Как угорь бьет током. Электрические рыбы: список, особенности и интересные факты. Электрический скат - живая аккумуляторная батарея

В теплых и тропических морях, в мутных реках Африки и Южной Америки живет несколько десятков видов рыб, способных временами или постоянно испускать электрические разряды разной силы. Своим электрическим током эти рыбы не только пользуются для защиты и нападения, но и сигнализируют им друг другу и обнаруживают заблаговременно препятствия (электролокация). Электрические органы встречаются только у рыб. У других животных эти органы пока не обнаружены.

Электрические рыбы существуют на Земле уже миллионы лет. Их остатки найдены в очень древних слоях земной коры - в силурийских и девонских отложениях. На древнегреческих вазах встречаются изображения электрического морского ската торпедо. В сочинениях древнегреческих и древнеримских писателей-натуралистов немало упоминаний о чудесной, непонятной силе, которой наделен торпедо. Врачи древнего Рима держали этих скатов у себя в больших аквариумах. Они пытались использовать торпедо для лечения болезней: пациентов заставляли прикасаться к скату, и от ударов электрического тока больные будто бы выздоравливали. Даже в наше время на побережье Средиземного моря и атлантическом берегу Пиренейского полуострова пожилые люди бродят иногда босиком по мелководью, надеясь излечиться от ревматизма или подагры электричеством торпедо.

Электрический скат торпедо.

Очертания тела торпедо напоминают гитару длиной от 30 см до 1,5 м и даже до 2 м. Его кожа принимает цвет, сходный с окружающей средой (см. ст. «Окраска и подражание у животных»). Различные виды торпедо живут в прибрежных водах Средиземного и Красного морей, Индийского и Тихого океанов, у берегов Англии. В некоторых бухтах Португалии и Италии торпедо буквально кишат на песчаном дне.

Электрические разряды торпедо очень сильны. Если этот скат попадет в рыбачью сеть, его ток может пройти по влажным нитям сети и ударить рыбака. Электрические разряды защищают торпедо от хищников - акул и осьминогов - и помогают ему охотиться за мелкой рыбой, которую эти разряды парализуют или даже убивают. Электричество у торпедо вырабатывается в особых органах, своеобразных «электрических батареях». Они находятся между головой и грудными плавниками и состоят из сотен шестигранных столбиков студенистого вещества. Столбики отделены друг от друга плотными перегородочками, к которым подходят нервы. Верхушки и основания столбиков соприкасаются с кожей спины и брюха. Нервы, подходящие к электрическим органам, имеют внутри «батарей» около полумиллиона окончаний.

Скат дископиге глазчатый.

За несколько десятков секунд торпедо испускает сотни и тысячи коротких разрядов, идущих потоком от брюхи к спине. Напряжение тока у разных видов скатов колеблется от 80 до 300 В при силе тока в 7-8 А. В наших морях живут несколько видов колючих скатов райя, среди них черноморский скат - морская лисица. Действие электрических органов у этих скатов гораздо слабее, чем у торпедо. Можно предполагать, что электрические органы служат райя для связи друг с другом, вроде «беспроволочного телеграфа».

В восточной части тихоокеанских тропических вод живет скат дископиге глазчатый. Он занимает как бы промежуточное положение между торпедо и колючими скатами. Питается скат мелкими рачками и легко их добывает, не применяя электрического тока. Его электрические разряды никого не могут убить и, вероятно, служат лишь для того, чтобы отгонять хищников.

Скат морская лисица.

Электрические органы есть не только у скатов. Тело африканского речного сома малаптеруруса обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов его достигает 360 В, оно опасно даже для человека и, конечно, гибельно для рыб.

Ученые установили, что африканская пресноводная рыба гимнархус всю жизнь непрерывно испускает слабые, но частые электрические сигналы. Ими гимнархус как бы прощупывает пространство вокруг себя. Он уверенно плавает в мутной воде среди водорослей и камней, не задевая телом ни за какие препятствия. Такой же способностью наделены африканская рыба мормирус и родственники электрического угря - южноамериканские гимноты.

Звездочет.

