

Составим расчетную схему вала (рис. 35.4).

1. Крутящий момент на валу:

2. Изгиб рассматриваем в двух плоскостях: горизонтальной (пл. Н) и вертикальной (пл. V).

В горизонтальной плоскости определяем реакции в опоре:

С и В :



В вертикальной плоскости определяем реакции в опоре:

Определяем изгибающие моменты в точках С и В:

Суммарные изгибающие моменты в точках С и В:

В точке В максимальный изгибающий момент, здесь же дей­ствует и крутящий момент.

Расчет диаметра вала ведем по наиболее нагруженному сечению.

3. Эквивалентный момент в точке В по третьей теории прочности

4. Определяем диаметр вала круглого поперечного сечения из условия прочности

Округляем полученную величину: d = 36 мм.

Примечание. При выборе диаметров вала пользоваться стандартным рядом диаметров (Приложение 2).

5. Определяем необходимые размеры вала кольцевого сечения при с = 0,8, где d - наружный диаметр вала.

Диаметр вала кольцевого сечения можно определить по форму­ле

Примем d = 42 мм.

Перегрузка незначительная. d BH = 0,8d = 0,8 42 = 33,6мм.

Округляем до значения d BH = 33 мм.

6. Сравним затраты металла по площадям сечения вала в обоих случаях.

Площадь поперечного сечения сплошного вала

Площадь поперечного сечения полого вала

Площадь поперечного сечения сплошного вала почти в два раза больше вала кольцевого сечения:

Пример 3 . Определить размеры поперечного се­чения вала (рис. 2.70, а) привода управления. Усилие от тяги педали P 3 , усилия, передаваемые механизмом P 1 , Р 2 , Р 4 . Материал вала - сталь СтЗ с пределом те­кучести σ т = 240 Н/мм 2 , требуемый коэффициент запаса [n ] = 2,5. Расчет выполнить по гипотезе энергии формо­изменения.

Решение

Рассмотрим равновесие вала, предварительно приведя силы Р 1 , Р 2 , Р 3 , Р 4 к точкам, лежащим на его оси.

Перенося силы Р 1 параллельно самим себе в точки К и E , надо добавить пары сил с моментами, равными моментам сил Р 1 относительно точек К и Е, т. е.

Эти пары сил (моменты) условно показаны на рис. 2.70, б в виде дугообразных линий со стрелками. Аналогично при переносе сил Р 2 , Р 3 , Р 4 в точки K, E, L, Н надо добавить пары сил с моментами

Опоры вала, изображенного на рис. 2.70, а, надо рассматривать как пространственные шарнирные опоры, препятствующие перемещениям в направлении осей х и у (выбранная система координат показана на рис. 2.70, б).

Пользуясь расчетной схемой, изображенной на рис. 2.70, в , составим уравнения равновесия:




следовательно, опорные реакции Н А и Н В определены верно.

Эпюры крутящих моментов М z и изгибающих момен­тов М у представлены на рис. 2.70, г . Опасным является сечение слева от точки L.

Условие прочности имеет вид:

где эквивалентный момент по гипотезе энергии формо­изменения

Требуемый наружный диаметр вала

Принимаем d = 45 мм, тогда d 0 = 0,8 * 45=36 мм.

Пример 4. Проверить прочность промежуточного вала (рис. 2.71) цилиндрического прямозубого редуктора, если вал передает мощность N = 12,2 кВт при частоте вращения п = 355 об/мин. Вал изготовлен из стали Ст5 с пределом текучести σ т = 280 Н/мм 2 . Требуемый коэф­фициент запаса [n ] = 4. При расчете применить гипотезу наибольших касательных напряжений.

Указание. Окружные усилия Р 1 и Р 2 лежат в горизонталь­ной плоскости и направлены по касательным к окружностям зубчатых колес. Радиальные усилия T 1 и Т 2 лежат в верти­кальной плоскости и выражаются через соответствующее окружное усилие следующим образом: T = 0,364Р .

Решение

На рис. 2.71, а представлен схематический чертеж вала; на рис. 2.71, б показана схема вала и усилия, возникающие в зубчатом зацеплении.

Определим момент, передаваемый валом:

Очевидно, m = m 1 = m 2 (скручивающие моменты, приложен­ные к валу, при равномерном вращении равны по вели­чине и противоположны по направлению).

Определим усилия, действующие на зубчатые колеса.

Окружные усилия:

Радиальные усилия:

Рассмотрим равновесие вала АВ , предварительно при­ведя силы Р 1 и Р 2 к точкам, лежащим на оси вала.

