Сообщение на тему синтез белков в клетке. Синтез белка в клетках мышц. Этапная характеристика биосинтеза белка

Совокупность реакций биологического синтеза называется пластическим обменом, или ассимиляцией. Название этого вида обмена отражает его сущность: из простых веществ, поступающих в клетку извне, образуются вещества, подобные веществам клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Все многообразие свойств белков в конечном счете определяется первичной структурой, т. е. последовательностью аминокислот. Огромное количество отобранных эволюцией уникальных сочетаний аминокислот воспроизводится путем синтеза нуклеиновых кислот с такой последовательностью азотистых оснований, которая соответствует последовательности аминокислот в белках. Каждой аминокислоте в полипептидной цепочке соответствует комбинация из трех нуклеотидов – триплет.

Процесс реализации наследственной информации в биосинтезе осуществляется при участии трех видов рибонуклеиновых кислот: информационной (матричной) – иРНК (мРНК), рибосомальной – рРНК и транспортной – тРНК. Все рибонуклеиновые кислоты синтезируются на соответствующих участках молекулы ДНК. Они имеют значительно меньшие размеры, чем ДНК, и представляют собой одинарную цепь нуклеотидов. Нуклеотиды содержат остаток фосфорной кислоты (фосфат), пентозный сахар (рибозу) и одно из четырех азотистых оснований – аденин, цитозин, гуанин и урацил. Азотистое основание – урацил – комплементарно аденину.

Процесс биосинтеза сложный и включает ряд этапов – транскрипцию, сплайсинг и трансляцию.

Первый этап (транскрипция) происходит в ядре клетки: на участке определенного гена молекулы ДНК синтезируется мРНК. Этот синтез осуществляется при участии комплекса ферментов, главным из которых является ДНК-зависимая РНК-полимераза, которая прикрепляется к начальной (инициальной) точке молекулы ДНК, расплетает двойную спираль и, перемещаясь вдоль одной из нитей, синтезирует рядом с ней комплементарную нить мРНК. В результате транскрипции мРНК содержит генетическую информацию в виде последовательного чередования нуклеотидов, порядок которых точно скопирован с соответствующего участка (гена) молекулы ДНК.

Дальнейшие исследования показали, что в процессе транскрипции синтезируется так называемая про-мРНК – предшественник зрелой мРНК, участвующей в трансляции. Про-мРНК имеет значительно большие размеры и содержит фрагменты, не кодирующие синтез соответствующей полипептидной цепи. В ДНК наряду с участками, кодирующими рРНК, тРНК и полипептиды, имеются фрагменты, не содержащие генетической информации. Они получили название интронов в отличие от кодирующих фрагментов, которые называются экзонами. Интроны обнаружены на многих участках молекул ДНК. Так, например, в одном гене – участке ДНК, кодирующем овальбумин курицы, содержится 7 интронов, в гене сывороточного альбумина крысы – 13 интронов. Длина интрона бывает различной – от двухсот до тысячи пар нуклеотидов ДНК. Интроны считываются (транскрибируются) одновременно с экзонами, поэтому про-мРНК значительно длиннее, чем зрелая мРНК. В ядре в про-мРНК специальными ферментами вырезаются интроны, а фрагменты экзона «сращиваются» между собой в строгом порядке. Этот процесс называют сплайсингом. В процессе сплайсинга образуется зрелая мРНК, которая содержит только ту информацию, которая необходима для синтеза соответствующего полипептида, то есть информативную часть структурного гена.

Значение и функции интронов до сих пор еще не совсем выяснены, но установлено, что, если в ДНК считываются только участки экзонов, зрелая мРНК не образуется. Процесс сплайсинга изучен на примере работы гена овальбумина. Он содержит один экзон и 7 интронов. Сначала на ДНК синтезируется про-мРНК, содержащая 7700 нуклеотидов. Затем в про-мРНК число нуклеотидов уменьшается до 6800, затем - до 5600, 4850, 3800, 3400 и т. д. до 1372 нуклеотидов, соответствующих экзону. Содержащая 1372 нуклеотида мРНК выходит из ядра в цитоплазму, попадает на рибосому и синтезирует соответствующий полипептид.

