Анализ причин и последствий. FMEA анализ

Испытания технологических процессов на завершенность.

Испытания конструкции на завершенность.

Эти испытания проводятся на первых опытных образцах изделия. Их цель - показать, что конструкция изделия удовлетворяет требованиям по надежности.

При этом не имеет значения, каким способом был построен опытный образец и какие усилия пошли на его отладку. Если требуемый уровень надежности изделия не достигнут, конструкция должна быть улучшена. Испытания продолжаются до тех пор, пока изделие не будет удовлетворять всем заданным требованиям.

На протяжении этих испытаний регистрируются отказы в начальный период эксплуатации изделия. С помощью этих данных достигается полная согласованность между конструкцией изделия и процессами, необходимыми для его изготовления, и определяется объем испытаний, необходимых для достижения требуемой надежности при доставке [ изделия потребителям.

Испытания проводятся также на первых образцах изделий. Эти I образцы работают в течение заданного периода (периода приработки). Характеристики их работы тщательно контролируются, измеряется убывающая интенсивность отказов. После периода приработки соби раются опытные данные, позволяющие измерить и проверить показа тели эксплуатационной надежности изделия и сравнить их с резуль| татами, полученными при испытании изделия на завершенность.I Наблюдения, проведенные во время этих испытаний, позволяют задать величину периода приработки изделия.

Испытания на долговечность. На протяжении этих испытаний регистрируются износовые отказы элементов изделия и строится их распределение. Полученные данные используются для устранения. причин тех отказов, возникновение которых приводит к неприемле мому снижению ожидаемого срока службы изделия. Испытания на долговечность ведутся на ряде образцов данного изделия. При этих испытаниях надо определить границу перехода от постоянной интен сивности отказов к возрастающей и построить распределение для каждого наблюдаемого вида отказов.

Одним из эффективных средств повышения качества технических объектов является анализ видов и последствий потенциальных отказов (Potential Failure Mode and Effects Analysis - FMEA). Анализ доводится на этапе проектирования конструкции или технологичecкого процесса (соответствующие этапы жизненного цикла изделия - разработка и подготовка к производству), а также при доработке и улучшении изделий, уже запущенных в производство. Целесообразно разделить этот анализ на два этапа: отдельный анализ нa этапе отработки конструкции и на этапе отработки технологического процесса.

Стандарт (ГОСТ Р 51814.2-2001. Системы качества в автомобилестроении. Метод анализа видов и последствий потенциальных дефектов) предусматривает и возможность использования метода FMEA при разработке и анализе других процессов, таких, как процессы продаж, обслуживания, маркетинга.



Основные цели анализа видов и последствий потенциальных отказов:

Выявление критичных отказов, связанных с опасностью для жизни людей и окружающей среды и разработка мероприятий
по снижению вероятности их возникновения и тяжести возмож ных последствий;

Выявление и устранение причин любых возможных отказов изделия для повышения его надежности.

При проведении анализа решаются следующие задачи:

Выявление возможных отказов объекта (изделия или процесса) и его элементов (при этом учитывается опыт изготовления и эксплуатации аналогичных объектов),

Изучение причин отказов, количественная оценка частоты их возникновения,

Классификация отказов по тяжести последствий и количественная оценка значимости этих последствий,

Оценка достаточности средств контроля и диагностики оценка возможности обнаружения отказа, возможность предотвращения отказа при практическом использовании этих средств,

Разработка предложений по изменению конструкции и технологии изготовления с целью снижения вероятности отказов и их критичности,

Разработка правил поведения персонала при возникновении критических отказов,

анализ возможных ошибок персонала.

Для проведения анализа формируется группа специалистов, имеющих практический опыт и высокий профессиональный уровень в области конструирования аналогичных объектов, знающих процессы производства компонентов и сборки объекта, " технологию контроля и диагностики состояния объекта, методы " обслуживания и ремонта. Используется метод мозгового штурма. При этом на этапе качественного анализа разрабатывается структурная схема объекта: объект рассматривается как система, состоящая из подсистем различного уровня, которые в свою " очередь состоят из отдельных элементов.

Анализируются возможные виды отказов и их последствия снизу вверх, т.е. от элементов к подсистемам, и затем к объекту в целом. При анализе учитывается, что каждый отказ может иметь несколько причин и несколько различных последствий.

На этапе количественного анализа экспертно, в баллах, оценивается критичность отказа с учетом вероятности его возникновения, вероятности его выявления и оценки тяжести возможных последствий. Риск отказа (приоритетное число риска) может быть найден по формуле: I

где значение О определяется в баллах в зависимости от вероятности отказа,- от вероятности выявления (обнаружения) отказа", зависит от тяжести последствий отказа.

Найденное значение.для каждого элемента по каждой причине и по каждому возможному последствию сравнивается с критическим. Критическое значение устанавливается заранее и выбирается в пределах от 100 до 125. Снижение критического, значения соответствует разработке более надежных изделий и процессов.

Для каждого отказа, у которого значение R превышает критическое, разрабатываются меры по его снижению путем доработки конструкции и технологии изготовления. Для нового варианта объекта критичность объекта R рассчитывается заново. При необходимости процедура доработки повторяется вновь.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Бийский технологический институт (филиал)

государственного образовательного учреждения

«Алтайский государственный технический университет

АНАЛИЗ ФОРМ И ПОСЛЕДСТВИЙ ОТКАЗОВ

(FMEA )

Издательство Алтайского государственного технического университета

УДК 658.5(076)

Рецензент: д. т.н., профессор

Работа подготовлена на кафедре производственной безопасности

и управления качеством.

Козлюк, А. Ю.

Анализ форм и последствий отказов (FMEA): методические рекомендации по выполнению лабораторной работы по курсу «Средства и методы управления качеством» для студентов специальности 220501.65 «Управление качеством» / ; Алт. гос. техн. ун-т, БТИ . – Бийск: Изд-во Алт. гос. техн. ун-та, 2009. – 22 с.