Перенося силу Р 1 параллельно самой себе в точку L , надо добавить пару сил с моментом, равным моменту силы Р 1 относительно точки L , т. е.

Эта пара сил (момент) условно показана на рис. 2.71, в в виде дугообразной линии со стрелкой. Аналогично при переносе силы Р 2 в точку К надо присоединить (добавить) пару сил с моментом

Опоры вала, изображенного на рис. 2.71, а , надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемещениям в направлениях осей х и у (выбранная система координат показана на рис, 2.71, б ).

Пользуясь расчетной схемой, изображенной на рис. 2.71, г , составим уравнения равновесия вала в вер­тикальной плоскости:

Составим проверочное уравнение:

следовательно, опорные реакции в вертикальной плоско­сти определены верно.

Рассмотрим равновесие вала в горизонтальной пло­скости:

Составим проверочное уравнение:

следовательно, опорные реакции в горизонтальной пло­скости определены верно.

Эпюры крутящих моментов М z и изгибающих момен­тов М х и М у представлены на рис. 2.71, д .

Опасным является сечение К (см. рис. 2.71, г , д ). Эквивалентный момент по гипотезе наибольших касатель­ных напряжений

Эквивалентное напряжение по гипотезе наибольших касательных напряжений для опасной точки вала

Коэффициент запаса

что значительно больше [n ] = 4, следовательно, прочность вала обеспечена.

При расчете вала на прочность не учтено изменение напряжений во времени, поэтому и получился такой зна­чительный коэффициент запаса.

Пример 5. Определить размеры поперечного се­чения бруса (рис. 2.72, а). Материал бруса - сталь 30XГС с условными пределами текучести при растяжении и сжатии σ о, 2р = σ тр = 850 Н/мм 2 , σ 0,2 c = σ Tc = 965 Н/мм 2 . Коэффициент запаса [n ] = 1,6.

Решение

Брус работает на совместное действие рас­тяжения (сжатия) и кручения. При таком нагружении в поперечных сечениях возникают два внутренних силовых фактора: продольная сила и крутящий момент.

Эпюры продольных сил N и крутящих моментов M z показаны на рис. 2.72, б, в. В данном случае определить положение опасного сечения по эпюрам N и M z невоз­можно, так как размеры поперечных сечений участков бруса различны. Для выяснения положения опасного сечения следует построить эпюры нормальных и макси­мальных касательных напряжений по длине бруса.

По формуле

вычисляем нормальные напряжения в поперечных сече­ниях бруса и строим эпюру о (рис. 2.72, г ).

По формуле

вычисляем максимальные касательные напряжения в по­перечных сечениях бруса и строим эпюру т тах (рис* 2.72, д).

Вероятно, опасными являются точки контура попереч­ных сечений участков АВ и CD (см. рис. 2.72, а).

На рис. 2.72, e показаны эпюры σ и τ для попереч­ных сечений участка АВ .

Напомним, в данном случае (брус круглого попереч­ного сечения работает на совместное действие растяже­ния - сжатия и кручения) равноопасными являются все точки контура поперечного сечения.

На рис. 2.72, ж


На рис. 2.72, з показаны эпюры а и т для попереч­ных сечений участка CD.

На рис. 2.72, и показаны напряжения на исходных площадках в опасной точке.

Главные напряжения в опасной точке участка CD:


По гипотезе прочности Мора эквивалентное напряже­ние для опасной точки рассматриваемого участка

Опасными оказались точки контура поперечных сече­ний участка АВ.

Условие прочности имеет вид:

Пример 2.76. Определить допускаемое значение силы Р из условия прочности стержня ВС (рис.2.73).Материал стержня - чугун с пределом проч­ности при растяжении σ вр = 150 Н/мм 2 и пре­делом прочности при сжатии σ вс = 450 Н/мм 2 . Требуемый коэффициент запаса [n ] = 5.

Указание. Ломаный брус АBС расположен в го­ризонтальной плоскости, при­чем стержень перпенди­кулярен к ВС. Силы Р, 2Р, 8Р лежат в вертикальной плоскости; силы 0,5 Р, 1,6 Р - в горизонтальной и перпендикулярны стержню ВС; силы 10Р, 16Р совпада­ ют с осью стержня ВС ; пара сил с моментом m = 25Pd распо­ложена в вертикальной плоскости, перпендикулярной оси стерж­ня ВС.

Решение

Приведем силы Р и 0,5Р к центру тяжести поперечного сечения В.

Перенося силу Р параллельно самой себе в точку В, надо добавить пару сил с моментом, равным моменту силы Р относительно точки В , т. е. пару с моментом m 1 = 10 Pd.

