Автоматизация вентиляции. Автоматизация систем кондиционирования воздуха Регулирование и автоматизация систем вентиляции кондиционирования

Кондиционирование воздуха : Автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения и качества) с целью обеспечения, как правило, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей (СП 60.13330.2012).

Системы кондиционирования делятся на три основные группы:

Сплит-система . Это система кондиционирования воздуха, состоящая из двух блоков: внешнего (компрессорно-конденсаторного агрегата) и внутреннего (испарительного). Принцип работы системы основан на удалении тепла из кондиционируемого помещения и переносе его на улицу. Сплит-система, как и любая система кондиционирования работает на тех же физических принципах, что и бытовой холодильник.

Центральные системы кондиционирования, совмещенные с системами вентиляции . Основной задачей таких систем является поддержание соответствующих параметров воздушной среды: температуры, относительной влажности, чистоты и подвижности воздуха во всех помещениях объекта с помощью одной или нескольких технологических установок, за счет распределения потоков с помощью системы трубопроводов.

При этом правильный состав воздуха поддерживается больше вентиляцией, чем кондиционированием. Приточная вентиляция отвечает за приток свежего воздуха, вытяжная - за вытяжку вредных примесей.

Приточная установка служит для обработки воздуха и подачи его в обслуживаемые помещения. Под обработкой воздуха понимается его очистка от пыли и других загрязнений, охлаждение, нагрев, осушение или увлажнение.

Мультизонные системы . Их применяют для объектов с большим количеством помещений, где есть необходимость в индивидуальном регулировании температуры воздуха и особые требования по комфортности помещений, например, помещения серверных или технологического оборудования, требующего большого теплоотвода. Конструктивно мультизональная система состоит из одного или нескольких наружных блоков, соединенных хладоновыми трубопроводами, электрическими кабелями питания и управления с необходимым числом внутренних блоков настенного, напольно-потолочного, кассетного и канального исполнения.

Наиболее распространенными мультизонными системами являются чиллеры, фанкойлы, центральные кондиционеры.

Система автоматизации позволяет системе кондиционирования обеспечить необходимые, порой существенно различающиеся, параметры в помещениях, при этом не допуская перерасхода электроэнергии (VRV и VRF системы).

Возможная ошибка при проектировании: Не разделять северный и южный контуры отопления и кондиционирования в больших зданиях. В результате, одна половина работников находится в комфорте, а вторая либо замерзает, либо перегревается.

Составные части системы

Управление системой центрального кондиционирования, совмещенной с системой вентиляции, можно декомпозировать на управление следующими частями:

В мультизонных системах кондиционирования управляют режимами работы наружного (центрального) блока, режимами работы каждого из внутренних блоков, распределением холодильной мощности по контурам. В этих системах каждый внутренний блок оснащается электронным терморегулирующим вентилем, который регулирует объем поступающего хладагента из общего контура в зависимости от тепловой нагрузки на этот блок. В результате, система лучше, чем обычные бытовые сплит-системы, поддерживает заданную температуру.

Какими параметрами можно управлять

Автоматизация систем вентиляции и кондиционирования воздуха позволяет им выполнять следующие функции:

  • Регулировать температуру и влажность воздуха, поступающего в систему подающих каналов;
  • Поддерживать параметры воздуха в пределах санитарных норм с помощью нескольких инструментов управления;
  • Переключать системы кондиционирования и вентиляции на энерго-сберегающие режимы работы в часы пониженных нагрузок;
  • При необходимости, переводить системы в нестандартные и аварийные режимы функционирования;
  • Отображение технологических параметров отдельных узлов системы вентиляции на локальных пультах управления;
  • Извещать оператора при отказе или выходе параметров отдельных устройств и агрегатов за уставки, а также в случае, если какие-либо узлы системы вентиляции находятся в рабочем состоянии, хотя по регламенту они должны быть выключенными.

Технические средства автоматизации систем вентиляции и систем кондиционирования воздуха включают в себя:

  • Первичные преобразователи (датчики);
  • Вторичные приборы;
  • Автоматические регуляторы и управляющие вычислительные машины;
  • Исполнительные механизмы и регулирующие органы;
  • Электротехническую аппаратуру управления электроприводами.

Параметры работы устройств и показания датчиков, наблюдение за которыми необходимо для правильной и экономичной работы системы, отображаются на местных щитах управления и на пультах системы диспетчеризации. Контроль промежуточных параметров может быть выведен на монитор автоматически, при выходе из заданного диапазона, или через вложенные меню по каждой из подсистем.

Приточные системы вентиляции оснащают приборами для измерения:

  • Температуры воздуха в обслуживаемых помещениях, на улице, и в промежуточных точках;
  • Температуры и давления воды (пара или хладагента) до и после воздухонагревателей (кондиционеров), компрессоров, циркуляционных насосов, теплообменников и в других критических точках технологического процесса;
  • Перепады давления воздуха на фильтрах вентиляционных установок;
  • Энергетические параметры агрегатов системы.