Методические рекомендации содержат основные сведения о методе анализа форм и последствий отказов - FMEA, который является эффективным инструментом повышения качества не только разрабатываемых технических объектов, но и различных процессов, направленным на предотвращение дефектов и/или отказов, а также на снижение негативных последствий от них.

УДК 658.5(076)

Рассмотрены и одобрены на заседании кафедры

производственной безопасности и управления

качеством

Протокол № 03/09 от 08.04.09

© БТИ АлтГТУ, 2009

ВВЕДЕНИЕ. …4

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ. 5

1.1 Применение FMEA-методологии. 5

1.2 Основные этапы проведения FMEA. 7

2 ПРИМЕР ВЫПОЛНЕНИЯ АНАЛИЗА ФОРМ И ПОСЛЕДСТВИЙ ОТКАЗОВ 14

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ (4 часа) 19

4 КОНТРОЛЬНЫЕ ВОПРОСЫ.. 20

ЛИТЕРАТУРА. 21

ВВЕДЕНИЕ

Анализ форм и последствий отказов (Failure Mode and Effect Analysis - FMEA), известный также под названием «Анализ рисков», используется в качестве одной из превентивных мер для системного обнаружения причин, вероятных последствий, а также для планирования возможных противодействий по отношению к отслеживаемым отказам. Это эффективный инструмент повышения качества разрабатываемых технических объектов, направленный на предотвращение дефектов или снижение негативных последствий от них, что достигается благодаря предвидению дефектов и/или отказов и их анализу, проводимому на этапах проектирования конструкции и производственных процессов. Метод может быть также использован для доработки и улучшения конструкций и процессов, запущенных в производство.

Метод FMEA позволяет проанализировать потенциальные дефекты, их причины и последствия, оценить риски их появления и необнаружения на предприятии и принять меры для устранения или снижения вероятности и ущерба от их появления. Это один из наиболее эффективных методов доработки конструкции технических объектов и процессов их изготовления на таких важнейших стадиях жизненного цикла продукции, как ее разработка и подготовка к производству.

Как правило, FMEA проводится не для существующей, а для новой продукции или процесса. FMEA конструкции рассматривает риски, которые возникают у внешнего потребителя, а FMEA процесса - у внутреннего потребителя. Анализ форм и последствий отказов процессов может проводиться для процессов производства продукции, бизнес-процессов (документооборота, процесса закупок и т. д.) и процесса эксплуатации изделия потребителем.

Анализ форм и последствий отказов в настоящее время является одной из стандартных технологий анализа качества изделий и процессов, поэтому в процессе его развития выработаны типовые формы представления результатов анализа и типовые правила его проведения.

FMEA используется как в комбинации с функционально-стоимост-ным анализом или функционально-физическим анализом, так и самостоятельно. Он позволяет снизить затраты и уменьшить риск возникновения дефектов. FMEA, в отличие от функционально-стоимостного анализа, не рассматривает прямо экономические показатели, в том числе затраты на недостаточное качество, но он позволяет выявить именно те дефекты, которые обусловливают наибольший риск потребителя, определить их потенциальные причины и выработать корректировочные мероприятия по их исправлению еще до того, как эти дефекты проявятся, и таким образом предупредить затраты на их исправление.

1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Применение FMEA-методологии

Основной целью FMEA является предупреждение и/или ослабление вредных последствий у потребителя возможных дефектов продукции и процессов ее производства. Наиболее целесообразно применение анализа форм и последствий отказов при разработке или модернизации продукции и процессов ее изготовления.

Основными задачами FMEA являются:

а) определение возможных отказов (дефектов) продукции и/или процесса ее изготовления, их причин и последствий;

б) определение степени критичности (тяжести) последствий для потребителей (S), вероятностей возникновения причин (дефектов) (О) и вероятности выявления их (D) до поступления к потребителю;

в) определение обобщенной оценки качества (надежности, безопасности) объекта анализа – приоритетного числа риска (ПЧР) - и сравнение его с предельно допустимым значением приоритетного числа риска; мероприятий по улучшению объекта анализа, обеспечивающих соблюдение условия ПЧР < ПЧРкр для объекта в целом и его компонентов.

Для проведения анализа форм и последствий отказов создается специальная команда. Значения S, О, Д, ПЧР, ПЧРкр определяются экспертным или расчетным методами.

Объектами анализа форм и последствий отказов могут быть:

– конструкция изделия (FMEA-анализ конструкции);

– процесс производства продукции (FMEA-анализ процесса производства);

– бизнес-процессы (документооборот, финансовые процессы и т. д.) (FMEA-анализ бизнес-процессов);

– процесс эксплуатации изделия (FMEA-анализ процесса эксплуатации).

FMEA-анализ конструкции (DFMEA – Design FMEA) может проводиться как для разрабатываемой конструкции, так и для существующей. В рабочую группу по проведению анализа обычно входят представители отделов разработки, планирования производства, сбыта, обеспечения качества, представители опытного производства. Целью анализа является выявление потенциальных дефектов изделия, вызывающих наибольший риск потребителя, и внесение изменений в конструкцию изделия, которые бы позволили снизить такой риск.

FMEA-анализ процесса (PFMEA – Processes FMEA) производства осуществляется ответственными службами планирования производства, обеспечения качества или производства с участием соответствующих специализированных отделов изготовителя и при необходимости - потребителя. FMEA-анализ процесса производства начинается на стадии технической подготовки производства и заканчивается до начала основных - монтажно-сборочных и т. п. работ. Целью FMEA-анализа процесса производства является обеспечение выполнения всех требований по качеству процесса производства и сборки путем внесения изменений в план процесса для технологических процессов с повышенным риском.