Следующий этап биосинтеза – трансляция – происходит в цитоплазме на рибосомах при участии тРНК.

Транспортные РНК синтезируются в ядре, но функционируют в свободном состоянии в цитоплазме клетки. Одна молекула тРНК содержит 76-85 нуклеотидов и имеет довольно сложную структуру, напоминающую клеверный лист. Три участка тРНК имеют особо важное значение: 1) антикодон, состоящий из трех нуклеотидов, определяющий место прикрепления тРНК к соответствующему комплементарному кодону (мРНК) на рибосоме; 2) участок, определяющий специфичность тРНК, способность данной молекулы прикрепляться только к определенной аминокислоте; 3) акцепторный участок, к которому прикрепляется аминокислота. Он одинаков для всех тРНК и состоит из трех нуклеотидов – Ц-Ц-А. Присоединению аминокислоты к тРНК предшествует ее активация ферментом аминоацил-тРНК-синтетазой. Этот фермент специфичен для каждой аминокислоты. Активированная аминокислота прикрепляется к соответствующей тРНК и доставляется ею на рибосому.

Центральное место в трансляции принадлежит рибосомам – рибонуклеопротеиновым органоидам цитоплазмы, во множестве в ней присутствующим. Размеры рибосом у прокариот в среднем 30х30х20 нм, у эукариот – 40х40х20 нм. Обычно их размеры определяют в единицах седиментации (S) – скорости осаждения при центрифугировании в соответствующей среде. У бактерии кишечной палочки рибосома имеет величину 70Sи состоит из двух субчастиц, одна из которых имеет константу 30S, вторая 50S, и содержит 64 % рибосомальной РНК и 36 % белка.

Молекула мРНК выходит из ядра в цитоплазму и прикрепляется к малой субчастице рибосомы. Трансляция начинается с так называемого стартового кодона (инициатора синтеза) – А-У-Г-. Когда тРНК доставляет к рибосоме активированную аминокислоту, ее антикодон соединяется водородными связями с нуклеотидами комплементарного кодона мРНК. Акцепторный конец тРНК с соответствующей аминокислотой прикрепляется к поверхности большой субчастицы рибосомы. После первой аминокислоты другая тРНК доставляет следующую аминокислоту, и таким образом на рибосоме синтезируется полипептидная цепь. Молекула мРНК обычно работает сразу на нескольких (5-20) рибосомах, соединенных в полисомы. Начало синтеза полипептидной цепи называют инициацией, рост ее – элонгацией. Последовательность аминокислот в полипептидной цепи определяется последовательностью кодонов в мРНК. Синтез полипептидной цепи прекращается, когда на мРНК появляется один из кодонов-терминаторов – УАА, УАГ или УГА. Окончание синтеза данной полипептидной цепи называется терминацией.

Установлено, что в клетках животных полипептидная цепь за одну секунду удлиняется на 7 аминокислот, а мРНК продвигается на рибосоме на 21 нуклеотид. У бактерий этот процесс протекает в два-три раза быстрее.

Следовательно, синтез первичной структуры белковой молекулы – полипептидной цепи – происходит на рибосоме в соответствии с порядком чередования нуклеотидов в матричной рибонуклеиновой кислоте – мРНК. Она не зависит от строения рибосомы.

Процесс синтеза белка в клетке называется биосинтезом. Он состоит из двух основных этапов - транскрипции и трансляции (рис. 4.5). Первый этап - транскрипция генетической информации - процесс синтеза однонитевой мРН К комплементарно одной смысловой цепи ДНК, то есть перенос генетической информации о нуклеотидном строении ДНК на мРНК. Через норы ядерной мембраны мРНК поступает в каналы эндоплазматической сети и здесь соединяется с рибосомами. Синтез белка происходит на молекуле мРНК, причем рибосомы продвигаются вдоль нее и к концу синтеза полипептидной цепи сходят с нее (рис. 4.6).