Силу 0,5Р переносим вдоль ее линии действия в точку В.

Нагрузки, действующие на стержень ВС, показаны на рис. 2.74, а .

Строим эпюры внутренних силовых факторов для стержня ВС. При указанном нагружении стержня в его поперечных сечениях их возникает шесть: продольная сила N , поперечные силы Qx и Qy, крутящий момент Mz изгибающие моменты Мх и Му .

Эпюры N, Мz, Мх, Му представлены на рис. 2.74, б (ординаты эпюр выражены через Р и d ).

Эпюры Qy и Qx не строим, так как касательные напряжения, соответствующие поперечным силам, имеют малую величину.

В рассматриваемом примере положение опасного сечения не очевидно, Предположительно, опасны сечения К (конец участка I ) и С.


Главные напряжения в точке L:

По гипотезе прочности Мора эквивалентное напряжение для точки L

Определим величину и плоскость действия изгибающего момента Ми в сечении С, изображенном отдельно на рис. 2.74, д . На этом же рисунке показаны эпюры σ И, σ N , τ для сечения С.

Напряжения на исходных площадках в точке Н (рис. 2.74, е)


Главные напряжения в точке Н :

По гипотезе прочности Мора эквивалентное напряже­ние для точки Н

Напряжения на исходных площадках в точке Е (рис. 2.74, ж):

Главные напряжения в точке Е:

По гипотезе прочности Мора эквивалентное напряже­ние для точки Е

Опасной оказалась точка L, для которой

Условие прочности имеет вид:

Контрольные вопросы и задания

1. Какое напряженное состояние возникает в поперечном сече­нии вала при совместном действии изгиба и кручения?

2. Напишите условие прочности для расчета вала.

3. Напишите формулы для расчета эквивалентного момента при расчете по гипотезе максимальных касательных напряжений и гипо­тезе энергии формоизменения.

4. Как выбирается опасное сечение при расчете вала?

Пространственным изгибом называется такой вид сложного сопротивления, при котором в поперечном сечении бруса действуют только изгибающие моменты и
. Полный изгибающий момент при этом действует ни в одной из главных плоскостей инерции. Продольная сила отсутствует. Пространственный или сложный изгиб часто называютнеплоским изгибом , так как изогнутая ось стержня не является плоской кривой. Такой изгиб вызывается силами, действующими в разных плоскостях перепендикулярно оси балки (Рис.12.4).

Следуя порядку решения задач при сложном сопротивлении, изложенному выше, раскладываем пространственную систему сил, паредставленную на рис. 12.4, на две такие, чтобы каждая из них действовала в одной из главных плоскостей. В результате получаем два плоских поперечных изгиба – в вертикальной и горизонтальной плоскости. Из четырех внутренних силовых факторов, которые при этом возникают в поперечном сечении балки
, будем учитывать влияние только изгибающих моментов
. Строим эпюры
, вызванных соответственно силами
(Рис.12.4).

Анализируя эпюры изгибающих моментов, приходим к выводу, что опасным является сечение А, так как именно в этом сечении возникают наибольшие по величине изгибающие моменты
и
. Теперь необходимо установить опасные точки сечения А. Для этого построим нулевую линию. Уравнение нулевой линии с учетом правила знаков для членов, входящих в это уравнение, имеет вид:

. (12.7)

Здесь принят знак “”возле второго члена уравнения, так как напряжения в первой четверти, вызванные моментом
, будут отрицательными.

Определим угол наклона нулевой линии с положительным направлением оси(Рис.12.6):

. (12.8)

Из уравнения (12.7) следует, что нулевая линия при пространственном изгибе является прямой линией и проходит через центр тяжести сечения.

Из рис.12.5 видно, что наибольшие напряжения возникнут в наиболее удаленных от нулевой линии точках сечения №2 и №4. По величине нормальные напряжения в этих точках будут одинаковами, но по знаку отличаются: в точке №4 напряжения будут положительными, т.е. растягивающими, в точке №2 – отрицательными, т.е. сжимающими. Знаки этих напряжений были установлены из физических соображений.

Теперь, когда опасные точки установлены, вычислим максимальные напряжения в сечении А и проверим прочность балки с помощью выражения:

. (12.9)

Условие прочности (12.9) позволяет не только выполнить проверку прочности балки, но и подобрать размеры ее поперечного сечения, если задано соотношение сторон поперечного сечения.

12.4. Косой изгиб

Косым называется такой вид сложного сопротивления, при котором в поперечных сечениях балки возникают только изгибающие моменты
и
, но в отличие от пространственного изгиба все силы, приложенные к балке, действуют в одной (силовой) плоскости, не совпадающей ни с одной из главных плоскостей инерции. Этот вид изгиба наиболее часто встречается в практике, поэтому исследуем его подробнее.

