Расчет тепловая схема геотермальной электростанции бинарного типа. Геотермальная энергетика. Геотермальные электростанции и геотермальные ресурсы

РАСЧЕТ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ

Произведем расчет тепловой схемы геотермальной электростанции бинарного типа, согласно .

Наша геотермальная электростанция состоит из двух турбин:

Первая работает на насыщенном водяном паре, полученном в расширителе. Электрическая мощность - ;

Вторая работает на насыщенном паре хладона R11, который испаряется за счет тепла воды, отводимый из расширителя.

Вода из геотермальных скважин с давлением pгв температурой tгв поступает в расширитель. В расширителе образуется сухой насыщенный пар с давлением pp. Этот пар направляется в паровую турбину. Оставшаяся вода из расширителя идет в испаритель, где охлаждается на и заканчивается обратно в скважину. Температурный напор в испарительной установке = 20°С. Рабочие тела расширяются в турбинах и поступают в конденсаторы, где охлаждаются водой из реки с температурой tхв. Нагрев воды в конденсаторе = 10°С, а недогрев до температуры насыщения = 5°С.

Относительные внутренние КПД турбин. Электромеханический КПД турбогенераторов = 0,95.

Исходные данные приведены в таблице 3.1.

Табл. 3.1. Исходные данные для расчета ГеоЭС

Принципиальная схема ГеоЭС бинарного типа (рис. 3.2).

Рис. 3.2.

Согласно схеме на рис. 3.2 и исходным данным проводим расчеты.

Расчет схемы паровой турбины, работающей на сухом насыщенном водяном паре

Температура пара при входе в конденсатор турбины:

где - температура охлаждающей воды на входе в конденсатор; - нагрев воды в конденсаторе; - температурный напор в конденсаторе.

Давление пара в конденсаторе турбины определяется по таблицам свойств воды и водяного пара :

Располагаемый теплоперепад на турбину :

где - энтальпия сухого насыщенного пара на входе в турбину; - энтальпия в конце теоретического процесса расширения пара в турбине.

Расход пара из расширителя на паровую турбину:

где - относительный внутренний КПД паровой турбины; - электромеханический КПД турбогенераторов.

Расчет расширителя геотермальной воды

Уравнение теплового баланса расширителя

где - расход геотермальной воды из скважины; - энтальпия геотермальной воды из скважины; - расход воды из расширителя в испаритель; - энтальпия геотермальной воды на выходе из расширителя. Определяется по таблицам свойств воды и водяного пара как энтальпия кипящей воды.

Уравнение материального баланса расширителя

Решая совместно эти два уравнения необходимо определить и.

Температура геотермальной воды на выходе из расширителя определяется по таблицам свойств воды и водяного пара как температура насыщения при давлении в расширителе:

Определение параметров в характерных точках тепловой схемы турбины, работающей в хладоне

Температура паров хладона на входе в турбину:

Температура паров хладона на выходе из турбины:

Энтальпия паров хладона на входе в турбину определяется по p-h диаграмме для хладона на линии насыщения при:

240 кДж/кг.

Энтальпия паров хладона на выходе из турбины определяется по p-h диаграмме для хладона на пересечении линий и линии температуры:

220 кДж/кг.

Энтальпия кипящего хладона на выходе из конденсатора определяется по p-h диаграмме для хладона на кривой для кипящей жидкости по температуре:

215 кДж/кг.

Расчет испарителя

Температура геотермальной воды на выходе из испарителя:

Уравнение теплового баланса испарителя:

где - теплоемкость воды. Принять =4,2 кДж/кг.

Из этого уравнения необходимо определить.

Расчет мощности турбины, работающей на хладоне

где - относительный внутренний КПД хладоновой турбины; - электромеханический КПД турбогенераторов.

Определение мощности насоса для закачки геотермальной воды в скважину

где - КПД насоса, принимается 0,8; - средний удельный объем геотермальной воды .