На рисунке 4.6 показаны только два триплета: антикодон комплементарный, соответствующий колону мРНК, и триплет ЦЦА, к которому присоединяется аминокислот (ЛК).
Аминокислоты, находящиеся в цитоплазме, активируются ферментами, после чего связываются с другим видом РНК - транспортной. Она перекосит аминокислоты к рибосомам. Различные тРНК доставляют к: рибосоме аминокислоты и располагают их соответственно последовательности триплетов мРНК. Три последовательных нуклеотида, кодирующие определенную аминокислоту, были названы кодоном (мРНК), а неразрывный триплет - антикодоном (тРНК). Кодоны ничем не отделены друг от друга. Доставляя определенную аминокислоту, тРНК взаимодействует с мРНК (кодон-антикодон). и аминокислота присоединяется к растущей пол и пептидной цепи. Совершенно очевидно, что синтез полипептида, то есть расположения в нем аминокислот, определяется последовательностью нуклеотидов мРНК.


Второй этап биосинтеза - трансляция - перевод генетической информации с мРНК в последовательность аминокислот полипептидной цепи.
В последовательности расположения нуклеотидов в триплете закодирована определенная аминокислота. Установлено, что генетический код является триплетным, то есть каждая аминокислота кодируется сочетанием из трех нуклеотидов. Если код триплетом, то из четырех азотистых оснований можно составить 64 кодона (4в3); этого с избытком хватает для кодирования 20 аминокислот. Выявлено новое свойство генетического кода - его избыточность, то есть некоторые аминокислоты кодируют не один, а большее число триплетов. Из 64 кодонов три признаны стопкодонами, они обусловливают прекращение (терминацию) или перерыв генетической трансляции (табл. 4.2).

Генетический код неперекрывающийся. Если бы кодоны перекрывались, то замена одной пары оснований должна была привести к замене двух аминокислот в полипептидной цепи, а этого не происходит. Кроме этого, он универсален - одинаков для биосинтеза белков живых существ. Универсальность кода свидетельствует о единстве жизни на Земле. Таким образом, генетический код - это система записи наследственной информации в нуклеиновых кислотах в виде последовательности нуклеотидов.
Впоследствии путь реализации генетической информации в клетке был дополнен обратной транскрипцией (синтез ДНК на матрице РНК) - репликацией ДНК и РНК (рис. 4.7).


Ген - участок ДНК. кодирующий первичную структуру полипептида или нуклеиновую кислоту. В контроле синтеза полинептидной цепи принимают участие несколько разных генов: структурные гены, ген-peгулятор, ген-оператор. Механизм регуляции генетического кода был открыт французскими учеными Ф. Жакобом и Ж. Моно в 1961 г. на бактериях E. coli и получил название механизма индукции-репрессии. Структурные гены кодируют последовательность аминокислот в полипептидах. Обычно для структурных генов существует общая система регуляции, состоящая из гена-регулятора и гена-оператора. Ген-регулятор обусловливает синтез белка-репрессора, который, соединяясь с оператором, «разрешает» или «запрещает» считывание информации соответствующих структурных генов. Ген-оператор и следующие за мим структурные гены были названы опероном - единицей считывания генетической информации, единицей транскрипции (рис. 4.8).

Например, для нормальной жизнедеятельности E. coli необходим молочный сахар - лактоза. У нее имеется лактозный участок (lас-оперон), на котором расположены три структурных гена для расщепления лактозы. Если лактоза не поступает в клетку, то белок-репрессор, вырабатываемый геном-регулятором, связывается с оператором и тем самым «запрещает» транскрипцию (синтез мРНК) со всего оперона. Если же лактоза поступает в клетку, то функция белка-репрессора блокируется, начинаются транскрипция, трансляция, синтез белков-ферментов и растепление лактозы. После расщепления всей лактозы восстанавливается активность белка-репрессора и транскрипция подавляется.
Таким образом, гены могут находиться во включенном и отключенном состоянии. На их регуляцию влияют продукты метаболизма, гормоны. Ген функционирует в системе ДНК-РНК-белок, на которую влияет взаимодействие генов и факторы внешней среды.

Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.

Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.

Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистину, Ц-А-А - валину н т. д. Разных аминокислот - 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.

Синтез белка - сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.

Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :

В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:

1.Первый этап - синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» - переписывание).