Рассмотрим консольную балку, нагруженную силой , как показано на рис 12.6, и выполненную из изотропного материала.

Так же, как и при пространственном изгибе, при косом изгибе отсутствует продольная сила. Влиянием поперечных сил при расчете балки на прочность будем пренебрегать.

Расчетная схема балки, изображенной на рис.12.6, приведена на рис.12.7.

Разложим силу на вертикальнуюи горизонтальнуюсоставляющие и от каждой из этих составляющих построим эпюры изгибающих моментов
и
.

Вычислим составляющие полного изгибающего момента в сечении :

;
.

Полный изгибающий момент в сечении равен

Таким образом, составляющие полного изгибающего момента можно выразить через полный момент следующим образом:

;
. (12.10)

Из выражения (12.10) видно, что при косом изгибе нет необходимости раскладывать систему внешних сил на составляющие, так как эти составляющие полного изгибающего момента связаны друг с другом с помощью угла наклона следа силовой плоскости . В результате отпадает необходимость в построении эпюр составляющих
и
полного изгибающего момента. Достаточно построить эпюру полного изгибающего момента
в силовой плоскости, а затем, воспользовавшись выражением (12.10), определить составляющие полного изгибающего момента в любом интересующем нас сечении балки. Полученный вывод существенно упрощает решение задач при косом изгибе.

Подставим значения составляющих полного изгибающего момента (12.10) в формулу для нормальных напряжений (12.2) при
. Получим:

. (12.11)

Здесь знак “” возле полного изгибающего момента проставлен специально с той целью, чтобы автоматически получать правильный знак нормального напряжения в рассматриваемой точке поперечного сечения. Полный изгибающий момент
и координаты точкииберутся со своими знаками при условии, что в первом квадранте знаки координат точки принимаются положительными.

Формула (12.11) была получена из рассмотрения частного случая косого изгиба балки, защемленной одним концом и нагруженной на другом сосредоточенной силой. Тем не менее, эта формула является общей формулой для вычисления напряжений при косом изгибе.

Опасным сечением, как и при пространственном изгибе в рассматриваемом случае (Рис.12.6), будет сечение А, так как в этом сечении возникает наибольший по величине полный изгибающий момент. Опасные точки сечения А определим, построив нулевую линию. Уравнение нулевой линии получим, вычислив с помощью формулы (12.11) нормальные напряжения в точке с координатами и, принадлежащей нулевой линии и приравняем найденные напряжения нулю. После несложных преобразований получим:

(12.12)

. (12.13)

Здесь угол наклона нулевой линии к оси(Рис.12.8).

Исследуя уравнения (12.12) и (12.13), можно сделать некоторые выводы о поведении нулевой линии при косом изгибе:

Из рис.12.8 следует, что наибольшие по величине напряжения возникают в точках сечения, наиболее удаленных от нулевой линии. В рассматриваемом случае такими точками являются точки №1 и №3. Таким образом, при косом изгибе условие прочности имеет вид:

. (12.14)

Здесь:
;
.

Если моменты сопротивления сечения относительно главных осей инерции могут быть выражены через размеры сечения, условие прочности удобно использовать в таком виде:

. (12.15)

При подборе сечений один из осевых моментов сопротивления выносят за скобку и задаются отношением . Зная
,
и угол, путем последовательных попыток определяют значения
и, удовлетворяющие условию прочности

. (12.16)

Для несимметричных сечений, не имеющих выступающих углов, используется условие прочности в виде (12.14). В этом случае при каждой новой попытке подбора сечения необходимо предварительно вновь найти положение нулевой линии и координаты наиболее удаленной точки (
). Для прямоугольного сечения
. Задаваясь отношением, из условия прочности (12.16) легко можно найти величину
и размеры поперечного сечения.

Рассмотрим определение перемещений при косом изгибе. Найдем прогиб в сечении консольной балки (Рис.12.9). Для этого изобразим балку в единичном состоянии и построим эпюру единичных изгибающих моментов в одной из главных плоскостей. Будем определять полный прогиб в сечении, предварительно определив проекции вектора перемещенийна осии. Проекцию вектора полного прогиба на осьнайдем, воспользовавшись формулой Мора:

Проекцию вектора полного прогиба на ось найдем аналогичным способом:

Полный прогиб определим по формуле:

. (12.19)

