Уравнение прямой через нормаль и точку. Общее уравнение прямой. Частные случаи общего уравнения прямой

В данной статье мы рассмотрим общее уравнение прямой на плоскости. Приведем примеры построения общего уравнения прямой, если известны две точки этой прямой или если известна одна точка и нормальный вектор этой прямой. Представим методы преобразования уравнения в общем виде в канонический и параметрический виды.

Пусть задана произвольная декартова прямоугольная система координат Oxy . Рассмотрим уравнение первой степени или линейное уравнение:

Ax+By+C =0, (1)

где A, B, C − некоторые постоянные, причем хотя бы один из элементов A и B отлично от нуля.

Мы покажем, что линейное уравнение на плоскости определяет прямую. Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат на плоскости каждая прямая линия может быть задана линейным уравнением. Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат на плоскости определяет прямую линию.

Доказательство. Достаточно доказать, что прямая L определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть на плоскости задана прямая L . Выберем систему координат так, чтобы ось Ox совпадал с прямой L , а ось Oy был перпендикулярной к ней. Тогда уравнение прямой L примет следующий вид:

y=0. (2)

Все точки на прямой L будут удовлетворять линейному уравнению (2), а все точки вне этой прямой, не будут удовлетворять уравнению (2). Первая часть теоремы доказана.

Пусть задана декартова прямоугольная система координат и пусть задана линейное уравнение (1), где хотя бы один из элементов A и B отличен от нуля. Найдем геометрическое место точек, координаты которых удовлетворяют уравнению (1). Так как хотя бы один из коэффициентов A и B отличен от нуля, то уравнение (1) имеет хотя бы одно решение M (x 0 ,y 0). (Например, при A ≠0, точка M 0 (−C/A , 0) принадлежит данному геометрическому месту точек). Подставляя эти координаты в (1) получим тождество

Ax 0 +By 0 +C =0. (3)

Вычтем из (1) тождество (3):

A (x x 0)+B (y y 0)=0. (4)

Очевидно, что уравнение (4) эквивалентно уравнению (1). Поэтому достаточно доказать, что (4) определяет некоторую прямую.

Поскольку мы рассматриваем декартову прямоугольную систему координат, то из равенства (4) следует, что вектор с компонентами {x−x 0 , y−y 0 } ортогонален вектору n с координатами {A,B }.

Рассмотрим некоторую прямую L , проходящую через точку M 0 (x 0 , y 0) и перпендикулярной вектору n (Рис.1). Пусть точка M (x ,y) принадлежит прямой L . Тогда вектор с координатами x−x 0 , y−y 0 перпендикулярен n и уравнение (4) удовлетворено (скалярное произведение векторов n и равно нулю). Обратно, если точка M (x ,y) не лежит на прямой L , то вектор с координатами x−x 0 , y−y 0 не ортогонален вектору n и уравнение (4) не удовлетворено. Теорема доказана.

Доказательство. Так как прямые (5) и (6) определяют одну и ту же прямую, то нормальные векторы n 1 ={A 1 ,B 1 } и n 2 ={A 2 ,B 2 } коллинеарны. Так как векторы n 1 ≠0, n 2 ≠0, то существует такое число λ , что n 2 =n 1 λ . Отсюда имеем: A 2 =A 1 λ , B 2 =B 1 λ . Докажем, что C 2 =C 1 λ . Очевидно, что совпадающие прямые имеют общую точку M 0 (x 0 , y 0). Умножая уравнение (5) на λ и вычитая из него уравнение (6) получим:

Так как выполнены первые два равенства из выражений (7), то C 1 λ C 2 =0. Т.е. C 2 =C 1 λ . Замечание доказано.

Заметим, что уравнение (4) определяет уравнение прямой, проходящей через точку M 0 (x 0 , y 0) и имеющий нормальный вектор n ={A,B }. Поэтому, если известен нормальный вектор прямой и точка, принадлежащая этой прямой, то можно построить общее уравнение прямой с помощью уравнения (4).

Пример 1. Прямая проходит через точку M =(4,−1) и имеет нормальный вектор n ={3, 5}. Построить общее уравнение прямой.