2.На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов - антикодонов, с помощью которых определяется свой триплет-кодон.

3.Третий этап - это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.

4.На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.

Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.

Хромосомы (от греч. «хрома» - цвет, «сома» - тело) - очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.

В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком - центромерой.

Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.

Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.

Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.

У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами - большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин - 22 пары аутосом н одна пара (XY) половых хромосом.

В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.

Воспроизведение и действие генов связаны с матричными процессами - синтезом макромолекул: ДНК, РНК, белков. Выше уже рассматривалась репликация как процесс, обеспечивающий воспроизведение генетической информации. Современная теория гена - достижение молекулярной генетики - всецело опирается на успехи биохимии в изучении матричных процессов. И напротив, метод генетического анализа вносит существенный вклад в изучение матричных процессов, которые сами находятся под генетическим контролем. Действие гена обеспечивает транскрипцию , или синтез РНК, и трансляцию , или синтез белка (рис. 5.23).

Рис. 5.23. Схема процесса транскрипции ДНК РНК-полимеразой и трансляции: а - общая схема транскрипции. Стрелка показывает направление, в котором ДНК-матрица движется через молекулу РНК-полимеразы; б - два этапа: транскрипция и трансляция

Процесс синтеза белка начинается с транскрипции ДНК (как рассматривалось выше). Следующий процесс - трансляция мРНК.

Трансляция мРНК - это синтез белка на рибосомах, направляемый матрицей мРНК. При этом информация переводится с четырехбуквенного алфавита нуклеиновых кислот на двадцатибуквенный алфавит аминокислотных последовательностей полипептидных цепей.

В этом процессе различают три стадии:

  • 1. Активация свободных аминокислот - образование аминоациладе- нилатов в результате взаимодействия аминокислот с АТФ под контролем ферментов, специфичных для каждой аминокислоты. Эти ферменты - ами- ноацил-тРНК-синтетазы - участвуют и в следующей стадии.
  • 2. Аминоацилирование тРНК - присоединение аминокислотных остатков к тРНК путем взаимодействия тРНК и комплекса аминоацил-тРНК- синтетазы с аминоациладенилатами. При этом каждый аминокислотный остаток присоединяется к своему специфическому классу тРНК.
  • 3. Собственно трансляция, или полимеризация аминокислотных остатков с образованием пептидных связей.

Таким образом, при трансляции последовательность расположения нуклеотидов в мРНК переводится в соответствующую, строго упорядоченную последовательность расположения аминокислот в молекуле синтезируемого белка.

Сигналом инициации трансляции у про- и эукариот служит кодон АУГ, если он расположен в начале мРНК. В этом случае его «узнает» специализированная инициирующая формилметиониновая (у бактерий) или метиониновая (у эукариот) тРНК. В остальных случаях кодон АУГ «читается» как метиониновый (см. табл. 5.4.). Сигналом инициации может также служить кодон ГУГ. Это взаимодействие происходит на рибосоме в ее аминоацильном центре (^-центре), располагающемся преимущественно на малой субъединице рибосомы.

Взаимодействие кодона АУГ информационной РНК, малой субъединицы рибосомы и формилметионил-тРНК образует комплекс инициации. Суть этого взаимодействия заключается в том, что к кодону АУГ на мРНК присоединяется своим антикодоном УАЦ тРНК, захватившая и несущая молекулу аминокислоты метионина (у бактерий инициаторной является тРНК, которая переносит формилметионин). Затем к этому комплексу, состоящему из малой субъединицы рибосомы (305), мРНК и тРНК, присоединяется большая субъединица рибосомы (505). В результате образуется полностью собранная рибосома, включающая одну молекулу мРНК и инициаторную тРНК с аминокислотой. В рибосоме имеются аминоацильный и пептидиль- ный центры.