FMEA-анализ бизнес-процессов обычно производится в подразделениях, выполняющих данный бизнес-процесс. В проведении анализа, кроме представителей этих подразделений, участвуют представители службы обеспечения качества, представители подразделений, являющихся внутренними потребителями результатов бизнес-процесса, и подразделений, участвующих в выполнении этапов бизнес-процесса. Цель этого вида анализа - обеспечение качества выполнения запланированного бизнес-процесса. Выявленные в ходе анализа потенциальные причины дефектов и несоответствий позволят определить причину неустойчивости системы. Выработанные корректирующие мероприятия должны обеспечить эффективность и результативность бизнес-процесса.

FMEA-анализ процесса эксплуатации проводится в том же составе, что и FMEA-анализ конструкции. Цель его проведения – формирование требований к конструкции изделия и условиям эксплуатации, обеспечивающим безопасность и удовлетворенность потребителя, то есть подготовка исходных данных, как для процесса разработки конструкции, так и для последующего FMEA-анализа конструкции и процессов ее изготовления.

Применение FMEA-методологии основано на следующих принципах:

а) командная работа – реализация FMEA осуществляется силами специально подобранной межфункциональной команды специалистов;

б) иерархичность – для сложных технических объектов или процессов их изготовления анализу подвергают как объект или процесс в целом, так и их составляющие; отказы составляющих рассматривают по их влиянию на объект (или процесс), в который они входят;

в) итеративность – анализ повторяют при любых изменениях объекта или требований к нему, которые могут привести к изменению комплексного риска отказа;

г) регистрация результатов проведения FMEA – в соответствующих отчетных документах должны быть зафиксированы результаты проведенного анализа и решения о необходимых изменениях и действиях.

1.2 Основные этапы проведения FMEA

Современный опыт применения FMEA обобщен в ГОСТ Р 51814.2-2001. Для выполнения FMEA создается FMEA-команда, состав которой определяется видом FMEA. При FMEA конструкции в команду обычно входят конструктор (разработчик изучаемой конструкции), технологи по обработке и сборке, испытатель, представители служб маркетинга, сервиса, управления качеством. При FMEA процесса в команду обычно входят технолог (разработчик изучаемого процесса), конструктор, представители служб сервиса, организации производства, управления качеством.

FMEA-команда (межфункциональная команда) представляет собой временный коллектив из разных специалистов, созданный специально для цели анализа и доработки конструкции и/или процесса изготовления данного технического объекта. При необходимости в состав FMEA-команды могут приглашаться опытные специалисты из других организаций.

В своей работе FMEA-команды применяют метод «мозгового штурма»; рекомендуемое время работы от 3 до 6 часов в день. Для эффективной работы все члены FMEA-команды должны иметь практический опыт и высокий профессиональный уровень. Этот опыт предполагает для каждого члена команды значительную работу в прошлом с аналогичными техническими объектами.

Рекомендуемое число участников FMEA-команды от четырех до восьми человек. Полный состав участников FMEA-команды для работы с данным техническим объектом должен быть неизменным, однако в отдельные дни в работе FMEA-команды может принимать участие неполный ее состав, что определяется целесообразностью присутствия тех или иных специалистов при рассмотрении текущего вопроса.

Конструирование аналогичных технических объектов, различные конструкторские решения;

Техническое обслуживание и ремонт;

Испытания;

Анализ поведения аналогичных технических объектов в эксплуатации.

Конструирование аналогичных технических объектов;

Процессы производства компонентов и их сборка;

Технология контроля в ходе изготовления;

Анализ соответствующих технологических процессов, возможные альтернативные технологические процессы;

Анализ частоты дефектов и контроля работы соответствующего оборудования и персонала.

При необходимости в состав FMEA-команд включаются также специалисты с практическим опытом в других областях деятельности.

В случае, когда этапы проектирования конструкции и процессов производства данного технического объекта разделять нецелесообразно, формируют общую FMEA-команду. Члены этой команды в совокупности должны иметь практический опыт во всех областях деятельности, перечисленных выше.

В случае, когда для данного технического объекта отдельно формируют DFMEA-команду и PFMEA-команду, рекомендуется в их состав включать одних и тех же физических лиц следующих специальностей: конструктор, технолог, сборщик, испытатель, контролер.

В команде должен быть определен ведущий, которым может быть любой из членов команды, признаваемый остальными как лидер в рассматриваемых вопросах.

Профессионально ответственным в DFMEA-команде является конструктор, а в PFMEA-команде – технолог.

Алгоритм работы FMEA-команды представлен на рисунке 1.

Планирование FMEA осуществляют по п. 5.3 ГОСТ 27.310-95.

План проведения FMEA должен устанавливать:

Стадии жизненного цикла объекта и соответствующие им этапы видов работ, на которых проводят анализ (в дальнейшем - этапы анализа, или этапы);

Виды и методы анализа на каждом этапе со ссылками на соответствующие нормативные документы и методики. При отсутствии необходимых документов план должен предусматривать разработку соответствующих методик FMEA рассматриваемого объекта;

Уровень разукрупнения объекта, начиная с которого (до которого) проводят анализ на каждом этапе;

Сроки проведения анализа на каждом этапе, распределение ответственности за его проведение и реализацию результатов, сроки, формы и правила отчетности по результатам анализа;

Порядок контроля над проведением и реализацией результатов анализа со стороны руководства организации-разработчика и заказчика (потребителя).

Анализ форм и последствий отказов обычно предполагает осуществление трех крупных этапов работы.