Следует обратить внимание, что при косом изгибе в формулах (12.17) и (12.18) при определении проекций прогиба на оси координат меняются лишь постоянные члены, стоящие перед знаком интеграла. Сам же интеграл остается постоянным. При решении практических задач будем вычислять этот интеграл, пользуясь методом Мора-Симпсона. Для этого умножим единичную эпюру
на грузовую
(Рис.12.9), построенную в силовой плоскости, а затем полученный результат умножим последовательно на постоянные коэффициенты, соответственно,и. В результате получим проекции полного прогибаина оси координати. Выражения для проекций прогиба для общего случая нагружения, когда балка имеетучастков, будут иметь вид:

; (12.20)

. (12.21)

Отложим найденные значения для ,и(Рис.12.8). Вектор полного прогибасоставляет с осьюострый угол, величин которого можно найти по формуле:

, (12.22)

. (12.23)

Сравнивая уравнение (12.22) с уравнением нулевой линии (12.13), приходим к выводу, что

или
,

откуда следует, что нулевая линия и вектор полного прогиба взаимно перепедикулярны. Уголявляется дополнением угладо 90 0 . Это условие может быть использовано для проверки при решении задач на косой изгиб:

. (12.24)

Таким образом, направление прогибов при косом изгибе перпендикулярно нулевой линии. Отсюда вытекает важное условие, что направление прогибов не совпадает с направлением действующей силы (Рис.12.8). Если нагрузка представляет собой плоскую систему сил, то ось изогнутой балки лежить в плоскости, которая не совпадает с плоскостью действия сил. Балка перекашивается по отношению к силовой плоскости. Это обстоятельство послужило основанием для того, что подобный изгиб стали называтькосым .

Пример 12.1. Определить положение нулевой линии (найти угол) для поперечного сечения балки, изображенной на рис.12.10.

1. Угол до следа силовой плоскостибудем откладывать от положительного направления оси. Уголвсегда будем брать острым, но с учетом знака. Любой угол считается положительным, если в правой системе координат его откладывают от положительного направления осипротив часовой стрелки, и отрицательным, если угол откладывают по часовой стрелке. В данном случае уголсчитается отрицательным (
).

2. Определяем отношение осевых моментов инерции:

.

3. Записывем уравнение нулевой линии при косом изгибе в виде, откуда находим угол :

;
.

4. Угол оказался положительным, поэтому откладываем его от положительного направление осипротив часовой стрелки до нулевой линии (Рис.12.10).

Пример 12.2. Определить величину нормального напряжения в точке А поперечного сечения балки при косом изгибе, если изгибающий момент
кНм, координаты точки
см,
см. Размеры поперечного сечения балки и угол наклона силовой плоскостиприведены на Рис.12.11.

1. Вычислим предварительно моменты инерции сечения относительно осей и:

см 4 ;
см 4 .

2. Запишем формулу (12.11) для определения нормальных напряжений в произвольной точке поперечного сечения при косом изгибе. При подстановке значения изгибающего момента в формулу (12.11) следует учесть, что изгибающий момент по условию задачи положительный.

7,78 МПа.

Пример 12.3. Определить размеры поперечного сечения балки, изображенной на рис.12.12а. Материал балки – сталь с допускаемом напряжением
МПа. Отношение сторон задается
. Нагрузки и угол наклона силовой плоскостиприведены на рис.12.12в.

1. Для определения положения опасного сечения строим эпюру изгибающих моментов (Рис.12.12б). Опасным является сечение А. Максимальный изгибающий момент в опасном сечении
кНм.

2. Опасной точкой а сечении А будет одна из угловых точек. Условие прочности запишем в виде

,

Откуда найдем, учитывая, что отношение
:

3. Определяем размеры поперечного сечения. Осевой момент сопротивления
с учетом отношения сторон
равен:

см 3 , откуда

см;
см.

Пример 12.4. В результате изгиба балки центр тяжести сечения переместился в направлении, определяемом угломс осью(Рис.12.13,а). Определить угол наклонасиловой плоскости. Форма и размеры поперечного сечения балки приведены на рисунке.

1. Для определения угла наклона следа силовой плоскости воспользуемся выражением (12.22):

, откуда
.

Отношение моментов инерции
(см. пример 12.1). Тогда

.

Отложим это значение угла от положительного направления оси(Рис.12.13,б). След силовой плоскости на рис 12.13,б показан шриховой линией.

2. Выполним проверку полученного решения. Для этого при найденном значении угла определим положение нулевой линии. Воспользуемся выражением (12.13):

.

Нулевая линия показана на рис.12.13 шрих-пунктирной линией. Нулевая линия должна быть перпендикулярной линии прогибов. Проверим это:

Пример 12.5. Определить полный прогиб балки в сечении В при косом изгибе (Рис.12.14а). Материал балки – сталь с модулем упругости
МПа. Размеры поперечного сечения и угол наклона силовой плоскостиприведены на рис.12.14б.