Установки кондиционирования воздуха дополнительно оснащают приборами для измерения давления и температуры холодной воды или рассола от холодильной станции, а также приборами температуры и влажности по ходу обработки воздуха.

В системе центрального кондиционирования управление температурой в помещении осуществляется с помощью изменения кратности воздухообмена (температура приточного воздуха устанавливается для системы в целом). В мультизонных системах, можно более точно устанавливать температуру для каждого из помещений, за счет изменения режима внутренних блоков с хладагентом, или теплоносителем (доводчики).

Датчики

В системе кондиционирования применяются следующие виды датчиков:

  • Датчики контроля температуры приточного воздуха и воздуха внутри помещения;
  • Датчики контроля концентрации в воздухе помещений углекислого газа СО2;
  • Датчики контроля влажности воздуха;
  • Датчики контроля состояния и работы оборудования (давления и скорости воздушного потока в воздуховодах, температурные, датчики давления или протока для устройств с циркулирующей по трубопроводам жидкостью и т.д.).

Выходные сигналы с датчиков поступают в шкаф управления для анализа полученных данных и выбора соответствующего алгоритма работы системы кондиционирования.

Терморегуляторы

Терморегуляторы являются элементом управления системы и бывают механическими и электронными. С помощью терморегулятора пользователь может устанавливать условия, которые он считает комфортными

Механические терморегуляторы . Они состоят из термической головки (чувствительного элемента) и клапана. При изменении температуры воздуха в охлаждаемом помещении чувствительный элемент реагирует на это и перемещает шток клапана регулятора. Таким изменением хода осуществляется регулирование подачи холодного воздуха.

Электронные терморегуляторы . Это автоматические устройства, пульты управления, которые обеспечивают поддержание заданной температуры в помещении. В системе охлаждения воздуха они автоматически управляют внутренним блоком (изменяя расход хладагента или частоту вращения вентилятора), целью их работы является созданием в помещении температурного режима, заданного пользователем.

Механический и электронный воздушные терморегуляторы отличаются только способом задания температуры. Механизм управления температурой у них идентичен - по сигналу, передаваемому по кабельной линии. В этом их отличие от регуляторов на радиаторных батареях.

Приводы исполнительных устройства

К исполнительным устройствам системы кондиционирования - воздушным клапанам и заслонкам, вентиляторам, насосам, компрессорам, а также калориферам, охладителям и т.д. подключаются электро- или пневмоприводы, через которые и осуществляется управление системой. Они позволяют:

  • Ступенчато или плавно (при применении преобразователей частоты) регулировать скорость вращения вентиляторов;
  • Управлять состоянием воздушных клапанов и заслонок;
  • Регулируется производительность канальных нагревателей и охладителей;
  • Регулировать производительность циркуляционных насосов;
  • Осуществляется управление увлажнителями и осушителями воздуха и т.д.

Анализ сигналов с датчиков, выбор алгоритма работы, передача команды на привод и контроль выполнения команды происходит в контроллерах и серверах системы автоматизации.

Управление электродвигателями компрессоров, насосов и вентиляторов, в особенности мощностью более 1 кВт, наиболее экономично выполнять с помощь преобразователей частоты. На рисунке показан возможный экономический эффект от применения ПЧ в системах кондиционирования.

Щиты автоматизации системы кондиционирования

Щиты автоматизации являются средством, предназначенным для управления системой кондиционирования и вентиляции. Основным элементом щита управления является микропроцессорный контроллер. Контроллеры систем автоматики, выпускаются свободно программируемыми, что позволяет их использовать в системах разного масштаба и назначения.

При подключении датчиков к щиту автоматизации системы кондиционирования учитывают тип сигнала, передаваемого преобразователем - аналоговый, дискретный или пороговый. Модули расширения, управляющие приводами устройств, выбирают с учетом вида управляющего сигнала и протокола управления.

После программирования контроллер выводит систему на заданные параметры и временной цикл работы, далее система может функционировать, в полностью автоматическом режиме осуществляется:

  • Анализ полученных от датчиков показаний, обработка данных и внесение в работу оборудования корректировок для поддержания заданных параметров среды внутри в помещении;
  • Вывод информации о системе опратору;
  • Слежение за работой и состоянием оборудования кондиционирования с выводом информации на индикационные табло;
  • Защиты оборудования от короткого замыкания, перегрева, избегания неправильных режимов работы, и т.п.;
  • Контроль своевременной замены фильтров и прохождения техобслуживания.