Описание последствий отказов

Балл S

Отказ не приводит к заметным последствиям, потребитель, вероятно, не обнаружит наличие неисправности

Последствия отказа незначительны, но потребитель может выразить недовольство его появлением

Отказ приводит к заметному для потребителя снижению эксплуатационных характеристик и/или к неудобству применения

Высокая степень недовольства потребителя, изделие не может быть использовано по назначению, но угрозы безопасности отказ не представляет

Отказ предусматривает угрозу безопасности людей или окружающей среды

Таблица 2 – Оценка вероятностей возникновения отказов (дефектов)

Виды отказов по вероятности
возникновения за время
эксплуатации

Ожидаемая вероятность
отказов, оцененная
расчетом или

экспериментальным путем

Балл О

Отказ практически невероятен

Менее 0,00005

Отказ маловероятен

0,00005 – 0,0001

Отказ имеет малую вероятность, обусловленную только точностью расчета

0,0001 – 0,0005

Умеренная вероятность отказа

0,0005 – 0,001

Отказы возможны, но при испытаниях или в эксплуатации аналогичных изделий не наблюдались

Отказы возможны, наблюдались при испытаниях и в эксплуатации аналогичных изделий

Отказы вполне вероятны

Высокая вероятность отказов

Вероятны повторные отказы

Таблица 3 – Оценка вероятностей обнаружения отказов (дефектов) до

поставки изделия потребителю

Виды отказов по вероятности
обнаружения до
поставки

Вероятность обнаружения отказа, оцененная
расчетом или

экспериментальным путем

Балл D

Очень высокая вероятность выявления отказа при контроле, сборке, испытаниях

Высокая вероятность выявления отказа при контроле, сборке, испытаниях

Умеренная вероятность выявления отказа при контроле, сборке, испытаниях

Высокая вероятность поставки потребителю дефектного изделия

Очень высокая вероятность поставки потребителю дефектного изделия

По усмотрению службы маркетинга и других служб предприятия для некоторых возможных дефектов значение ПЧРгр может быть установлено менее 100. Снижение граничного значения приоритетного числа риска соответствует созданию более высококачественных и надежных объектов и процессов. Некоторые зарубежные предприятия-лидеры, давно использующие методологию FMEA, сейчас работают со значениями ПЧРгр от 30 до 50.

Кроме того, следует определить для каждого режима отказа те средства и действия, которые необходимы для преодоления слабых (узких) мест исследуемого процесса.

Поручить ответственному специалисту или группе специалистов заняться выработкой технических решений, которые позволят предотвратить последствия отказов для наиболее рискованных ситуаций.

Установить промежуток времени, через который должна производиться периодическая верификация (контроль, проверка, подтверждение) выработанного решения.

1.2.3 Действия после завершения работы FMEA -команды

После завершения работы FMEA-команды должны быть выполнены следующие действия.

1.2.3.1 Составление письменного отчета о результатах работы по выполненному анализу форм и последствий отказов. Этот отчет должен быть передан руководителям организации.

1.2.3.2 Руководителям организации следует верифицировать и оценить результаты работы FMEA-команды и проследить, чтобы до членов FMEA-команды была доведена информация (в виде обратной связи) о статусе выполненных ими действий.

2 ПРИМЕР ВЫПОЛНЕНИЯ АНАЛИЗА ФОРМ И ПОСЛЕДСТВИЙ ОТКАЗОВ

Рассмотрим пример практического применения анализа форм и последствий отказов для улучшения процесса градуировки электронных весов, который по результатам анализа деятельности Тулиновского приборостроительного завода () был определен высшим руководством как критический (дефектоносный).

Процесс градуировки весов на осуществляется с использовани­ем имеющегося на предприятии универсального стенда нагружения, который со­стоит из основного и подвижного каркасов. Последний оснащен левой и правой гребенками, на которые навешиваются гири в необходимой последовательности.

Алгоритм процесса градуировки весов представлен на рисунке 2. Поясним его. После транспортировки весов с предыдущего участка производства их помещают на столешницу стенда и по уровню устанавливают в горизонтальное положение. Затем посредством нажатия соответствующей клавиши на клавиатуре вес переводят в режим градуировки, и при этом на табло жидкокристаллического индикатора (ЖКИ) выводится значение веса, которым необходимо нагрузить платформу весов.

После включения привода электродвигателя набор гирь, находящийся на гребенках подвижного каркаса, начинает движение вниз. При этом нижние гири, снимаясь с «крючков» гребенок, ложатся на платформу весов. Поместив требуемое количество грузов на платформе, микропроцессор весов проводит измерение частоты вибрационно-частотного датчика для данной реперной точки и после фиксирования успокоения за­писывает значение частоты в постоянное запоминающее устройство (ПЗУ). При переходе к очередному шагу градуировки последующая гиря ложится на предыдущую и т. д. Зарегистрировав данные для предыдущей реперной точки, весы запрашивают данные следующей, и процесс нагружения платформы повторяется.

Работой стенда управляет оператор, включая и выключая электродвигатель. При этом трудность состоит в том, что оператор вынужден визуально контролировать полноту опускания очередной гари на платформу весов. В результате нередки случаи, когда платформа весов бывает недогружена (из-за неполного опускания гири) или перегружена (вслед­ствие воздействия гари, которая должна была бы быть опущена на платформу весов при нагружении в следующей реперной точке).

https://pandia.ru/text/78/217/images/image006_7.gif" alt="Подпись: Таблица 4 – Результаты работы FMEA-команды" width="25" height="470">

На последнем этапе проводимого FMEA-анализа были разработаны реко­мендации по предотвращению тяжелых последствий при наиболее рискованных случаях:

1) провести дополнительное обучение персонала;

2) внедрить роликовый конвейер для транспортировки весов;

3) доработать конструкцию столешницы и тем самым упростить процесс установки весов в горизонтальное положение по уровню;

4) разработать и внедрить автоматизированную систему контроля и управ­ления (АСКиУ) стенда, которая с помощью частотного датчика весов будет контролировать полноту опускания гири на платформу весов и управлять процессом градуировки весов;

5) предусмотреть более частое проведение работ по калибровке используе­мых гирь;

6) составить график более частого технического обслуживания, ввести кон­троль выполнения планово-предупредительных работ;

7) внедрить блок бесперебойного питания стенда, чтобы исключить воз­можный сбой в подаче электроэнергии.