1. Определим проекции вектора полного прогиба в сечении Аи. Для этого построим грузовую эпюру изгибающих моментов
(Рис.12.14,в), единичную эпюру
(Рис.12.14,г).

2. Применяя метод МораСимпсона, перемножим грузовую
и единичную
эпюры изгибающих моментов, используя выражения (12.20) и (12.21):

м
мм.

м
мм.

Осевые моменты инерции сечения
см 4 и
см 4 берем из примера 12.1.

3. Определяем полный прогиб сечения В:

.

Найденные значения проекций полного прогиба и сам полный прогиб откладываем на чертеже (Рис.12.14б). Так как проекции полного прогиба получились при решении задачи положительными, откладывем их в направлении действия единичной силы, т.е. вниз () и влево ().

5. Для проверки правильности решения определим угол наклона нулевой линии к оси :

Сложим модули углов направления полного прогиба и:

Это означает, что полный прогиб перпендикулярен нулевой линии. Таким образом, задача решена верно.

Пространственный (сложный) изгиб

Пространственным изгибом называется такой вид сложного сопротивления, при котором в поперечном сечении бруса действуют только изгибающие моменты и. Полный изгибающий момент при этом действует ни в одной из главных плоскостей инерции. Продольная сила отсутствует. Пространственный или сложный изгиб часто называют неплоским изгибом, так как изогнутая ось стержня не является плоской кривой. Такой изгиб вызывается силами, действующими в разных плоскостях перпендикулярно оси балки (Рис. 1.2.1).

Рис.1.2.1

Следуя порядку решения задач при сложном сопротивлении, изложенному выше, раскладываем пространственную систему сил, представленную на рис. 1.2.1, на две такие, чтобы каждая из них действовала в одной из главных плоскостей. В результате получаем два плоских поперечных изгиба - в вертикальной и горизонтальной плоскости. Из четырех внутренних силовых факторов, которые при этом возникают в поперечном сечении балки, будем учитывать влияние только изгибающих моментов. Строим эпюры, вызванных соответственно силами (Рис. 1.2.1).

Анализируя эпюры изгибающих моментов, приходим к выводу, что опасным является сечение А, так как именно в этом сечении возникают наибольшие по величине изгибающие моменты и. Теперь необходимо установить опасные точки сечения А. Для этого построим нулевую линию. Уравнение нулевой линии с учетом правила знаков для членов, входящих в это уравнение, имеет вид:

Здесь принят знак “” возле второго члена уравнения, так как напряжения в первой четверти, вызванные моментом, будут отрицательными.

Определим угол наклона нулевой линии с положительным направлением оси (Рис.12.6):

Рис. 1.2.2

Из уравнения (8) следует, что нулевая линия при пространственном изгибе является прямой линией и проходит через центр тяжести сечения.

Из рис. 1.2.2 видно, что наибольшие напряжения возникнут в наиболее удаленных от нулевой линии точках сечения №2 и №4. По величине нормальные напряжения в этих точках будут одинаковыми, но по знаку отличаются: в точке №4 напряжения будут положительными, т.е. растягивающими, в точке №2 - отрицательными, т.е. сжимающими. Знаки этих напряжений были установлены из физических соображений.

Теперь, когда опасные точки установлены, вычислим максимальные напряжения в сечении А и проверим прочность балки с помощью выражения:

Условие прочности (10) позволяет не только выполнить проверку прочности балки, но и подобрать размеры ее поперечного сечения, если задано соотношение сторон поперечного сечения.

Под изгибом понимается такой вид нагружения, при котором в поперечных сечениях бруса возникают изгибающие моменты. Если изгибающий момент в сечении является единственным силовым фактором, то изгиб называется чистым. Если наряду с изгибающим моментом в поперечных сечениях бруса возникают и поперечные силы, то изгиб называется поперечным.

Предполагается, что изгибающий момент и поперечная сила лежат в одной из главных плоскостей бруса (примем, что эта плоскость ZOY). Такой изгиб называется плоским.

Во всех рассматриваемых ниже случаях имеет место плоский поперечный изгиб балок.

Для расчета балки на прочность или жесткость необходимо знать внутренние силовые факторы, возникающие в ее сечениях. С этой целью строятся эпюры поперечных сил (эпюра Q) и изгибающих моментов (М).