Проектирование системы автоматизации кондиционирования

Проект автоматизации систем кондиционирования выполняется с учетом технологических требований специалистов-проектировщиков ОВ:

  • Автоматизации подлежат холодильные машины, циркуляционные насосы, двух- и трех-ходовые клапаны, другое оборудование;
  • Учитываются летний, зимний, переходный, аварийный режимы работы систем;
  • Предусматривается синхронизация работы холодильных машин, циркуляционных насосов клапанов;
  • Предусматривают переключение основного и резервного насосов, для равномерного расходования ресурса;
  • Предусматривают передачу информации в систему диспетчеризации здания и реакции при получении тревожного сигнала от системы пожарной сигнализации .

Типичный состав проекта автоматизации системы кондиционирования содержит листы:

Режимы работы системы. Работа в системе автоматизации и диспетчеризации здания

Щиты управления могут работать в трех основных режимах управления:

Ручной режим . Используя пульт, подключенный к щиту автоматизации, он может быть размещен непосредственно на щите, или это могут быть кнопки включения/выключения режимов. Оператор вручную, непосредственно на щите, или удаленно выбирает режим работы системы в зависимости от параметров среды помещения.

Автоматический автономный режим . В этом случае включение, выключение, выбор режима работы системы происходит автономно, без учета данных других климатических систем, с уведомлением об этом диспетчерской системы.

Автоматический режим с учетом алгоритмов системы управления зданием. При таком режиме работа отопления синхронизирована с другими системами жизнеобеспечения здания. Подробнее об

Ни одна система формирования и поддержания микроклимата на оптимальном уровне не сможет выполнять свои основные задачи точно и корректно, если не будет оснащена системой автоматики.

Состав оборудования систем автоматики

Основными считывающими, контролирующими и управляющими элементами систем автоматики являются:

  1. Датчики: температуры воздуха, влажности, воды, перепада давления на воздушном фильтре — все они предназначены для контроля и реального фиксирования параметров работы установки. В соответствии с показаниями датчиков моделируется тот или иной режим работы установок.
  2. Приводы исполнительных механизмов: воздушных клапанов, противопожарных клапанов или дымоудаления, регулирующих водяных клапанов и т. д. В зависимости от команды, выдаваемой управляющими элементами, приводы могу открывать или закрывать клапана, либо пропорционально изменять сечение на проход воздуха или воды.
  3. Преобразователи частоты вентиляторов, насосов или роторных рекуператоров, а также регуляторы скорости — переназначены для изменения частоты вращения управляемого оборудования в зависимости от сигнала, поступающего с щита управления.
  4. Термостаты, реле протока и прочие компоненты автоматизации, работа которых дублирует основные сигналы систем управления.
  5. Контроллеры, регуляторы напряжения, температуры в составе щитов управления — «мозг» систем автоматизации. Их количество, вид и функциональность целиком и полностью зависит от логики управления, от типа управляемых систем и количества синхронно работающих.

Разновидности систем автоматизации

Неоспоримым фактом является прямая зависимость типа системы автоматики от применяемого оборудования систем вентиляции и требования к функциональности управления системами и поддержанию параметров воздуха.

Систем автоматизации можно выделить несколько типов:

  • Автоматика приточных систем с водяным или электрическим нагревом.
  • Комплексная автоматика приточных систем с нагревом воздуха и им соответствующих вытяжных систем.
  • Автоматика приточно-вытяжных установок с рекуперацией воздуха.
  • Комплексная автоматика и управление всеми климатическими системами: системой отопления, вентиляции, кондиционирования и т. .д.

Автоматика приточных систем с водяным или электрическим нагревом

Такой тип автоматизации является одним из простейших, позволяющий контролировать минимальное количество параметров и работу оборудования отдельных приточных систем. При данном типе автоматизации согласованного управления совместно с вытяжными системами не происходит.

Основными функциями таких систем является:

  • Поддержание температуры приточного воздуха;
  • Поддержание температуры обратного теплоносителя;
  • Защита калорифера от обмерзания;
  • Контроль засорения воздушного фильтра;
  • Регулирование скорости вращения вентилятора.

Щиты автоматики для таких систем, как правило, поставляются комплектно с установками, так как не требуют доскональной разработки программного продукта управления и логикой системы. С экономической точки зрения штатные комплектные шкафы автоматики можно применять когда приточных систем вентиляции в здании небольшое количество и они значительно удалены друг от друга.