После завершения работы FMEA-команды был составлен письменный отчет по выполненному анализу форм и последствий отказов. Этот отчет был передан руководителям организации, кото­рые верифицировали и оценили результаты работы FMEA-команды. Эти резуль­таты вместе с рекомендациями по улучшению процесса градуировки весов приняты для использования в практической деятельности.

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ (4 часа)

Цель работы: освоение практического применения метода анализа видов и последствий потенциальных дефектов.

Выполнение работы:

– изучить назначение и методику применения FMEA;

– получить исходные данные для FMEA;

– выполнить задания и составить отчет в электронном виде, используя предоставленное программное обеспечение (отчет должен содержать название и цель работы; название процесса, выбранного для FMEA; блок-схему анализируемого процесса; таблицу результатов работы, выполненную по форме таблицы 4;

– ответить на контрольные вопросы.

Задание 1

Выбрать производственный или бизнес-процесс, основываясь на информации, полученной в ходе прохождения производственной практики. Описать выбранный процесс в виде блок-схемы или карты процесса. При необходимости дать комментарии этапам процесса.

Задание 2

Для выбранных этапов исследуемого процесса определить:

1) возможные отказы;

2) эффекты их проявления;

3) кратко обозначить, что является причиной каждого проявления отказа;

4) определить и описать последствия (влияние) этих проявлений отказов на управляемость процесса.

Задание 3

Количественно оценить слабые узкие места процесса, определив следующие факторы: значимость потенциального отказа (S), вероятность возникновения дефекта (О), вероятность обнаружения отказа (D), используя для определения таблицы 1, 2 и 3. Определить приоритетные числа риска.

Задание 4

Для каждой причины отказов разработать средства решения проблемы.

По результатам заданий 1-3 заполнить таблицу результатов работы FMEA-команды, выполненную по форме таблицы 4.

4 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем заключается назначение, цель и задачи анализа форм и последствий отказов?

2. Опишите существующие разновидности анализа форм и последствий отказов.

3. На каких принципах основано применение FMEA-методологии?

4. Опишите принципы создания команд для FMEA.

5. Что должен устанавливать план проведения анализа форм и последствий отказов?

6. Опишите алгоритм работы FMEA-команды.

7. Как определяются значения приоритетных чисел риска и критические значения приоритетных чисел риска?

ЛИТЕРАТУРА

1. ГОСТ 27.310 – 95. Надежность в технике. Анализ видов, последствий и критичности отказов. Основные положения.

2. ГОСТ Р 51814.2 – 2001. Метод анализа видов и последствий потенциальных дефектов.

3. Ефимов, качества проектов и процессов: учебное пособие / . – Ульяновск: УлГТУ, 2004. – 185 с.

4. Кане, методы и инструменты менеджмента качества: учебное пособие / ,
. – СПб.: Питер, 2008. – 560 с: ил.

5. Пономарев, качеством продукции. Инструменты и методы менеджмента качества: учебное пособие / и [др.]. – М.: РИА «Стандарты и качество». – 2005. – 248 с.

6. Управление качеством: учеб. пособие для студентов вузов, обучающихся по специальности «Управление качеством» / ,
; под общ. ред. . – 2-е изд. – М.: Омега-Л, 2005. – 400 с.

7. Шушерин, и методы управления качеством: учебное пособие / , . – Екатеринбург:
ГОУ ВПО УГТУ – УПИ, 2006. – 202 с.

8. Эванс, Джеймс Р. Управление качеством: учебн. пособие /
Джеймс Р. Эванс; пер. с англ. под ред. ; предисловие
. – М.: ЮНИТИ-ДАНА, 2007. – 671 с.

Учебное издание

Козлюк Андрей Юрьевич

АНАЛИЗ ФОРМ И ПОСЛЕДСТВИЙ ОТКАЗОВ (FMEA )

специальности 220501.65 «Управление качеством»

Редактор

Технический редактор

Подписано в печать 08.06.09. Формат 60×84 1/16
Усл. п. л. – 1,28. Уч. изд. л. – 1,38
Печать – ризография, множительно-копировальный
аппарат «RISO TR-1510»

Тираж 70 экз. Заказ 2009-61

Издательство Алтайского государственного
технического университета
г. Барна

Оригинал-макет подготовлен ИИО БТИ АлтГТУ

Отпечатано на ИИО БТИ АлтГТУ
7

Анализ видов и последствий отказов компонентов технической и функциональной структур проектируемой системы является первым этапом проектного исследования надежности и безопасности. Общепринятой международной аббревиатурой для обозначения анализа видов и последствий отказов является FMEA (failure mode and effect analysis). Этот вид анализа относится к классу предварительного качественного и упрощенного количественного анализа на стадии проектирования. Если проводятся количественные оценки, то употребляется термин FMECA (failure mode, effect and criticality analysis – анализ видов, последствий и критичности отказов). Первые опыты проведения FMEA относятся к аэрокосмическим проектам 60-х годов СССР и США. В 80-х годах процедуры FMEA стали внедряться в автомобильной промышленности США в Ford Motor Company. В настоящее время анализ видов и последствий отказов является обязательным этапом проектной оценки надежности и безопасности объектов космической, авиастроительной, атомной, химико-технологической, газо-нефтеперерабатывающих и др. отраслей. В областях, где этот этап не является обязательным, возникают опасные инциденты, приводящие к большим экономическим и экологическим потерям и угрожающие жизни и здоровью людей. Достаточно вспомнить драматические события обрушения публичных московских зданий, построенных по проектам, где дефект лишь одного элемента несущей конструкции (штифта, колонны) привел к катастрофическим последствиям.