Решение. Имеем: x 0 =4, y 0 =−1, A =3, B =5. Для построения общего уравнения прямой, подставим эти значения в уравнение (4):

Ответ:

Вектор параллелен прямой L и, следовательно, перпердикулярен нормальному вектору прямой L . Построим нормальный вектор прямой L , учитывая, что скалярное произведение векторов n и равно нулю. Можем записать, например, n ={1,−3}.

Для построения общего уравнения прямой воспользуемся формулой (4). Подставим в (4) координаты точки M 1 (можем взять также координаты точки M 2) и нормального вектора n :

Подставляя координаты точек M 1 и M 2 в (9) можем убедится, что прямая заданная уравнением (9) проходит через эти точки.

Ответ:

Вычтем (10) из (1):

Мы получили каноническое уравнение прямой. Вектор q ={−B , A } является направляющим вектором прямой (12).

Обратное преобразование смотрите .

Пример 3. Прямая на плоскости представлена следующим общим уравнением:

Переместим на право вторую слагаемую и разделим обе части уравнения на 2·5.

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.

За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.

На этом уроке мы составим программу для нахождения уравнения прямой , проходящей через заданные две точки . Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.

Сведения из вычислительной геометрии

Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.

Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.

Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).

Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.

Векторы и координаты

Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.

Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.

Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.

Отрезок АВ , у которого точку А считают началом (точкой приложения), а точку В – концом, называют вектором АВ и обозначают либо , либо жирной строчной буквой, например а .

Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например, ).

Произвольный вектор будет иметь координаты, равные разности соответствующих координат его конца и начала:

,

здесь точки A и B имеют координаты соответственно.

Для вычислений мы будем использовать понятие ориентированного угла , то есть угла, учитывающего взаимное расположение векторов.

Ориентированный угол между векторами a и b положительный, если поворот от вектора a к вектору b совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a и b положительно (отрицательно) ориентирована.

Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале .

Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.

Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:

.

Векторное произведение векторов в координатах:

Выражение справа – определитель второго порядка:

В отличии от определения, которое дается в аналитической геометрии, это скаляр.

Знак векторного произведения определяет положение векторов друг относительно друга:

a и b положительно ориентирована.

Если величина , то пара векторов a и b отрицательно ориентирована.

Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны (). Это значит, что они лежат на одной прямой или на параллельных прямых.

Рассмотрим несколько простейших задач, необходимых при решении более сложных.

Определим уравнение прямой по координатам двух точек.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки: с координатами (x1;y1) и с координатами (x2; y2). Соответственно вектор с началом в точке и концом в точке имеет координаты (x2-x1, y2-y1). Если P(x, y) – произвольная точка на нашей прямой, то координаты вектора равны (x-x1, y – y1).

С помощью векторного произведения условие коллинеарности векторов и можно записать так:

Т.е. (x-x1)(y2-y1)-(y-y1)(x2-x1)=0

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Последнее уравнение перепишем следующим образом:

ax + by + c = 0, (1)

c = x1(y1-y2) + y1(x2-x1)

Итак, прямую можно задать уравнением вида (1).

Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.

На этом уроке мы познакомились с некоторыми сведениями из вычислительной геометрии. Решили задачу по нахождению уравнения линии по координатам двух точек.

На следующем уроке составим программу для нахождения точки пересечения двух линий, заданных своими уравнениями.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение . Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

. C = 0, А ≠0, В ≠ 0 - прямая проходит через начало координат

. А = 0, В ≠0, С ≠0 { By + C = 0} - прямая параллельна оси Ох

. В = 0, А ≠0, С ≠ 0 { Ax + C = 0} - прямая параллельна оси Оу

. В = С = 0, А ≠0 - прямая совпадает с осью Оу

. А = С = 0, В ≠0 - прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких - либо заданных

начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение . В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой, заданной уравнением

Ах + Ву + С = 0.

Пример . Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение . Составим при А = 3 и В = -1 уравнение прямой: 3х - у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 - 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х - у - 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M2 (x 2, y 2 , z 2), тогда уравнение прямой ,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

если х 1 ≠ х 2 и х = х 1 , если х 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой .

Пример . Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение . Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение . Каждый ненулевой вектор (α 1 , α 2) , компоненты которого удовлетворяют условию

Аα 1 + Вα 2 = 0 называется направляющим вектором прямой.

Ах + Ву + С = 0.

Пример . Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение . Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3 , т.е. искомое уравнение:

х + у - 3 = 0

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на -С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b - координатой точки пересечения прямой с осью Оу.

Пример . Задано общее уравнение прямой х - у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем , то получим

xcosφ + ysinφ - p = 0 - нормальное уравнение прямой .

Знак ± нормирующего множителя надо выбирать так, чтобы μ * С < 0.

р - длина перпендикуляра, опущенного из начала координат на прямую,

а φ - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример . Дано общее уравнение прямой 12х - 5у - 65 = 0 . Требуется написать различные типы уравнений

этой прямой.

Уравнение этой прямой в отрезках :

Уравнение этой прямой с угловым коэффициентом : (делим на 5)

Уравнение прямой :

cos φ = 12/13; sin φ= -5/13; p = 5.

Следует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые,

параллельные осям или проходящие через начало координат.

Угол между прямыми на плоскости.

Определение . Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми

будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны,

если k 1 = -1/ k 2 .

Теорема .

Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты

А 1 = λА, В 1 = λВ . Если еще и С 1 = λС , то прямые совпадают. Координаты точки пересечения двух прямых

находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение . Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b

представляется уравнением:

Расстояние от точки до прямой.

Теорема . Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С = 0 определяется как:

Доказательство . Пусть точка М 1 (х 1 , у 1) - основание перпендикуляра, опущенного из точки М на заданную

прямую. Тогда расстояние между точками М и М 1 :

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы - это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно

заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x - x 0) + B(y - y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Прямая, проходящая через точку K(x 0 ; y 0) и параллельная прямой y = kx + a находится по формуле:

y - y 0 = k(x - x 0) (1)

Где k - угловой коэффициент прямой.

Альтернативная формула:
Прямая, проходящая через точку M 1 (x 1 ; y 1) и параллельная прямой Ax+By+C=0 , представляется уравнением

A(x-x 1)+B(y-y 1)=0 . (2)

Составить уравнение прямой, проходящей через точку K(;) параллельно прямой y = x + .
Пример №1 . Составить уравнение прямой, проходящей через точку M 0 (-2,1) и при этом:
а) параллельно прямой 2x+3y -7 = 0;
б) перпендикулярно прямой 2x+3y -7 = 0.
Решение . Представим уравнение с угловым коэффициентом в виде y = kx + a . Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7 . Затем разделим правую часть на коэффициент 3 . Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2 / 3 x + 7 / 3
Подставляя x 0 = -2, k = -2 / 3 , y 0 = 1 получим:
y-1 = -2 / 3 (x-(-2))
или
y = -2 / 3 x - 1 / 3 или 3y + 2x +1 = 0

Пример №2 . Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение . Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0 .
Решение. Данную прямую можно представить уравнением y = 5 / 7 x – 4 / 7 (здесь a = 5 / 7). Уравнение искомой прямой есть y – 5 = 5 / 7 (x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0 .

Пример №4 . Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5 . Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

Общее уравнение прямой:

Частные случаи общего уравнения прямой:

а) Если C = 0, уравнение (2) будет иметь вид

Ax + By = 0,

и прямая, определяемая этим уравнением, проходит через начало координат, так как координаты начала координат x = 0, y = 0 удовлетворяют этому уравнению.

б) Если в общем уравнении прямой (2) B = 0, то уравнение примет вид

Ax + С = 0, или .

Уравнение не содержит переменной y , а определяемая этим уравнением прямая параллельна оси Oy .

в) Если в общем уравнении прямой (2) A = 0, то это уравнение примет вид

By + С = 0, или ;

уравнение не содержит переменной x , а определяемая им прямая параллельна оси Ox .

Следует запомнить: если прямая параллельна какой-нибудь координатной оси, то в ее уравнении отсутствует член, содержащий координату, одноименную с этой осью.

г) При C = 0 и A = 0 уравнение (2) принимает вид By = 0, или y = 0.