Комплексная автоматика приточных и вытяжных систем

Данный тип автоматизации является одним из самых распространенных, так как позволяется выполнять следующий набор функций:

  • Поддержание температуры приточного воздуха в зависимости от температуры уставки контроллера, а также с корректировками в зависимости от температуры вытяжного воздуха или температуры базового помещения. То есть в случае, когда происходит рост температуры в помещении (или вытяжного воздуха общеобменных систем) автоматика выдает сигнал на исполнительные механизмы, что температуру приточного воздуха можно понизить до заданного диапазона. Градиент понижения температуры приточного воздуха не должен быть ниже температуры точки росы.
  • Управление качеством воздуха в зависимости от наполненности помещения посетителями (например, в торговых центрах и ли кинозалах). С увеличением содержания СО2 в вытяжном воздухе контроллер системы автоматики выдает сигнал на увеличение расходов воздуха для разбавления вредностей. При достижении нормируемых показателей системы могут выходить на минимальный расход, тем самым обеспечивается значительная экономия энергоресурсов.
  • Управление работой вентиляторов приточных систем согласованно с работой вытяжных из общего объема помещений. Эта функция как нельзя просто позволяет осуществлять главные правила сбалансированных систем вентиляции. То есть когда требуется снижение расхода приточного воздуха, система автоматики пропорционально снижает расход вытяжного воздуха. При этом системы должны быть общеобменными, управлять местными вытяжными системами по такому принципу нельзя с технологической точки зрения.

Щиты управления комплексных систем автоматизации уже не являются готовым продуктом, а должны разрабатываться специализированными организациями совместно с проектными организациями. Контроллеры в таких системах применяются свободно программируемого исполнения, в которые в процессе программирования вшивается программа с определенной логикой работы систем вентиляции. Щитов управления может быть равным количеству сисетем, а могут и объединяться по зонам управления, если, например, несколько приточных систем находятся в одной венткамере. Это позволит значительно экономить на стоимости контроллеров, наращивая их определенными блоками расширения. Щиты управления при этом должны быть соединены совей внутренней сетью.

Автоматика приточно-вытяжных установок с рекуперацией воздуха

Системы общеобменной вентиляции с функцией рекуперации являются разновидностью систем вентиляции со сбалансированной работой приточных и вытяжных установок, с добавлением в системы автоматизации дополнительных управляющих, сигнализирующих и контролирующих элементов.

Схема рекуператора

Основными функциями таких систем автоматики является:

  • Поддержание температуры приточного воздуха в зависимости от уставки либо с корректировкой по базовому датчику воздуха в помещении.
  • Контроль температуры вытяжного воздуха до и после рекуператора с целью предотвратить его замораживание, или в случае применения роторного рекуператора увеличить или уменьшить его частоту вращения.
  • Контроль обмерзания каналов пластинчатого рекуператора в зависимости от датчика дифференциального давления. В случае, когда воздушные каналы зарастают инеем или «ледяной» шубой, должен открыться байпас рекуператора или включиться первая ступень нагрева калориферов.
  • Поддержание температуры обратного теплоносителя.
  • Защита калорифера от обмерзания.
  • Контроль засорения воздушного фильтра.
  • Управление качеством воздуха в зависимости от показаний датчика СО2.
  • Управление работой вентиляторов приточных систем согласованно с работой вытяжных из общего объема помещений.
  • Управление частотой вращения роторного рекуператора в зависимости от соотношения температур приточного и вытяжного воздуха для достижения максимальной эффективности и снижения затрат на нагрев приточного воздуха.

Комплексная автоматика и управление всеми климатическими системами

Этот тип автоматизации инженерными системами является одним из самых сложных с точки зрения реализации, но в то же время позволяет максимально эффективно использовать все внешние и внутренние энергоресурсы здания.

Суть данного способа заключается в контроле работ инженерных систем, контроля общих параметров воздуха с целью не допустить одновременной работы «конкурирующих» установок.

Часто возникает ситуация когда системы отопления, ИТП и кондиционирования здания могут работать одновременно каждые в своем режиме, согласно программе контроллера каждой системы в отдельности. В целом такая работа является верной, поддерживаются все параметры, но общей логики включения/отключения систем не предусмотрено. Такие ситуации могут возникнуть в переходный период времени года, когда температура помещения с остеклением, выходящим южный фасад, начинает расти, включается система кондиционирования здания, при этом подача тепла в здание не прекращается, так как показания уличной температуры воздуха не позволяют прекратить обогревать помещения. Возникает перерасход тепловой и электрической энергии до момента, пока эти системы вручную не будут отрегулированы или отключены.

Комплексные системы автоматизации обязательно должны проектироваться одновременно со всеми инженерными системами здания и учитывать нюансы систем, ориентацию здания по сторонам света, работу систем в переходный период, зональное управление с учетом температур помещений и т. д.

P/S. от директора компании ООО «Регион»:

Сегодня системы вентиляции и кондиционирования присутствуют во всех вновь строящихся здания. Их закладывают на стадии разработки проектов, потому что они обеспечивают: вентиляция – отток загрязненного воздуха и подачу свежего, кондиционирование – обеспечивает комфортные условия нахождения людей в помещениях, а именно приводит влажность и температуру к нормальным показателям. Так как обе системы достаточно сложные, то для них разрабатывается автоматизация, которая следит за параметрами их работы. В этой статье разберемся, что собой представляет автоматизация систем кондиционирования и вентиляции.