Первая аминокислота (метионин) сначала попадает в аминоацильный центр. В процессе присоединения большей субъединицы рибосомы мРНК продвигается на один кодон, тРНК из аминоацильного центра перемещается в пептидильный центр. В аминоацильный центр поступает следующий кодон мРНК, который может соединиться с антикодоном следующей ами- ноацил-тРНК. С этого момента начинается вторая стадия трансляции - элонгация, в ходе которой многократно повторяется цикл присоединения молекул аминокислот к растущей полипептидной цепи. Так, в аминоациль- ный центр рибосомы поступает в соответствии с кодоном информационной РНК вторая молекула тРНК, несущая очередную аминокислоту. Эта тРНК своим антикодоном соединяется с комплементарным кодоном мРНК. Сразу же при помощи пептидилтрансферазы предшествующая аминокислота (метионин) соединяется своей карбоксильной группой (СООН) с аминогруппой (NH 2) вновь доставленной аминокислоты. Между ними образуется пептидная связь (-CO-NH-). При этом выделяется молекула воды:


В результате тРНК, доставившая метионин, освобождается, а в аминоацильном центре к тРНК оказывается присоединенным уже дипептид. Для дальнейшего осуществления процесса элонгации должен быть освобожден аминоацильный центр, что и происходит.

В результате процесса трансляции комплекс дипсптндил-тРНК продвигается из аминоацильного центра в пептидильный. Это происходит благодаря перемещению рибосомы на один кодон при участии фермента транслоказы и белкового фактора элонгации. Освободившаяся тРНК и кодон мРНК, который был связан с ней, выходят из рибосомы. Следующая тРНК доставляет в освободившийся аминоацильный центр аминокислоту в соответствии с поступившим туда кодоном. Эта аминокислота при помощи пептидной связи соединяется с предыдущей. При этом рибосома продвигается еще на один кодон, и процесс повторяется до тех пор, пока в аминоацильный центр нс поступит один из трех терминирующих кодонов (нонсенс-кодонов), т. е. УАА, УАГ или УГА.

После поступления в аминоацильный центр рибосомы терминирующего кодона наступает третий этап синтеза полипептида - терминация. Она начинается с присоединения к терминирующему кодону мРНК одного из белковых факторов терминации, что приводит к блокированию дальнейшей элонгации цепи. Терминация синтеза приводит к освобождению синтезированной полипептидной цепи и субъединиц рибосомы, которые затем диссоциируют и могут принять участие в синтезе следующей полипептидной цепи.

Весь процесс трансляции сопровождается расщеплением молекул ГТФ (гуанозинтрифосфата), причем необходимо участие дополнительных белковых факторов, специфичных для процессов инициации (факторов инициации), элонгации (факторов элонгации) и терминации (факторов терминации). Эти белки не являются интегральной частью рибосомы, а присоединяются к ней на определенных этапах трансляции. В общих чертах процесс трансляции одинаков у всех организмов.

Образующиеся при синтезе белка полипептидные цепи претерпевают постгрансляционные преобразования и в дальнейшем выполняют свои специфические функции. Первичная структура полипептида определяется последовательностью расположения в нем аминокислот. Полипептидные цепи самопроизвольно формируют определенную вторичную структуру, которая определяется природой боковых групп аминокислотных остатков (а-спираль, складчатый P-слой, случайный клубок). Все эти и другие структурные особенности определяют некоторую фиксированную трехмерную конфигурацию, которую называют третичной (или пространственной) структурой полипептида , отражающей способ укладки данной полипептидной цепи в трехмерном пространстве.

Белки могут состоять из одной или нескольких полипептидных цепей. Во втором случае их называют олигомерными белками. Для них характерна определенная четвертичная структура. Под этим термином подразумевают общую конфигурацию белка, возникшую при ассоциации всех входящих в ее состав полипептидных цепей. В частности, структурная модель человеческого гемоглобина включает в себя две a-цепи и две P-цепи, которые связаны между собой и образуют четвертичную белковую структуру.

Точность полипептидного синтеза зависит от правильности образования системы водородных связей между кодонами и антикодонами. До замыкания очередной пептидной связи с помощью рибосом осуществляется проверка правильности образования пары кодон-антикодон. Прямое свидетельство в пользу активной роли рибосом в контроле комплементар- ности кодон-антикодоновой связи - обнаружение мутаций, изменяющих рибосомные белки и таким образом влияющих на точность трансляции.