В состав двухконтурной ГеоТЭУ (рис. 4.2) входит парогенератор 4, в котором тепловая энергия геотермальной пароводяной смеси используется для нагревания и испарения питательной воды традиционной влажнопаровой паротурбинной установки 6 с электрогенератором 5. Отработавшая в парогенераторе геотермальная вода закачивается насосом 3 в обратную скважину 2. Химочистка питательной воды турбоустановки ведется обычными методами. Питательный насос 8 возвращает конденсат из конденсатора 7 в парогенератор.

В двухконтурной установке неконденсирующиеся газы в паровом контуре отсутствуют, поэтому в конденсаторе обеспечивается более глубокий вакуум и термический КПД установки возрастает по сравнению с одноконтурной. На выходе из парогенератора остающаяся теплота геотермальных вод может, как и в случае одноконтурной ГеоТЭС, использоваться для нужд теплоснабжения.


Рис.4.2. Тепловая схема двухконтурной ГеоТЭС

Газы, в том числе сероводород, подаются из парогенератора в барботажный абсорбер и растворяются в отработанной геотермальной воде, после чего она закачивается в скважину захоронения. По данным испытаний на строящейся Океанской ГеоТЭС (Курильские острова) в барботажном абсорбере растворяется 93.97% исходного сероводорода.

Перепад температур в парогенераторе снижает энтальпию острого пара двухконтурной установки h 1 по сравнению с одноконтурной, однако в целом теплоперепад в турбине увеличивается из-за уменьшения энтальпии отработавшего пара h 2 . Термодинамический расчет цикла ведется как для обычной паротурбинной ТЭС (см. раздел по солнечным паротурбинным установкам).

Расход горячей воды из геотермальных скважин для установки мощностью N, кВт, определяется из выражения

Кг/с, (4.3)

где - перепад температур геотермальной воды на входе и выходе из парогенератора,°C, - КПД парогенератора. Полный КПД современных двухконтурных паротурбинных ГеоТЭУ составляет 17.27%.

На месторождениях со сравнительно низкой температурой геотермальных вод (100-200°С) применяют двухконтурные установки на низко- кипящих рабочих телах (фреонах, углеводородах). Экономически оправдано также использование таких установок для утилизации теплоты отсепарированной воды одноконтурных ГеоТЭС (вместо теплофикационного теплообменника на рис. 4.1). В нашей стране впервые в мире (в 1967 г.) создана энергоустановка этого типа на хладоне R-12 мощностью 600 кВт, построенная на Паратунском геотермальном месторождении (Камчатка) при научном руководстве института теплофизики Сибирского отделения АН СССР. Перепад температур теплоносителя составлял 80...5 о С, холодная вода подавалась в конденсатор из р. Паратунка со среднегодовой температурой 5 о С. К сожалению, эти работы не получили развития из-за былой дешевизны органического топлива.

В настоящее время в АО "Кировский завод" проработан проект и техническая документация двухконтурного геотермального модуля мощностью 1,5 МВт на фреоне R142в (резервный теплоноситель - изобутан). Энергомодуль будет полностью изготавливаться в заводских условиях и доставляться железнодорожным транспортом, строительно-монтажные работы и подключение к энергосистеме потребуют минимальных затрат. Ожидается, что заводская стоимость при серийном изготовлении энергомодулей будет снижена примерно до $800 за киловатт установленной мощности.

Наряду с ГеоТЭС на однородном низкокипящем теплоносителе в ЭНИН разрабатывается перспективная установка на смесевом водоаммиачном рабочем теле. Основное преимущество такой установки - возможность ее использования в широком интервале температур геотермальных вод и пароводяной смеси (от 90 до 220 о С). При однородном рабочем теле отклонение температуры на выходе из парогенератора на 10...20 о С от расчетной приводит к резкому снижению КПД цикла - в 2.4 раза. Изменяя концентрацию компонентов смесевого теплоносителя, можно обеспечить при меняющихся температурах приемлемые показатели установки. Мощность во- доаммиачной турбины в этом диапазоне температур меняется менее чем на 15%. Кроме того, такая турбина имеет лучшие массогабаритные показатели, и водоаммиачная смесь отличается лучшими характеристиками теплообмена, что позволяет уменьшить металлоемкость и стоимость парогенератора и конденсатора по сравнению с энергомодулем на однородном теплоносителе. Такие энергоустановки могут широко использоваться для утилизации сбросной теплоты в промышленности. Они могут иметь устойчивый спрос на международном рынке геотермального оборудования.