Зачем нужна

Во-первых, надо отметить, что нормальными условиями внутри помещения считаются:

  • температура +20-24С;
  • влажность – 40-65%;
  • скорость перемещения воздуха – 1 м/с.

Чтобы контролировать эти параметры, необходимо тщательно просчитать и собрать автоматизацию систем отопления, вентиляции и кондиционирования воздуха. При этом проектом определяются сразу места их установки и функциональное назначение. Очень часто в зданиях с большими габаритами и множеством помещений применяется система кондиционирования, которая включает в себя несколько подсистем. И, как показывает практика, все подсистемы работают в индивидуальном режиме. Чтобы за всеми ими проследить, и производится установка автоматики системы кондиционирования.

Необходимо понимать, что система кондиционирования и вентиляции достаточно затратна в плане потребления электроэнергии. Поэтому очень важно правильно настроить автоматику, обеспечивающую контроль над кондиционерами и вентиляторами. И если с последними проблем не возникает, потому что их настраивают на определенную скорость вращения, которая практически все время будет постоянной, то у кондиционеров настройка более сложная.

Ведь их работа в основном зависит от влажности и температуры воздуха внутри помещений. А эти две величины непостоянные. А значит, автоматику придется настраивать так, чтобы она в первую очередь контролировала эти два параметра, а затем передавала сигнал на кондиционеры. И они будут по мощности работать то с увеличением, то со снижением. И здесь настройку можно сделать так, чтобы и внутри помещений условия были нормальными, и потребляемая мощность кондиционеров не была максимальной.

За это отвечает диспетчеризация систем вентиляции и кондиционирования. А именно несколько приборов, которые обрабатывают данные и передают их на оборудование. При этом выдерживается строго последовательность алгоритмов, которые программируются индивидуально для каждого вида оборудования.

Автоматизация вентиляции и кондиционирования

Существуют три вида систем автоматизации вентиляции и кондиционирования: частичная, комплексная и полная. Чаще всего используют две первые. Сама автоматика состоит из нескольких блоков, контролирующих разные процессы:

  • датчики или, как их называют специалисты, первичные преобразователи;
  • вторичные;
  • регуляторы автоматические;
  • исполнительные механизмы, в некоторых схемах применяются регулирующие приборы;
  • электротехническая аппаратура, с помощью которой регулируются электроприводы вентиляторов и кондиционеров.

В основном все эти механизмы и приборы, входящие в состав промышленной автоматизации, являются стандартными. То есть, они производятся по ГОСТам серийно. Но есть некоторые из них, которые выпускаются мелкими партиями и предназначаются именно для систем кондиционирования воздуха, для систем отопления и вентиляции. К примеру, датчики для контроля над влажностью воздуха или температурные регуляторы марки Т-8 или Т-48.

Обычно все приборы, которые показывают параметры условия внутри помещений, устанавливают в специальный отдельный щит. При этом необходимо понимать, что чем больше подсистем в здании, тем больше щитов приходится устанавливать. Это усложняет проведение контроля над параметрами, которые необходимо периодически снимать. Чтобы упростить данный процесс, сегодня в разветвленных системах кондиционирования и вентиляции организуется пульт управления, за которым сидит оператор. Один человек полностью контролирует весь процесс. При этом с помощью интернета решается задача сигнализации и возможности контролировать все параметры на расстоянии. То есть, на телефон может прийти SMS с данными обо всех происходящих процессах.

Что касается датчиков, то очень важно правильно расположить их по помещениям с определенной частотой размещения. Именно эти небольшие приборы начинают реагировать на изменения параметров воздуха. Именно они дают толчок к началу изменения работы оборудования. Но в функции систем автоматизации вентиляции и кондиционирования воздуха входит не только отслеживание условия внутри помещения здания. В каждом воздуховоде устанавливаются датчики, которые отслеживают, а не попало ли что-нибудь внутрь. Ведь даже небольшой посторонний предмет может попасть в оборудование и вывести его из строя. Это очень важно и для заслонок, которыми перекрываются отвод и подача воздуха.

Любая автоматизация включает в себя и систему оповещения и сигнализации. Здесь стандартно: звуковая и световая.