Это уравнение оси Ox .

д) При C = 0 и B = 0 уравнение (2) запишется в виде Ax = 0 или x = 0.

Это уравнение оси Oy .

Взаимное расположение прямых на плоскости. Угол между прямыми на плоскости. Условие параллельности прямых. Условие перпендикулярности прямых.

l 1 l 2 l 1: A 1 x + B 1 y + C 1 = 0
l 2: A 2 x + B 2 y + C 2 = 0

S 2 S 1 Вектора S 1 и S 2 называются направляющими для своих прямых.

Угол между прямыми l 1 и l 2 определяется углом между направляющими векторами.
Теорема 1: cos угла между l 1 и l 2 = cos(l 1 ; l 2) =

Теорема 2: Для того, чтобы 2 прямые были равны необходимо и достаточно:

Теорема 3: чтобы 2 прямые были перпендикулярны необходимо и достаточно:

L 1 l 2 ó A 1 A 2 + B 1 B 2 = 0


Общее уравнение плоскости и его частные случаи. Уравнение плоскости в отрезках.

Общее уравнение плоскости:

Ax + By + Cz + D = 0

Частные случаи:

1. D=0 Ax+By+Cz = 0 – плоскость проходит через начало координат

2. С=0 Ax+By+D = 0 – плоскость || OZ

3. В=0 Ax+Cz+d = 0 – плоскость || OY

4. A=0 By+Cz+D = 0 – плоскость || OX

5. A=0 и D=0 By+Cz = 0 – плоскость проходит через OX

6. В=0 и D=0 Ax+Cz = 0 – плоскость проходит через OY

7. C=0 и D=0 Ax+By = 0 – плоскость проходит через OZ

Взаимное расположение плоскостей и прямых линий в пространстве:

1. Углом между прямыми в пространстве называется угол между их направляющими векторами.

Cos (l 1 ; l 2) = cos(S 1 ; S 2) = =

2. Углом между плоскостями определяется через угол между их нормальными векторами.

Cos (l 1 ; l 2) = cos(N 1 ; N 2) = =

3. Косинус угла между прямой и плоскостью можно найти через sin угла между направляющим вектором прямой и нормальным вектором плоскости.

4. 2 прямые || в пространстве, когда их || направляющие вектора

5. 2 плоскости || когда || нормальные вектора

6. Аналогично вводятся понятия перпендикулярности прямых и плоскостей.


Вопрос №14

Различные виды уравнения прямой линии на плоскости(уравнение прямой в отрезках, с угловым коэффициентом и др.)

Уравнение прямой в отрезках:
Допустим, что в общем уравнении прямой:

1. С = 0 Ах + Ву = 0 – прямая проходит через начало координат.

2. а = 0 Ву + С = 0 у =

3. в = 0 Ах + С = 0 х =

4. в=С=0 Ах = 0 х = 0

5. а=С=0 Ву = 0 у = 0

Уравнение прямой с угловым коэффициентом:

Любая прямая, не равная оси ОУ (В не=0), может быть записана в след. виде:

k = tgα α – угол между прямой и положительно направленной линией ОХ

b – точка пересечения прямой с осью ОУ

Док-во:

Ах+Ву+С = 0

Ву= -Ах-С |:В

Уравнение прямой по двум точкам:


Вопрос №16

Конечный предел функции в точке и при x→∞

Конечный предел в точке х 0:

Число А называется пределом функции y = f(x) при x→х­ 0­ , если для любого Е > 0 существует б > 0 такое, что при х ≠x 0 , удовлетворяющее неравенству |х – х 0 | < б, выполняется условие |f(x) - A| < Е

Предел обозначается: = A

Конечный предел в точке +∞:

Число А называется пределом функции y = f(x) при x→ + ∞ , если для любого Е > 0 существует С > 0, такое что при x > C выполняется неравенство |f(x) - A| < Е

Предел обозначается: = A

Конечный предел в точке -∞:

Число А называется пределом функции y = f(x) при x→-∞, если для любого Е < 0 существует С < 0 такое, что при х < -С выполняется неравенство |f(x) - A| < Е



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.