Расчет ГеоТЭУ с низкокипящими и смесевыми рабочими телами производится с использованием таблиц термодинамических свойств и h - s диаграмм паров этих жидкостей.

К проблеме ГеоТЭС примыкает часто упоминаемая в литературе возможность использования тепловых ресурсов Мирового океана. В тропических широтах температура морской воды на поверхности около 25 о С, на глубине 500...1000 м - около 2...3 о С. Еще в 1881 г. Д"Арсонваль высказал идею использовать эту разность температур для производства электроэнергии. Схема установки по одному из проектов реализации этой идеи представлена на рис. 4.3.


Рис.4.3. Схема океанской ТЭС: 1 - насос подачи теплой поверхностной воды; 2 - парогенератор низко- кипящего теплоносителя; 3 - турбина; 4 - электрогенератор; 5 - конденсатор; 6 - насос подачи холодной глубинной воды; 7 - питательный насос; 8 - судноплатформа

Насос 1 подает теплую поверхностную воду в парогенератор 2, где испаряется низкокипящий теплоноситель. Пар с температурой около 20° C направляется в турбину 3, приводящую в движение электрогенератор 4. Отработавший пар поступает в конденсатор 5 и конденсируется холодной глубинной водой, подаваемой циркуляционным насосом 6. Питательный насос 7 возвращает теплоноситель в парогенератор.

При подъеме через теплые поверхностные слои глубинная вода нагревается не мене чем до до 7...8° C, соответственно отработавший влажный пар теплоносителя будет иметь температуру не ниже 12...13° C. В итоге термический КПД этого цикла составит = 0,028, а для реального цикла - менее 2%. В то же время для океанской ТЭЦ характерны высокие затраты энергии на собственные нужды, потребуются очень большие расходы теплой и холодной воды, а также теплоносителя, потребление энергии насосами превысят энергию, вырабатываемую блоком. В США попытки реализовать такие энергоустановки у Гавайских островов не дали положительного результата.

Другой проект океанской ТЭС - термоэлектрический - предполагает использовать эффект Зеебека, размещая спаи термоэлектродов в поверхностных и глубинных слоях океана. Идеальный КПД такой установки, как и для цикла Карно, составляет около 2%. В п.3.2 показано, что реальный КПД термопреобразователей на порядок ниже. Соответственно для теплосъема в поверхностных слоях океанской воды и отдачи теплоты в глубинных пришлось бы сооружать поверхности теплообмена ("подводные паруса") очень большой площади. Это нереально для энергетических установок практически заметной мощности. Малая плотность энергии является препятствием для использования океанских запасов теплоты.

Читайте и пишите полезные

Практическое занятие № 6

Цель: ознакомиться с принципом работы ГеоТЭС и технологиями преобразования тепловой энергии океана (ПТЭО), а также с методикой их расчета.

Продолжительность занятия – 2 часа

Ход работы:

1. На основании теоретической части работы ознакомится с принципом работы ГеоТЭС и технологиями преобразования тепловой энергии океана (ПТЭО.

2. В соответствии с индивидуальным заданием решить практические задачи.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Использование тепловой энергии океана

Технология преобразования тепловой энергии океана (ПТЭО) позволяет создавать электричество за счет разницы температур между теплой и холодной океанской водой. Холодная вода перекачивается через трубу с глубины более 1000 метров (из места, куда солнечные лучи никогда не попадают). Система также использует и теплую воду из области, близкой к поверхности океана. Нагретая солнечными лучами вода проходит через теплообменник с химическими веществами с низкой температурой кипения, например аммиаком, что создает химический пар, приводящий в движение турбины электрогенераторов. Затем пар конденсируется обратно в жидкую форму при помощи охлажденной воды из глубин океана. Тропические регионы считаются наиболее удачным местом для размещения систем ПТЭО. Это обусловлено большей разностью температур между водой на мелководье и на глубине.