Жизнь является процессом существования белковых молекул. Именно так о ней выражаются многие ученые, которые убеждены, что белок является основой всего живого. Эти суждения абсолютно правильны, потому как у данных веществ в клетке наибольшее число основных функций. Все прочие органические соединения играют роль энергетических субстратов, а энергия снова нужна для синтеза белковых молекул.

Этапная характеристика биосинтеза белка

Структура белка закодирована в нуклеиновой или РНК) в виде кодонов. Это наследственная информация, которая воспроизводится каждый раз, когда клетке требуется новое белковое вещество. Началом биосинтеза является в ядро о необходимости синтезировать новый белок с уже заданными свойствами.

В ответ на это деспирализуется участок нуклеиновой кислоты, где закодирована его структура. Это место дублируется информационной РНК и передается на рибосомы. Они отвечают за построение полипептидной цепи на основании матрицы - информационной РНК. Коротко все этапы биосинтеза представлены следующим образом:

  • транскрипция (этап удвоения участка ДНК с закодированной структурой белка);
  • процессинг (этап образования информационной РНК);
  • трансляция (синтез белков в клетке на основании информационной РНК);
  • посттрансляционная модификация ("созревание" полипептида, формирование его объемной структуры).

Транскрипция нуклеиновой кислоты

Весь синтез белков в клетке осуществляют рибосомы, а информация о молекулах содержится в нуклеиновой или ДНК). Она располагается в генах: каждый ген - это определенный белок. В генах заложена информация об аминокислотной последовательности нового белка. В случае с ДНК изъятие генетического кода ведется таким образом:

  • начинается освобождение участка нуклеиновой кислоты от гистонов, происходит деспирализация;
  • ДНК-полимераза удваивает участок ДНК, в котором хранится ген белка;
  • удвоенный участок представляет собой предшественника информационной РНК, который обрабатывается ферментами для удаления некодирующих вставок (на его основании ведется синтез иРНК).

На основании проинформационной РНК происходит синтез иРНК. Она уже является матрицей, после этого синтез белков в клетке происходит на рибосомах (в шероховатом эндоплазматическом ретикулуме).

Рибосомальный синтез белка

Информационная РНК имеет два конца, которые оформляются как 3`- 5`. Считывание и синтез белков на рибосомах начинается с 5`конца и продолжается до интрона - участка, который не кодирует никакую из аминокислот. Это происходит следующим образом:

  • информационная РНК "нанизывается" на рибосому, присоединяет первую аминокислоту;
  • рибосома смещается по информационной РНК на один кодон;
  • транспортная РНК предоставляет нужную (закодированную данным кодоном иРНК) альфа-аминокислоту;
  • аминокислота присоединяется к стартовой аминокислоте с формированием дипептида;
  • затем иРНК снова смещается на один кодон, подносится альфа-аминокислота и присоединяется к растущей цепочке пептида.

Как только рибосома достигает интрона (некодирующей вставки), информационная РНК просто продвигается далее. Затем, по мере продвижения информационной РНК, рибосома снова достигает экзона - участка, нуклеотидная последовательность которого соответствует определенной аминокислоте.

С этого места снова начинается присоединение мономеров белка к цепочке. Процесс продолжается до момента появления очередного интрона или до стоп-кодона. Последний прекращает синтез полипептидной цепочки, после чего считается завершенной и начинается этап постсинтетической (посттрансляционной) модификации молекулы.

Посттрансляционная модификация

После трансляции синтез белков происходит в цистернах гладкой Последняя содержит небольшое количество рибосом. В некоторых клетках они могут вообще отсутствовать в РЭС. Такие участки нужны для образования сначала вторичной, затем уже третичной или, если это запрограммировано, четвертичной структуры.

Весь синтез белков в клетке происходит с затратой огромного количества энергии АТФ. Потому все остальные биологические процессы нужны для поддержания белкового биосинтеза. Вдобавок некоторая часть энергии нужна для переноса белков в клетке активным транспортом.

Многие из белков переносятся из одной локации клетки в другую для модификации. В частности, посттрансляционный синтез белков происходит в комплексе Гольджи, где к полипептиду определенной структуры присоединяется углеводный или липидный домен.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.