В Индийском, Тихом и Атлантическом океанах, в Средиземном и Черном морях живут небольшие рыбы, до 25 см, редко до 30 см длиной, - звездочеты. Обычно они лежат на прибрежном дне, подкарауливая проплывающую сверху добычу. Поэтому их глаза расположены на верхней стороне головы и смотрят вверх. Отсюда происходит название этих рыб. Некоторые виды звездочетов имеют электрические органы, которые находятся у них на темени, служат, вероятно, для сигнализации, хотя их действие ощутимо и для рыбаков. Тем не менее рыбаки беспрепятственно вылавливают немало звездочетов.

В южноамериканских тропических реках живет электрический угорь. Это серо-синяя змееобразная рыба длиной до 3 м. На долю головы и грудобрюшной части приходится лишь 1 / 5 ее тела. Вдоль остальных 4 / 5 тела с обеих сторон расположены сложные электрические органы. Они состоят из 6-7 тыс. пластинок, отделенных друг от друга тонкой оболочкой и изолированных прокладкой из студенистого вещества.

Пластинки образуют своего рода батарею, разряд которой направлен от хвоста к голове. Напряжения тока, вырабатываемого угрем, достаточно, чтобы убить в воде рыбу или лягушку. Плохо приходится от угрей и людям, купающимся в реке: электрический орган угря развивает напряжение в несколько сотен вольт.

Угорь создает особенно сильное напряжение тока, когда он изогнется дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо. Электрический разряд угря привлекает других угрей, находящихся поблизости.

Этим свойством можно воспользоваться. Разряжая в воду любой источник электричества, удается привлечь целое стадо угрей, надо только подобрать соответствующие напряжение тока и частоту разрядов. Мясо электрического угря в Южной Америке едят. Но ловить его опасно. Один из способов ловли рассчитан на то, что угорь, разрядивший свою батарею, надолго становится безопасен. Поэтому рыбаки поступают так: в реку загоняют стадо коров, угри нападают на них и расходуют свой запас электричества. Прогнав коров из реки, рыбаки бьют угрей острогами.

Подсчитано, что 10 тыс. угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезду пришлось бы стоять несколько суток, пока угри восстановили бы свой запас электрической энергии.

Исследования советских ученых показали, что многие из обычных, так называемых неэлектрических рыб, которые не имеют специальных электрических органов, все же в состоянии возбуждения способны создавать в воде слабые электрические разряды.

Эти разряды образуют вокруг тела рыб характерные биоэлектрические поля. Установлено, что слабые электрические поля есть у таких рыб, как речной окунь, щука, пескарь, вьюн, карась, красноперка, горбыль и др.

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Разность потенциалов на концах электрических органов может достигать 1200 вольт, а мощность разряда в импульсе — от 1 до 6 киловатт. Частота импульсов зависит от их назначения. Например, электрический скат испускает 10—12 импульсов, когда защищается, и от 14 до 562, когда нападает. Мощность напряжения в разряде у разных рыб колеблется от 20 до 600 вольт. Среди морских рыб самый «сильный» электрический орган у ската Torpedo maromata — он может генерировать разряд более 200 вольт. Электричество защищает его и от акул, и от осьминогов, а также позволяет охотиться на мелких рыб.

У пресноводных рыб разряды еще мощнее. Дело в том, что соленая вода лучше проводит электричество, чем пресная. Поэтому морским рыбам, чтобы оглушить противника, требуется меньше энергии. Одна из самых опасных пресноводных рыб — это электрический угорь из Амазонки. На его теле три электрических органа. Два из них для навигации и поиска добычи, а третий представляет собой мощнейшее оружие с напряжением более 500 вольт. Электрический удар такой силы не только убивает рыбу и лягушек, но даже может нанести серьезный вред человеку. Поэтому ловить амазонских угрей очень опасно. Для этого в реку загоняют стадо коров, чтобы угри истратили на них весь свой заряд. Только после этого люди заходят в воду.

Некоторые рыбы используют электричество для навигации. Например, нильский слоник или рыба-нож создают вокруг себя электромагнитное поле. Когда в него попадает посторонний объект, рыба сразу это чувствует. Такая навигационная система напоминает эхолокацию летучих мышей. Она позволяет хорошо ориентироваться в мутной воде. Как показали исследования, многие электрические рыбы настолько чувствительны к изменению электромагнитных полей, что способны «предвидеть» приближающееся землетрясение.

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.