В отличие от ветровых и солнечных ферм, океаническая ТЭС может производить экологически чистую электроэнергию круглосуточно, 365 дней в году. Единственным побочным продуктом таких энергоблоков является холодная вода, которая может использоваться для охлаждения и кондиционирования воздуха в административных и жилых зданиях рядом с энергогенерирующим объектом.

Использование геотермальной энергии

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 °C каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно для обогрева домов и зданий, так и для производства электроэнергии.

По различным подсчетам, температура в центре Земли составляет, минимум, 6650 °C. Скорость остывания Земли примерно равна 300-350 °C в миллиард лет. Земля выделяет 42·10 12 Вт тепла, из которых 2% поглощается в коре и 98% - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое выделяется слишком глубоко, но и 840000000000 Вт (2%) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.



Существует несколько способов получения энергии на ГеоТЭС:

· Прямая схема: пар направляется по трубам в турбины, соединённые с электрогенераторами;

· Непрямая схема: аналогична прямой схеме, но перед попаданием в трубы пар очищают от газов, вызывающих разрушение труб;

· Смешанная схема: аналогична прямой схеме, но после конденсации из воды удаляют не растворившиеся в ней газы.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

Задача 1. Определить начальную температуру t 2 и количество геотермальной энергии Е o (Дж) водоносного пласта толщиной h км при глубине залегания z км, если заданы характеристики породы пласта: плотность р гр = 2700 кг/ м 3 ; пористость а = 5 %; удельная теплоемкость С гр =840 Дж/(кг· К). Температурный градиент (dT/dz) в °С /км выбрать по таблице вариантов задания.

Среднюю температуру поверхности t o принять равной 10 °С. Удельная теплоемкость воды С в = 4200 Дж/(кг · К); плотность воды ρ = 1·10 3 кг/м 3 . Расчет произвести по отношению к площади поверхности F = 1 км 2 . Минимально допустимую температуру пласта принять равной t 1 =40 ° С.

Определить также постоянную времени извлечения тепловой энергии τ o (лет) при закачивании воды в пласт и расходе ее V =0,1 м 3 /(с·км 2). Какова будет тепловая мощность, извлекаемая первоначально (dE/dz) τ =0 и через 10 лет (dE/dz) τ =10?

Задача 1 посвящена тепловому потенциалу геотермальной энергии, сосредоточенной в естественных водоносных горизонтах на глубине z (км) от земной поверхности. Обычно толщина водоносного слоя h (км) меньше глубины его залегания. Слой имеет пористую структуру - скальные породы имеют поры, заполненные водой (пористость оценивается коэффициентом α). Средняя плотность твердых пород земной коры р гр =2700 кг/м 3 , а коэффициент теплопроводности λ гр =2 Вт/(м·К). Изменение температуры грунта по направлению к земной поверхности характеризуется температурным градиентом (dT/dz), измеряемым в °С/км или К/км.

Наиболее распространены на земном шаре районы с нормальным температурным градиентом (менее 40 °С/км) с плотностью исходящих в направлении поверхности тепловых потоков ≈ 0,06 Вт/м 2 . Экономическая целесообразность извлечения тепла из недр Земли здесь маловероятна.

В полутермальных районах температурный градиент равен 40-80 °С/км. Здесь целесообразно использовать тепло недр для отопления, в теплицах, в бальнеологии.

В гипертермальных районах (вблизи границ платформ земной коры) градиент более 80 °С/км. Здесь целесообразно строить ГеоТЭС.

При известном температурном градиенте можно определить температуру водоносного пласта перед началом его эксплуатации:

T г =T o +(dT/dz)·z,

где Т o - температура на поверхности Земли, К (° С).

В расчетной практике характеристики геотермальной энергетики обычно относят к 1 км 2 поверхности F.

Теплоемкость пласта С пл (Дж/К) можно определить по уравнению

C пл =[α·ρ в ·C в +(1- α)·ρ гр ·C гр ]·h·F,

где р в и С в - соответственно плотность и изобарная удельная теплоемкость

р гр и С гр - плотность и удельная теплоемкость грунта (пород пласта); обычно р гр =820-850 Дж/(кг·К).