Можно выделить три основные цели проведения FMEA

  • выявление потенциально-возможных видов отказов компонентов системы и определение их влияния на систему в целом и возможно окружающую среду
  • классификация видов отказов по уровням критичности или по уровням критичности и частоте возникновения (FMECA)
  • выдача рекомендаций по пересмотру проектных решений с целью компенсации или устранения опасных видов отказов

FMEA является наиболее стандартизованной областью “надежностных” исследований. Процедура проведения и вид входной/выходной документации регламентируется соответствующими стандартами. Международно признанными являются документы:

· MIL-STD-1629 Style FMECAs - руководство по проведению анализа видов и последствий отказов, оценки критичности, выявлению узких мест конструкций с точки зрения ремонтопригодности и живучести. Первоначально был ориентирован на военные применения.

· SAE J1739, AIG-FMEA3, FORD FMEA – пакет документов, регламентирующих проведение анализа видов и последствий отказов для объектов автомобильной промышленности, включая стадии проектирования и изготовления

· SAE ARP5580 – руководство по проведению FMEA как коммерческих, так и военных проектов, объединяющее положения MIL-STD-1629 и автомобильных стандартов. Введено понятие групп эквивалентных отказов, т.е. отказов, порождающих одинаковые последствиями и требующих проведения одинаковых корректирующих действий.


Общим для всех стандартов является то, что они регламентируют лишь последовательность и взаимосвязь этапов анализа, оставляя проектировщику свободу действий при конкретной реализации каждого этапа. Так, допускается произвольная настройка структуры таблиц FMEA, определение шкал частот возникновения отказов и тяжести последствий, введение дополнительных признаков классификации отказов и пр.

Этапы выполнения FMEA:

· построение и анализ функциональной и/или технической структур объекта

· анализ условий эксплуатации объекта

· анализ механизмов отказов элементов, критериев и видов отказов

· классификация (перечень) возможных последствий отказов

· анализ возможных способов предотвращения (уменьшения частоты) выделенных отказов (последствий отказов)

Техническая структура объекта анализа обычно имеет древовидное, иерархическое представление (рис.3). Возможные виды отказов перечисляются для компонентов нижнего уровня (листьев дерева), а их последствия оцениваются с точки зрения влияния на подсистемы следующего уровня (родительские узлы дерева) и объект в целом.

Рис.3. Иерархическое представление объекта анализа

На рис.4. приведен фрагмент таблицы FMEA, содержащий данные анализа видов и последствий отказов оборудования химико-технологического объекта.

Рис.4. Фрагмент таблицы FMEA.

При выполнении количественных оценок проектных решений по FMEA виды отказов компонентов принято характеризовать тремя параметрами: частота возникновения, степень обнаружения, тяжесть последствий. Так как анализ носит предварительный характер, то обычно используют балльные экспертные оценки этих параметров. Например, в ряде документов предлагаются следующие классификации видов отказов по частоте (таблица 2), по степени обнаружения (таблица 3), по тяжести последствий (таблица 4).

Таблица 2. Классификация отказов по частоте.

4. Разрабатывается подходящая таблица для регистрации информации. Она может изменяться в зависимости от учитываемых факторов. Наиболее часто применяется таблица следующего вида.

5. Определяются элементы, в которых возможно возникновение несоответствий (отказы). Элементы могут включать в себя различные компоненты, сборки, комбинации составных частей и пр. Если список элементов становится слишком большим и неуправляемым необходимо сократить границы FMEA.

В том случае если потенциальные отказы связаны с критическими характеристиками, дополнительно, при проведении FMEA, необходимо проводить анализ критичности отказов. Критические характеристики это нормативы или показатели, которые отражают безопасность или соответствие нормативным требованиям и нуждаются в особом контроле.

6. Для каждого элемента, выделенного на шаге 5, составляется список наиболее значимых видов отказов. Эту операцию можно упростить, если применять стандартный список отказов для рассматриваемых элементов. Если проводится анализ критичности отказов, то необходимо определить вероятность появления отказа для каждого из элементов. Когда определены все возможные виды отказов для элемента, тогда суммарная вероятность их возникновения должна составлять 100%.

7. Для каждого вида отказа, выявленного на шаге 6, определяются все возможные последствия, которые могут проявиться. Эту операцию можно упростить, если применять стандартный список последствий. Если проводится анализ критичности отказов, то необходимо определить вероятность возникновения каждого последствия. Когда определены все возможные последствия, вероятность их возникновения суммарно должна составлять 100% для каждого элемента.

8. Определяется рейтинг тяжести последствий для потребителя (S) - Severity . Рейтинг тяжести последствий обычно определяется по шкале от 1 до 10, где 1 означает незначительные последствия, а 10 катастрофические последствия. Если вид отказа имеет более одного последствия, то в FMEA таблицу вносится только наиболее тяжелое последствие для этого вида отказа.

9. Для каждого вида отказа определяются все потенциальные причины. Для этого может применяться причинно-следственная диаграмма Исикавы. Все потенциальные причины для каждого вида отказов заносятся в таблицу FMEA.

10. Для каждой причины определяется рейтинг вероятности ее возникновения (O) - Occurrence . Вероятность возникновения обычно оценивается по шкале от 1 до 10, где 1 означает крайне маловероятное событие, а 10 означает неизбежное событие. Значение рейтинга заносится в таблицу FMEA.

Лекция 4. Общепринятые методы анализа риска(продолжение).

Анализ сценариев

Наименование метода «анализ сценариев» дано процессу разработки описательных моделей развития событий. Метод может быть использован для идентификации риска путем рассмотрения возможных событий в будущем и исследования их значимости и последствий. Наборы сценариев, отражающих, например, «лучший случай», «худший случай» и «ожидаемый случай», могут быть использованы для анализа возможных последствий и их вероятности для каждого сценария.

Возможности метода анализа сценариев можно проиллюстрировать, рассматривая основные изменения за прошлые 50 лет в технологиях, предпочтениях потребителей, социальных отношениях и т. д. В процессе анализа сценариев трудно прогнозировать вероятность таких изменений в будущем, однако можно анализировать последствия, помочь организациям использовать преимущества и обеспечить устойчивость к прогнозируемым изменениям.