Диспетчеризация вентиляции и кондиционирования

Диспетчеризация – это сбор сигналов с датчиков и на их основе управление всеми процессами. Основными функциями диспетчеризации вентиляции и кондиционирования являются:

  1. Индексация поступающих сигналов от датчиков, их обработка и настройка.
  2. Подача сигнала диспетчеру, если в системе произошли отклонения от заданных параметров или возникла нестандартная или аварийная ситуация.
  3. При необходимости производится перевод работы всей схемы в аварийный режим.
  4. Если возник пожар в здании, включается система отвода дыма.
  5. Строго отслеживаются параметры воздуха, которые поддерживаются на всем протяжении работы оборудования.
  6. При необходимости регулировка заданных параметров.
  7. В часы пониженных нагрузок системы вентиляции и кондиционирования переводятся в режим экономии электроэнергии и других видов энергоносителей (пар, горячая вода).
  8. Обрабатываются данные в момент включения или отключения.

В зависимости от того, какие требования заказчик предъявляется к кондиционированию, автоматизация может производиться с использованием свободно-контролируемых приборов (контроллеров) или с добавлением так называемых программно-аппаратных комплексов. Второй вариант дороже, но он дает возможность объединить в одном пункте контроля все рычаги управления.

При этом необходимо понимать, что ситуации в больших зданиях с несколькими подсистемами могут быть разными. Поэтому кондиционирование и вентиляция разделяется на модули в плане обеспечения диспетчеризации. И каждый модуль при возникновении внештатной ситуации может работ автономно.

Возможности диспетчеризации:

  • можно организовать управление большим количеством модулей, которые по мере необходимости подключаются параллельно;
  • настройка сбора данных, которые необходимы пользователю;
  • возможность передача данных на другие компьютеры;
  • контролируется телефонная и компьютерная сети;
  • автоматизация процессов передачи данных от нижних уровней к пульту управления;
  • передача данных на телефон.

Контроллеры для автоматизации и диспетчеризации

В принципе, необходимо отметить, что технологическая схема кондиционирования и вентиляции здания, в которую входит контроллер, является стандартной, а точнее базовой. Ее можно изменять под нужные требования с дополнением. К примеру, можно изменить контроль температуры внутри помещений не через канальный датчик, установленный в воздуховодах системы отводной вентиляции, а через каскадный, который устанавливается непосредственно в самом помещении. Или можно внести в конфигурацию подогрев жалюзи в кондиционировании, которые открывают или закрывают проемы.

То есть, диспетчеризацию систем вентиляции и кондиционирования с учетом установленных контролеров можно развивать по разным схемам. И при этом можно подобрать такую технологическую цепочку, которая будет выгодна именно для определенного вида зданий, где установлены разные требования к отдельным помещениям.

Автоматизация в быту

Сегодня все чаще звучит термин – «умный дом». По сути, это автоматизация контроля над всеми сетями, которые обеспечивают нормальную жизнедеятельность человека в собственном доме. Конечно, это обширная сеть, в задачи которой входит:

  • безопасность внешняя и внутренняя (последняя – это слежение за сотрудниками, выполняющих бытовую работу в доме);
  • контроль и слежение за аварийными ситуациями: утечка газа, холодной или горячей воды;
  • создания благоприятного климата внутри помещений, а это касается кондиционирования, отопления и вентиляции.

При этом диспетчеризация строго контролирует всю работу инженерных сетей. И если есть необходимость изменить какой-либо параметр, нет нужды бегать по этажам к щитам автоматики, чтобы провести настройку. «Умный дом» снабжается отдельно установленным мини-пультом или мини-блоком, через который и проводится регулирование и настройка требуемых режимов.

Самое главное, что вся автоматизация завязана на диспетчеризации с установленных в нее контроллеров. То есть, технологическая схема здесь точно такая же, как и на любом объекте, где присутствуют модульные схемы кондиционирования и вентиляции.

Системы с автоматизированных управлением помогают провести оптимизацию работы вентиляционных систем. Особенно это важно в больших зданиях или на крупных предприятиях, где вентиляционная конструкция занимает довольно обширную территорию, и уследить за работой всех приборов бывает сложно. Оборудование применяется как на объектах, связанных с производством и промышленностью, так и в общественных зданиях — торговых центрах, местах отдыха, спортивных комплексах. Правильная настройка автоматики вентиляции гарантирует бесперебойную работу и удобное управление всей системой.

Назначение автоматических систем

Современные системы, предназначенные для осуществления вентилирования, являются довольно сложными, поскольку включают в себя множество разнообразных приборов со своими функциями и особенностями. Их качественная работа возможна только при осуществлении слаженных действий, которые нужно как-то контролировать. Разобраться в этом помогает схема автоматики вентиляции, которая предназначена для облегчения работы со всеми приборами, включенными в систему. Специальные датчики и механизмы помогают полноценно осуществлять контроль и отдавать различные команды без необходимости пересекать всю территорию предприятия, чтобы проделать какую-то операцию с прибором. Грамотно проведенная система способствует решению следующих вопросов:

  • Отслеживает показатели и контролирует состояние комплекса. На монитор выводятся все необходимые данные, которые видит оператор, и может по ним сделать вывод о текущем положении дел. Кроме того, если произойдут какие-то неполадки, система сразу же подаст тревожный сигнал, оповещающий о том, что нужно решить проблему. А следя за показателями, можно увидеть возможные предвестники проблемы, на основе изменившихся данных, и предотвратить серьезные поломки, сразу вмешавшись в работу конструкции.
  • Анализ данных каждого устройства может проводиться автоматически. Система сама собирает показатели, считывая их на протяжении определенного времени, а затем анализируя и сравнивая с нормой. В соответствии с полученными показаниями, автоматическое управление подает ту или иную команду или сигнал.
  • Переключение режимов. Автоматика может подключать либо выключать доп. установки, приборы и функции, это зависит от времени суток, степени нагрузки или погодных условий, обеспечивая создание оптимального режима работы.
  • В случае замыкания либо возникновения другой аварийной ситуации, система сама отключит оборудование от электросети, предотвращая более серьезные повреждения или даже возгорание приборов.

Наличие автоматического управления позволяет значительно оптимизировать работу всей техники, в итоге для обслуживания потребуются только 1-2 оператора, а не целый отдел персонала. Использование современных технологий позволяет снизить количество требуемых работников и, соответственно, сократить расходы, поэтому это подходящий вариант для коммерческих организаций.

Основные узлы системы

Проектирование подобных систем является сложным делом, требующим определенных знаний и навыков, поэтому шкаф автоматики вентиляции должен настраивать специалист, который в этом разбирается. Чтобы работать с приборами, нужно знать назначение каждого узла, особенности его работы и взаимодействия с другими элементами. Нужно иметь опыт работы с различными аппаратами и техникой от разных производителей. Именно поэтому выполнять всю работу должны профессионалы, которые имеют необходимые знания и опыт.

Современные щиты автоматики для систем вентиляции включают в себя довольно много различного оборудования. Все приборы, которые каким-либо образом задействованы в создании системы управления, можно разделить на три группы:

  • Сенсорные датчики. Эти устройства собирают всевозможную информацию о состоянии системы, считывая уровень влажности, температуры, давления и прочие важные показатели. Они подают электрический сигнал, который поступает дальше в систему.
  • Регуляторы и контроллеры. Эти приспособления отвечают за дальнейший анализ полученных данных. Они сравнивают информацию между собой, а также с установленными нормами, проводят логический анализ и на его основе подают какие-либо команды в систему, включая или отключая определенные функции.
  • Исполнительная механика. Эти детали обеспечивают выполнение полученных команд, заставляя приборы исполнять определенные функции и действия.

Возможности и преимущества системы

Что может делать автоматическая система контроля? Минимальный набор доступных функций включает следующие пункты:

  • Контроль за вращением вентиляторов и их частотой, а также регулировка этого процесса.
  • Отслеживание температуры воды и предотвращение замерзания.
  • Контроль состояния воздуха и управление системой на основании изучения параметров микроклимата.
  • Индикация состояния фильтров и сигнализирование о необходимости их очищения.
  • Перевод отдельных частей системы в неактивный режим.
  • Защита техники от коротких замыканий и других неполадок.

Развитие техники позволяет создавать сложные схемы и системы, поэтому многие современные конструкции уже планируются с учетом таких факторов и никак не могут обойтись без автоматического управления. Если на предприятии или в организации используется самое современное вентиляционное оборудование, то, скорее всего, оно предполагает и наличие автоматического управления, и схемы уже заранее рассчитаны на установку таких приборов.

Впрочем, использование техники действительно имеет значительные преимущества. Машина способна быстро анализировать огромное число информационных потоков и проводить сразу множество операций, на что человеческий мозг просто не рассчитан. Поэтому такая система работает гораздо эффективней, чем даже целый отдел из человеческого персонала. Кроме того, технике не нужны выходные, перерыв на сон и на обед, она в любое время остается на своем посту и следит за системой вентиляции. Использование автоматики позволяет исключить возможные ошибки из-за влияния человеческого фактора.

Или отправьте быструю заявку

Система автоматизации для вентиляции играет роль управляющего и контролирующего центра, при помощи которого вентиляционное оборудование запускается, останавливается, выводится на необходимый пользователю режим работы по температуре и/или влажности и другим возможным критериям. Помимо управляющих функций важное значение имеют функции контрольные, позволяющие предотвратить обмерзание водяных теплообменников, защитить циркуляционный насос гидрообвязки, обеспечивающие своевременное информирование о загрязении фильтров, о перегреве электронагревателя или о нештатно остановившемся вентиляторе. Таким образом при помощи системы автоматизации достигается эффект обеспечения в обслуживаемых впомещениях необходимой циркуляции свежего воздуха желаемой температуры и влажности и защиты климатообразующего оборудования от аварийных ситуаций — что позволяет ему долго работать и выполнять свои функции. Конечно, работоспобность системы в течение продолжительного периода времени возможна при грамотном обслуживании опытными специалистами службы эксплуатации.