Если задать минимально допустимую температуру, при которой можно использовать тепловую энергию пласта Т 1 (К), то можно оценить его тепловой потенциал к началу эксплуатации (Дж):

E 0 =C пл ·(T 2 -T 1)

Постоянную времени пласта τ 0 (возможное время его использования, лет) в случае отвода тепловой энергии путем закачки в него воды с объемным расходом V (м 3 /с) можно определить по уравнению:

τ 0 =C пл /(V·ρ в ·С в)

Считают, что тепловой потенциал пласта во время его разработки изменяется по экспоненциальному закону:

E=E 0 ·e -(τ / τ o)

где τ - число лет с начала эксплуатации;

е - основание натуральных логарифмов.

Тепловая мощность геотермального пласта в момент времени τ (лет с начала разработки) в Вт (МВт):

Задача 2 Считается, что действительный КПД η океанической ТЭС, использующей температурный перепад поверхностных и глубинных вод (T 1 -T 2)= ∆T и работающей по циклу Ренкина, вдвое меньше термического КПД установки, работающей по циклу Карно, η t k . Оценить возможную величину действительного КПД ОТЭС, рабочим телом которой является аммиак, если температура воды на поверхности океана t , °С, а температура воды на глубине океана t 2 , °С. Какой расход теплой воды V , m/ч потребуется для ОТЭС мощностью N МВт?

Задача 2 посвящена перспективам использования перепада температур поверхностных и глубинных вод океана для получения электроэнергии на ОТЭС, работающей по известному циклу Ренкина. В качестве рабочего тела предполагается использование легкокипящих веществ (аммиак, фреон). Вследствие небольших перепадов температур (∆T=15÷26 o C) термический КПД установки, работающей по циклу Карно, составляет всего 5-9 %. Реальный КПД установки, работающей по циклу Ренкина, будет вдвое меньше. В результате для получения доли относительно небольших мощностей на ОТЭС требуются большие расходы "теплой" и "холодной" воды и, следовательно, огромные диаметры подводящих и отводящих трубопроводов.

Q 0 =p·V·C p ·∆T,

где р - плотность морской воды, кг/м 3 ;

С р - массовая теплоемкость морской воды, Дж/(кг · К);

V - объемный расход воды, м 3 /с;

∆T = T 1 -T 2 - разность температур поверхностных и глубинных вод

(температурный перепад цикла) в °С или К.

В идеальном теоретическом цикле Карно механическая мощность N 0 (Вт) может быть определена как

N 0 =η t k ·Q o ,

или с учетом (1) и выражения для термического КПД цикла Карно η t k:

N 0 =p·C p ·V·(∆T) 2 /T 1.

Задача 3 Двухконтурная пароводяная геотермальная электростанция с электрической мощностью N получает теплоту от воды из геотермальных скважин с температурой t гс . Сухой насыщенный пар на выходе из парогенератора имеет температуру на 20 0 С ниже, чем t гс . Пар расширяется в турбине и поступает в конденсатор, где охлаждается водой из окружающей среды с температурой t хв . Охлаждающая вода нагревается в конденсаторе на 12 0 С. Конденсат имеет температуру на 20 0 С выше, чем t хв . Геотермальная вода выходит из парогенерирующей установки с температурой на 15 0 С выше, чем конденсат. Относительный внутренний коэффициент турбины η оі , электрический КПД турбогенератора η э =0,96. Определить термический КПД цикла Ренкина, расход пара и удельный расход теплоты, расходы воды из геотермальных скважин и из окружающей среды.

В одноконтурной паротурбинной ГеоТЭУ энтальпия сухого насыщенного пара после сепарации определяется по температуре геотермальной воды t гв. Из таблиц термодинамических свойств воды и водяного пара или h-s диаграммы. В случае двухконтурной ГеоТЭУ учитывается перепад температур в парогенераторе Δt. В остальном расчет ведется как и для солнечной паротурбинной ТЭС.