Анализ сценариев может быть полезен в принятии решений и планировании будущих стратегий, а также при рассмотрении существующих видов деятельности. Данный метод может быть использован для всех элементов оценки риска. На этапах идентификации и анализа риска наборы сценариев, отражающих, например, лучший, худший и наиболее вероятный случай, могут быть использованы для установления того, что может произойти в конкретных обстоятельствах, а также для анализа потенциальных последствий и их вероятности для каждого сценария.

Метод анализа сценариев может быть использован для прогнозирования возможных угроз и их развития во времени и может быть применен для всех типов риска в краткосрочной и долгосрочной перспективе.

В краткосрочной перспективе при наличии достоверных данных вероятные сценарии могут быть экстраполированы на основе существующих данных. В долгосрочной перспективе с учетом низкой достоверности данных анализ сценариев позволяет определить общий характер развития событий.

Анализ сценариев полезен в ситуации, когда имеются значительные различия между положительными и отрицательными результатами, в том числе во времени и для различных групп или организаций.

Структура метода анализа сценариев может быть формализованной или произвольной.

После формирования группы, установления каналов обмена информацией, определения исследуемых проблем и области применения метода необходимо идентифицировать характер возможных изменений.

Следует также исследовать основные тенденции и оценить вероятное время изменений на основе экспертногопрогноза.

Исследуемые изменения могут включать в себя:

Внешние изменения (такие как изменения технологий);

Решения, которые необходимо принять в ближайшем будущем и которые могут привести к различным результатам;

Потребности причастных сторон и возможные изменения;

Изменения в макросреде (обязательных требований, демографии и т. д.), некоторые из которых неизбежны, другие возможны.

Иногда изменения могут произойти вследствие другого опасного события. Например, изменение климата приводит к изменениям потребительского спроса на продукты питания, что влияет на то, какие продукты питания выгодно экспортировать, а какие - выращивать в своем регионе.

Затем следует составить перечень локальных факторов и макрофакторов или тенденций и ранжировать сначала по значимости, затем по неопределенности. Особое внимание следует уделять факторам, которые являются наиболее значимыми и более неопределенными.

Ключевые факторы или тенденции наносят на карту напротив друг друга, чтобы показать и выявить области разработки сценариев.

Обычно предлагают набор сценариев, каждый из которых соответствует вероятному изменению параметров.

Затем для каждого сценария составляют описание перехода от исходной ситуации к рассматриваемому сценарию. Описание может включать вероятные детали, которые могут быть очень полезны для сценария.

Далее сценарии могут быть использованы для исследования или оценки исходной проблемы. При проведении исследований необходимо учитывать все существенные, но прогнозируемые факторы (например, используют шаблоны). Затем следует исследовать выполнение политики или деятельности при реализации этого сценария и оценить результаты предварительного исследования сценария с использованием вопросов «что, если», основанных на предположениях моделей.

После проведения оценки вопросов или предположений относительно каждого сценария может стать очевидным, что именно необходимо изменить и как это сделать наиболее целесообразным и безопасным образом. Могут быть также определены основные индикаторы, указывающие на появление возможных изменений.

Мониторинг основных индикаторов и предпринятые ответные меры позволяют обеспечить возможность внесения изменений в запланированные стратегии.

Так как сценарии охватывают только отдельные части возможного развития будущих событий, важно удостовериться, что учтены вероятности появления конкретных сценариев, т. е. определить структуру риска. Например, если используют сценарии лучшего случая, худшего случая и наиболее вероятного случая, необходимо предпринять несколько попыток для их квалификации и оценить вероятность появления каждого сценария.

Анализ первопричины (RCA)

Анализ потерь, составляющих основную долю ущерба, направленный на предотвращение их повторного возникновения, обычно называют анализом первопричины (RCA), анализом первопричины отказа (RCFA) или анализом потерь. Метод RCA используют для исследования потерь вследствие различных видов отказов, в то время как анализ потерь главным образом применяют для исследования финансовых или экономических потерь от внешних воздействующих факторов или катастроф. Метод RCA направлен на выявление первичных причин отказа без рассмотрения их внешних проявлений. Очевидно, что корректирующие действия не всегда эффективны и зачастую требуют их постоянного улучшения. Метод RCA обычно применяют для оценки основной составляющей потерь, однако его можно применять для анализа более общих потерь с целью выявления возможностей постоянного улучшения.

Метод RCA имеет много направлений применения:

В области безопасности метод RCA используют для исследования несчастных случаев в области охраны труда и производственной безопасности;

В технологических системах для анализа надежности и технического обслуживания используют анализ отказов;

RCA производства применяют для контроля качества производственных процессов;

RCA процессов применяют для исследования бизнес-процессов;

RCA систем, представляющий собой комбинацию перечисленных видов RCA, применяют при анализе сложных систем в системах управления изменениями менеджмента риска и в системном анализе.

После принятия решения о применении метода RCA формируют группу экспертов для проведения анализа и разработки рекомендаций. Специализация экспертов главным образом зависит от целей анализа и особенностей отказа.

Методы проведения анализа могут существенно различаться, однако основные этапы метода RCA аналогичны и включают:

Формирование группы;

Установление области применения и целей метода RCA;

Сбор данных и объективных свидетельств об отказе или потерях;

Проведение структурированного анализа для определения первопричины;

Верификацию положительного результата от внедрения рекомендаций.

Применяют следующие структурированные методы анализа:

Метод «5 почему», состоящий в многократном повторении вопроса «почему?», для исследования пяти уровней глубины причины отказа;

Анализ видов и последствий отказов;

Анализ дерева неисправностей;

Диаграмма Исикавы или «рыбий скелет»;

Анализ Парето;

Составление карты первопричины.