При изгибе прямолинейная ось бруса искривляется, нейтральная ось проходит через центр тяжести сечения. Для определенности при построении эпюр поперечных сил изгибающих моментов установим для них правила знаков. Примем, что изгибающий момент будет считаться положительным, если элемент бруса изгибается выпуклостью вниз, т.е. таким образом, что его сжатые волокна находятся в верхней части.

Если момент изгибает брус выпуклостью вверх, то этот момент будет считаться отрицательным.

Положительные значения изгибающих моментов при построении эпюры откладываются, как обычно в направлении оси У, что соответствует построению эпюры на сжатом волокне.

Поэтому правило знаков для эпюры изгибающих моментов можно сформулировать следующим образом: ординаты моментов откладываются со стороны слоев бруса.

Изгибающий момент в сечении равен сумме моментов относительно этого сечения всех сил, расположенных по одну стороны (любую) от сечения.

Для определения поперечных сил (Q) установим правило знаков: поперечная сила считается положительной, если внешняя сила стремиться повернуть отсеченную часть балки по час. стрелке относительно точки оси, которая соответствует проведенному сечению.

Поперечная сила (Q) в произвольном поперечном сечении бруса численно равна сумме проекций на ось ОУ внешних сил, приложенных к его осеченной части.

Рассмотрим несколько примеров построения эпюр поперечных сил изгибающих моментов. Все силы перпендикулярны оси балок, поэтому горизонтальная составляющая реакции равна нулю. Деформированная ось балки и силы лежат в главной плоскости ZOY.

Балка длиной защемлена левым концом и нагружена сосредоточенной силой F и моментом m=2F.

Построим эпюры поперечных сил Q и изгибающих моментов М из.

В нашем случае на балку с правой стороны не наложено связей. Поэтому чтобы не определять опорные реакции, целесообразно рассматривать равновесие правой отсеченной части балка. Заданная балка имеет два участка нагружения. Границы участков-сечения, в которых приложены внешние силы. 1 участок - СВ,2 - ВА.

Проводим произвольное сечение на участке 1 и рассмотрим равновесие правой отсеченной части длиною Z 1 .

Из условия равновесия следует:

Q=F ; М из = -FZ 1 ()

Поперечная сила положительна, т.к. внешняя сила F стремится повернуть отсеченную часть по часовой стрелке. Момент изгибающий считается отрицательным, т.к. он изгибает рассматриваемую часть балки выпуклостью вверх.

При составлении уравнений равновесия мысленно закрепляем место сечения; из уравнений () следует, что поперечная сила на I участке от Z 1 не зависит и является постоянной величиной. Положительную силу Q=F откладываем в масштабе вверх от осевой линии балки, перпендикулярно к ней.

Изгибающий момент зависит от Z 1 .

При Z 1 =O М из =O приZ 1 = М из =

Полученное значение () откладываем вниз, т.е. эпюра М из строится на сжатом волокне.

Переходим ко второму участку

Рассекаем участок II на произвольном расстоянии Z 2 от свободного правого торца балки и рассматриваем равновесие отсеченной части длиною Z 2 . Изменение поперечной силы и изгибающего момента на основе условий равновесия можно выразить следующими уравнениями:

Q=FM из = - FZ 2 +2F

Величина и знак поперечной силы не изменились.

Величина изгибающего момента зависит от Z 2 .

ПриZ 2 = M из =, приZ 2 =

Изгибающий момент получился положительным, как в начале участка II, так и в конце его. На участке II балка изгибается выпуклостью вниз.

Откладываем в масштабе величины моментов вверх по осевой линии балки (т.е. эпюра строится на сжатом волокне). Наибольший изгибающий момент возникает в сечении, где приложен внешний момент m и по абсолютной величине равен

Заметим, что на длине балки, где Q сохраняет постоянную величину, изгибающий момент М из меняется линейно и представляется на эпюре наклонными прямыми. Из эпюр Q и М из видно, что в сечении, где приложена внешняя поперечная сила, эпюра Q имеет скачок на величину этой силы, а эпюра М из - излом. В сечении, где приложен внешний изгибающий момент, эпюра Миз имеет скачок на величину этого момента. На эпюре Q это не отражается. Из эпюры М из видим, что

max М из =

следовательно, опасное сечение предельно приближено с левой стороны к т.

Для балки изображенной на рис.13,а, построить эпюры поперечных сил и изгибающих моментов. На длине балка нагружена равномерно распределенной нагрузкой с интенсивностью q(КН/см).

На опоре А (шарнир неподвижный) возникнет вертикальная реакция R a (горизонтальная реакция равна нулю), а на опоре В (подвижный шарнир) возникает вертикальная реакция R в.

Определим вертикальные реакции опор, составляя уравнение моментов относительно опор А и В.