Расход пара определяется из соотношения

кг/с,

где η t – термический КПД цикла,

η оі – Относительный внутренний КПД турбины,

η э –электрический КПД турбогенератора,

N – мощность ГеоТЭУ, кВт,

Расход горячей воды из геотермальных скважин определяется из формулы

, кг/с,

расход холодной воды из окружающей среды на конденсацию пара

, кг/с,

где с = 4,19 кДж/кг∙К – теплоемкость воды,

η пг – КПД парогенератора,

Δt пг – перепад температур геотермальной воды в парогенераторе, 0 С,

Δt хв – перепад температур холодной воды в конденсаторе, 0 С.

Расчет ГеоТЭУ с низкокипящими и смесевыми рабочими телами производится с использованием таблиц термодинамических свойств и h-s диаграмм паров этих жидкостей.

Величины и единицы их измерения Варианты заданий
N, МВт
t хв., 0 С
t хв., 0 С
η oi , %

Ресурсы геотермальной энергии на территории России имеют значи­тельный промышленный потенциал, в том числе и энергетический. Запасы тепла Земли с температурой 30-40 °С (рис. 17.20, см. цветную вклейку) имеются практически на всей территории России, а в отдельных регионах имеются геотермальные ресурсы с температурой до 300 °С. В зависимо­сти от температуры геотермальные ресурсы используются в различных отраслях народного хозяйства: электроэнергетике, теплофикации, про­мышленности, сельском хозяйстве, бальнеологии.

При температурах геотермальных ресурсов свыше 130 °С возможно получение электроэнергии на одноконтурных геотермальных электро­станциях (ГеоЭС). Однако ряд регионов России располагают значитель­ными запасами геотермальных вод с более низкой температурой порядка 85 °С и выше (рис. 17.20, см. цветную вклейку). В этом случае можно полу­чить электроэнергию на ГеоЭС с бинарным циклом. Бинарные электриче­ские станции - это двухконтурные станции с использованием в каждом контуре своего рабочего тела. К бинарным также иногда относят одно­контурные станции, которые работают на смеси двух рабочих тел - аммиака и воды (рис. 17.21, см. цветную вклейку).

Первые геотермальные электростанции в России были построены на Камчатке в 1965-1967 гг.: Паужетская ГеоЭС, которая работает и в настоящее время производит самую дешевую электроэнергию на Кам­чатке, и Паратунская ГеоЭС с бинарным циклом. В дальнейшем в мире было построено около 400 ГеоЭС с бинарным циклом.

В 2002 г. введена в эксплуатацию на Камчатке Мутновская ГеоЭС с двумя энергоблоками общей мощностью 50 МВт.

Технологической схемой электростанции предусмотрено использова­ние пара, получаемого двухступенчатой сепарацией пароводяной смеси, забираемой из геотермальных скважин.

После сепарации пар с давлением 0,62 МПа и степенью сухости 0,9998 поступает на двухпоточную паровую турбину, имеющую восемь ступе­ней. В паре с паровой турбиной работает генератор номинальной мощно­стью 25 МВт и напряжением 10,5 кВ.

Для обеспечения экологической чистоты в технологической схеме электростанции предусмотрена система закачки конденсата и сепарата обратно в земные пласты, а также предотвращения выбросов сероводо­рода в атмосферу.

Геотермальные ресурсы широко используются для теплоснабжения, особенно при прямом использовании горячей геотермальной воды.

Низкопотенциальные геотермальные источники тепла с температурой or 10 до 30 °С целесообразно использовать с помощью тепловых насосов. Тепловой насос - машина, предназначенная для передачи внутренней энергии от теплоносителя с низкой температурой к теплоносителю с высокой температурой с помощью внешнего воздействия для совершения работы. В основе принципа работы теплового насоса лежит обратный цикл Карно.

Тепловой насос, потребляя) кВт электрической мощности, выдает в систему теплоснабжения от 3 до 7 кВт тепловой мощности. Коэффициент трансформации изменяется в зависимости от температуры низкопотенци­ального геотермального источника.

Тепловые насосы нашли широкое применение во многих странах мира. Наиболее мощная теплонасосная установка работает в Швеции тепловой мощностью 320 МВт и использует тепло воды Балтийского моря.