Оценку причин часто начинают с исследования первоначально очевидных физических причин, далее изучают причины, связанные с человеческим фактором, и уже затем переходят к изучению скрытых причин управления или основных причин. Для того чтобы применение корректирующих действий было эффективным, вовлеченные стороны должны иметь возможность управлять выявленными в процессе анализа причинными факторами или устранить их.

Анализ дерева неисправностей (FTA)

Анализ дерева неисправностей FTA - метод идентификации и анализа факторов, которые могут способствовать возникновению исследуемого нежелательного события (называемого конечным событием).

С помощью дедукции исследуемые факторы идентифицируют, выстраивают их логическим образом и представляют на диаграмме в виде дерева, которое отображает эти факторы и их логическую связь с конечным событием.

Факторами, указанными в дереве неисправностей, могут быть события, связанные с отказами компонентов оборудования, ошибками человека или другими событиями, которые могут привести к нежелательному событию.

Метод дерева неисправностей может быть использован для определения качественной оценки при идентификации причин отказа и путей, приводящих к конечному событию, и количественной оценки при вычислении вероятности конечного события, если известны значения вероятностей начальных событий.

Данный метод может быть использован на стадии проектирования системы для идентификации причин отказа, и, следовательно, выбора варианта проекта. Метод FTA может быть использован на стадии производства для идентификации видов основных отказов и относительной значимости путей, приводящих к конечному событию. Дерево неисправностей может быть также использовано для анализа сочетания событий, приведшего к возникновению исследуемого отказа.

Пример дерева неисправностей:

Для проведения количественного анализа необходимы данные об интенсивности или вероятности отказа всех основных событий, указанных в дереве неисправностей.

Выделяют следующие этапы разработки диаграммы дерева неисправностей:

Определение конечного события, которое необходимо проанализировать. Это может быть отказ или более общие последствия отказа. После того как последствия отказа проанализированы, в дерево неисправностей может быть включена часть, относящаяся к сокращению интенсивности и последствий отказа;

Идентификация возможных причин или видов отказов, приводящих к конечному событию, начиная с конечного события;

Анализ идентифицированных видов и причин отказа для определения того, что конкретно привело к отказу;

Последовательная идентификация нежелательного функционирования системы с переходом на более низкие уровни системы, пока дальнейший анализ не станет нецелесообразным. В технической системе это может быть уровень отказа компонентов. События и факторы на самом низком уровне анализируемой системы называют базисными событиями;

Оценка вероятности базисных событий (если применимо) и последующий расчет вероятности конечного события. Для обеспечения достоверности количественной оценки следует показать, что полнота и качество входных данных для каждого элемента достаточны для получения выходных данных необходимой достоверности. В противном случае дерево неисправностей недостаточно достоверно для анализа вероятности, но может быть полезным для исследования причинно-следственных связей.

Анализ дерева событий (ЕTA)

Метод ETA является графическим методом представления взаимоисключающих последовательностей событий, следующих за появлением исходного события, в соответствии с функционированием и нефункционированием систем, разработанных для смягчения последствий опасного события. Метод ETA может быть применен для качественной и/или количественной оценки.

Пример дерева событий:


На рисунке показаны расчеты для дерева событий.

Метод ETA может быть использован для моделирования, вычисления и ранжирования (с точки зрения риска) различных сценариев инцидента после возникновения начального события.

Метод ETA может быть применен на всех стадиях жизненного цикла продукции или процесса. Данный метод может быть использован на качественном уровне при мозговом штурме, определении сценариев и последовательностей событий, которые могут возникнуть после начального события, и при определении воздействия на результат различных видов обработки риска, барьеров или средств управления, предназначенных для снижения нежелательных последствий.

При оценке приемлемости средств управления наиболее целесообразно применение метода ETA для количественного анализа.

Построение дерева событий начинают с выбора начального события. Это может быть инцидент, такой как взрыв пыли, или такое событие, как отказ системы энергоснабжения. Далее перечисляют имеющиеся функции или системы, направленные на смягчение последствий. Для каждой функции или системы чертят линии для отображения ее исправного состояния или отказа. Вероятность отказа может быть оценена и назначена для каждой такой линии. Данную условную вероятность оценивают, например, с помощью экспертных оценок или анализа дерева неисправностей. Таким образом изображают различные пути развития событий от начального события.

Следует учитывать, что вероятности на дереве событий являются условными вероятностями, например, вероятность срабатывания разбрызгивателя системы пожаротушения, полученная при испытаниях в нормальных условиях, будет отличаться от вероятности срабатывания этой системы при возгорании, вызванном взрывом.

Каждая ветвь дерева представляет собой вероятность того, что все события на этом пути произойдут. Поэтому вероятность результата вычисляют как произведение отдельных условных вероятностей и вероятности начального события при условии независимости событий.

Анализ причин и последствий

Анализ причин и последствий является сочетанием методов дерева неисправностей и дерева событий.

Данный метод начинают с рассмотрения критического события и анализа его последствий посредством применения сочетания логических элементов ДА/НЕТ. Эти элементы представляют собой условия, при которых система, разработанная для снижения последствий начального события, находится в работоспособном состоянии или в состоянии отказа. Причины условий или отказов анализируют с помощью метода дерева неисправностей.

Метод анализа причин и последствий первоначально был разработан как инструмент проверки надежности систем, критических для обеспечения безопасности, который использовали для более полного понимания отказов системы. Так же как метод анализа дерева неисправностей, данный метод используют для отображения логики отказа, приводящего к критическому событию, однако, дополнительно к функциональным возможностям дерева неисправностей, этот метод позволяет провести анализ последовательности появления отказов. Метод также позволяет учесть время запаздывания при анализе последствий, что невозможно при использовании метода дерева событий.

Метод используют для анализа различных вариантов работы системы после возникновения критического события в зависимости от поведения ее подсистем (например, аварийных систем). Если такие варианты могут быть охарактеризованы количественно, то могут быть оценены вероятности возможных последствий критического события.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.