Проверим правильность определения реакции:

т.е. опорные реакции определены правильно.

Заданная балка имеет два участка нагружения: I участок - АС.

II участок - СВ.

На первом участке a, в текущем сечении Z 1 из условия равновесия отсеченной части имеем

Уравнение изгибающих моментов на 1 участке балки:

Момент от реакции R a изгибает балку на участке 1, выпуклостью вниз, поэтому изгибающий момент от реакции Ra вводится в уравнение со знаком плюс. Нагрузка qZ 1 изгибает балку выпуклостью вверх, поэтому момент от нее вводится в уравнение со знаком минус. Изгибающий момент изменяется по закону квадратной параболы.

Поэтому, необходимо выяснить имеет ли место экстремум. Между поперечной силой Q и изгибающим моментом существует дифференциальная зависимость на анализе которой мы остановимся далее

Как известно, функция имеет экстремум там, где производная равна нулю. Следовательно, чтобы определить при каком значении Z 1 , изгибающий момент будет экстремальным, надо уравнение поперечной силы приравнять к нулю.

Так как поперечная сила меняет в данном сечении знак с плюса на минус, то изгибающий момент в этом сечении будет максимальным. Если Q меняет знак с минуса на плюс, то изгибающий момент в этом сечении будет минимальным.

Итак, изгибающий момент при

является максимальным.

Поэтому, строим параболу по трем точкам

При Z 1 =0 М из =0

Рассекаем второй участок на расстоянии Z 2 от опоры В. Из условия равновесия правой отсеченной части балки имеем:

При величина Q=const,

изгибающий момент будет:

при, при, т.е. M ИЗ

меняется по линейному закону.

Балка на двух опорах, имеющая пролет равный 2 и левую консоль длиною, нагружена так, как показано на рис.14,а., где q(Кн/см) - погонная нагрузка. Опора А-шарнирно неподвижна, опора В - подвижный каток. Построить эпюры Q и М из.

Решение задачи следует начинать с определения реакций опор. Из условия равенства нулю суммы проекций всех сил на ось Z следует, что горизонтальная составляющая реакции на опоре А равна 0.

Для проверки используем уравнение

Уравнение равновесия удовлетворяются, следовательно, реакции вычислены правильно. Переходим к определению внутренних силовых факторов. Заданная балка имеет три участка нагружения:

  • 1 участок - СА,
  • 2 участок - АД,
  • 3 участок - ДВ.

Рассечем 1 участок на расстояние Z 1 от левого торца балки.

при Z 1 =0 Q=0 М ИЗ =0

при Z 1 = Q= -q М ИЗ =

Таким образом, на эпюре поперечных сил получается наклонная прямая, а на эпюре изгибающих моментов - парабола, вершина которой находится на левом конце балки.

На участке II (a Z 2 2a) для определения внутренних силовых факторов рассмотрим равновесие левой отсеченной части балки длиною Z 2 . Из условия равновесия имеем:

Поперечная сила на этом участке постоянна.

На участке III()

Из эпюры видим, что наибольший изгибающий момент возникает в сечении под силой F и равен. Это сечение будет самым опасным.

На эпюре М из имеется скачок на опоре В, равный внешнему моменту, приложенному в данном сечении.

Рассматривая построенные выше эпюры, нетрудно подметить определенную закономерную связь между эпюрами изгибающих моментов и эпюрами поперечных сил. Докажем это.

Производная от поперечной силы по длине бруса равняется по модулю интенсивности нагрузки.

Отбрасывая величину высшего порядка малости получим:

т.е. поперечная сила является производной от изгибающего момента по длине бруса.

Учитывая полученные дифференциальные зависимости можно сделать общие выводы. Если брус нагружен равномерно распределенной нагрузкой интенсивности q=const, очевидно, функция Q будет линейной, а М из - квадратичной.

Если брус нагружен сосредоточенными силами или моментами, то в промежутках между точками их приложения интенсивность q=0. Следовательно, Q=const, а М из является линейной функцией Z. В точках приложения сосредоточенных сил эпюра Q претерпевает скачок на величину внешней силы, а в эпюре М из возникает соответствующий излом (разрыв в производной).

В месте приложения внешнего изгибающего момента наблюдается разрыв в эпюре моментов, равный по величине приложенному моменту.

Если Q>0, то М из растет, а если Q<0, то М из убывает.

Дифференциальные зависимости используются для проверки уравнений составленных для построения эпюр Q и М из, а также для уточнения вида этих эпюр.

Изгибающий момент меняется по закону параболы, выпуклость которой всегда направлена навстречу внешней нагрузки.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.