Эффективность использования теплового насоса определяется в основном соотношением цен на электрическую и тепловую энергию, а также коэффициентом трансформации, обозначающим, во сколько раз больше производится тепловой энергии по сравнению с затраченной электрической (или механической) энергией.

Наиболее экономична работа тепловых насосов в период прохождения" минимальных нагрузок в энергосистеме. Их работа может способство­вать выравниванию графиков электрической нагрузки энергосистемы.

Литература для самостоятельного изучения

17.1.Использование водной энергии: учебник для вузов / под ред. Ю.С. Васильева. -
4-е изд., перераб. и доп. М.: Энергоатомиздат, 1995.

17.2.Васильев Ю.С, Виссарионов В.И., Кубышкин Л.И. Решение гидроэнергетиче­
ских задач на ЭВМ. М.: Энергоатомиздат, 1987.

17.3.Непорожний П.С., Обрезков В,И. Введение в специальность. Гидроэлектроэнерге­
тика: учебное пособие для вузов. - 2-е изд.. перераб. и доп. М: Энергоатомиздат,
1990.

17.4.Водно-энергетические и водохозяйственные расчеты: учебное пособие для вузов /
под ред. В.И. Виссарионова. М.: Издательство МЭИ, 2001.

17.5.Расчет ресурсов солнечной энергетики: учебное пособие для вузов / под ред.
В.И. Виссарионова. М.: Издательство МЭИ, 1997.

17.6.Ресурсы и эффективность использования возобновляемых источников энергии
в России / Коллектив авторов. СПб.: Наука, 2002.

17.7.Дьяков А.Ф., Перминов Э.М., Шакарян Ю.Г. Ветроэнергетика России. Состояние
и перспективы развития. М.: Издательство МЭИ, 1996.

17.8.Расчет ресурсов ветроэнергетики: учебное пособие для вузов / под ред. В.И. Висса­
рионова. М.: Издательство МЭИ, 1997.

17.9.Мутновский геотермальный электрический комплекс на Камчатке / О.В. Бритвин,

Геотермальная энергия – это энергия, получаемая из природного тепла Земли. Достичь этого тепла можно с помощью скважин. Геотермический градиент в скважине возрастает на 1 0С каждые 36 метров. Это тепло доставляется на поверхность в виде пара или горячей воды. Такое тепло может использоваться как непосредственно как для обогрева домов и зданий, так и для производства электроэнергии. Термальные регионы имеются во многих частях мира.

По различным подсчетам, температура в центре Земли составляет, минимум, 6 650 0С. Скорость остывания Земля примерно равна 300-350 0С в миллиард лет. Земля содержит 42 х 1012 Вт тепла, из которых 2% содержится в коре и 98% - в мантии и ядре. Современные технологии не позволяют достичь тепла, которое находится слишком глубоко, но и 840 000 000 000 Вт (2%) доступной геотермальной энергии могут обеспечить нужды человечества на долгое время. Области вокруг краев континентальных плит являются наилучшим местом для строительства геотермальных станций, потому что кора в таких зонах намного тоньше.

Геотермальные электростанции и геотермальные ресурсы

Чем глубже скважина, тем выше температура, но в некоторых местах геотермальная температура поднимается быстрее. Такие места обычно находятся в зонах повышенной сейсмической активности, где сталкиваются или разрываются тектонические плиты. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. Чем выше геотермический градиент, тем дешевле обходится добыча тепла, за счет уменьшения расходов на бурение и качание. В наиболее благоприятных случаях, градиент может быть настолько высок, что поверхностные воды нагреваются до нужной температуры. Примером таких случаев служат гейзеры и горячие источники.

Ниже земной коры находится слой горячего и расплавленного камня называемый магмой. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий. Энергетический потенциал тепла на глубине 10 000 метров в 50 000 раз больше энергии, чем все мировые запасы нефти и газа.

Зоны наивысших подземных температур находятся в регионах с активными и молодыми вулканами. Такие «горячие точки» находятся на границах тектонических плит или в местах, где кора настолько тонка, что пропускает тепло магмы. Множество горячих точек находится в зоне Тихоокеанского кольца, которое еще называют «огненное кольцо» из-за большого количества вулканов.

Геотермальные электростанции - способы использования геотермальной энергии

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 150 0С).

В Калифорнии, Неваде и некоторых других местах геотермальная энергия используется на больших электростанциях, Так, в Калифорнии около 5% электричества вырабатывается за счет геотермальной энергии, в Сальвадоре геотермальная энергия производит около 1/3 электроэнергии. В Айдахо и Исландии геотермальное тепло используется в различных сферах, в том числе и для обогрева жилья. В тысячах домах геотермальные тепловые насосы используются для получения экологически чистого и недорогого тепла.

Геотермальные электростанции - источники геотермальной энергии.

Сухая нагретая порода – Для того, чтобы использовать энергию в геотермальных электростанциях, содержащуюся в сухой скальной породе, воду при высоком давлении закачивают в породу. Таким образом, расширяются существующие в породе изломы, и создается подземный резервуар пара или горячей воды.

Магма – расплавленная масса, образующаяся под корой Земли. Температура магмы достигает 1 200 0С. Несмотря на то, что небольшие объемы магмы находятся на доступных глубинах, практические методы получения энергии из магмы находятся на стадии разработки.

Горячие, находящиеся под давлением, подземные воды , содержащие растворенный метан. В производстве электроэнергии используются и тепло, и газ.

Геотермальные электростанции - принципы работы

В настоящее время существует три схемы производства электроэнергии с использованием гидротермальных ресурсов: прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры. Первыми были освоены электростанции на сухом пару. Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину/генератор. Электростанции с непрямым типом производства электроэнергии на сегодняшний день являются самыми распространенными. Они используют горячие подземные воды (температурой до 182 0С) которая закачивается при высоком давлении в генераторные установки на поверхности. Геотермальные электростанции со смешанной схемой производства отличаются от двух предыдущих типов геотермальных электростанций тем, что пар и вода никогда не вступают в непосредственный контакт с турбиной/генератором.

Геотермальные электростанции, работающие на сухом пару

Паровые электростанции работают преимущественно на гидротермальном пару. Пар поступает непосредственно в турбину, которая питает генератор, производящий электроэнергию. Использование пара позволяет отказаться от сжигания ископаемого топлива (также отпадает необходимость в транспортировке и хранении топлива). Это старейшие геотермальные электростанции. Первая такая электростанция была построена в Лардерелло (Италия) в 1904 году, она действует и в настоящее время. Паровая технология используется на электростанции «Гейзерс» в Северной Калифорнии – это самая крупная геотермальная электростанция в мире.

Геотермальные электростанции на парогидротермах

Для производства электричества на таких заводах используются перегретые гидротермы (температура выше 182 °С). Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности.

Геотермальные электростанции с бинарным циклом производства электроэнергии.

Большинство геотермальных районов содержат воду умеренных температур (ниже 200 0С). На электростанциях с бинарным циклом производства эта вода используется для получения энергии. Горячая геотермальные вода и вторая, дополнительная жидкость с более низкой точкой кипения, чем у воды, пропускаются через теплообменник. Тепло геотермальной воды выпаривает вторую жидкость, пары которой приводят в действие турбины. Так как это замкнутая система, выбросы в атмосферу практически отсутствуют. Воды умеренной температуры являются наиболее распространенным геотермальным ресурсом, поэтому большинство геотермальных электростанций будущего будут работать на этом принципе.

Будущее геотермального электричества.

Резервуары с паром и горячей водой являются лишь малой частью геотермальных ресурсов. Земная магма и сухая твердая порода обеспечат дешевой, чистой практически неиссякаемой энергией, как только будут разработаны соответствующие технологии по их утилизации. До тех пор, самыми распространенными производителями геотермальной электроэнергии будут электростанции с бинарным циклом.

Чтобы геотермальное электричество стало ключевым элементом энергетической инфраструктуры США, необходимо разработать методы по уменьшению стоимости его получения. Департамент Энергетики США работает с представителями геотермальной промышленности по уменьшению стоимости киловатт-часа до $0,03-0,05. По прогнозам, в ближайшее десятилетие появятся новые геотермальные электростанции мощностью 15 000 МВт.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.