Основные функции автоматики для вентиляции

  • поддержание требуемой температуры приточного воздуха и температуры в помещении;
  • дистанционное включение/выключение системы вентиляции;
  • управление работой и производительностью вентиляторов;
  • контроль состояния теплообменных агрегатов, таких как термостаты перегрева электронагревателей, защита водяного калорифера от замораживания по температуре воздуха и обратной воды, и т. д;
  • контроль уровня загрязнения фильтров;
  • автоматический переход в режим зима/лето;
  • контроль и управление роторными и пластинчатыми рекуператорами, тепловыми насосами, увлажнителями и осушителями;
  • управление циркуляционным насосом водяного калорифера с учетом показаний датчиков наружной температуры и давления теплоносителя с защитой от сухого хода;
  • управление приводом заслонки наружного воздуха;
  • контроль работы приточного вентилятора;
  • отключение вентиляционной установки по сигналу пожарной сигнализации

Производители автоматики для вентиляции стремятся сделать свою продукцию не только более надёжной и функциональной, но и близкой к конечному пользователю. Ещё недавно наличие пульта управления было необязательной опцией, а сейчас это стало общепринятой нормой. Более того, ряд компаний предлагает своим потребителям диспетчеризацию (подключение к «умному дому»), управление вентиляцией через интернет, а также возможность управления вентиляцией с помощью мобильных устройств через специальные приложения по беспроводным стандартам (Wi-Fi, Bluetooth). Таким образом, автоматика вентиляции перестает быть сложным промышленным устройством и становится современной, легкой в обращении бытовой техникой.

Оборудование для системы автоматического управления вентиляцией

Выпускается ряд типов приборов, устройств и датчиков для создания автоматики управления вентиляцией. Для управления отдельным процессом, предназначены механизмы контроля. Но устройства не только контролируют весь процесс, но и управляют эксплуатацией одного участка схемы.

Поэтому, в состав автоматики входят десятки различных реле, датчиков и других приборов.

Важно. Как правило, для обслуживания вентиляции используются электронные приборы. Но для контроля над температурой нагрева или охлаждения воздуха устанавливают механический узел обвязки.

В состав автоматического устройства управления системой вентиляции, обязательно входят следующие приборы:

  • регулятор температуры воздушных масс;
  • прибор регулировки величины оборотов вентилятора;
  • в узле обвязки устанавливается датчик нагрева воды и воздуха;
  • привод управления запорным клапаном.

Но данные приборы производят локальное регулирование работы системы или делают замеры. Контроль и определение общего уровня безопасности, всего цикла работы вентиляционной системы, осуществляется с помощью шкафа центрального управления устройства вентиляции.

Сложность системы можно понять, ознакомившись с полным списком оборудования данного устройства. Количество определенных датчиков или реле может быть значительным, а некоторые приборы представлены в единственном числе. Рассмотрим устройство некоторых щитов автоматического управления.

Устройство вентиляционной щитовой для системы с установкой электрического калорифера

Для обустройства данной щитовой используются следующие составляющие автоматики:

  • регулятор установки температурного режима (одним из лучших вариантов будет использование шведских деталей компании Regin);
  • группа управления вентиляторами приточной, вытяжной системы. Лучшим вариантом является установка приборов, осуществляющих ступенчатую или плавную регулировку;
  • индикаторы использования вентиляционной установки;
  • группа приборов для поддержания номинальной температуры в помещении;
  • выключение подачи электричества на калорифер, при отключении приточных вентиляторов;
  • группа приборов для отключения, индикации загрязнения воздушных фильтров;
  • устройство защитного отключения при перегреве системы;
  • система автоматического выключения при пиковых токах короткого замыкания, значительных перегрузках.

Щитовая для обслуживания автоматики с водяными калориферами

Автоматика приточной вентиляции призвана обеспечивать безопасность при эксплуатации приборов подогрева воздуха, вентиляции помещения. Основной прибор щита - это контроллер AQUA шведского производства. Остальные составляющие устанавливают для решения следующих вопросов:

  • производят управление вентиляторными устройствами;
  • поддерживают заданную температуру воздушных масс;
  • переключают режимы эксплуатации;
  • управляют приводами клапанов с возвратными пружинами, обеспечивающими закрытие воздухозаборными клапанами, в случае выключения вентиляторных установок, коротком замыкании фазы на корпус;
  • управляют работой насоса циркуляции воды в калорифере, устанавливаемом в узле обвязки;
  • осуществляют контролирование за температурой воды в обратной магистрали при разных режимах работы, при выключении калорифера;
  • выключают подачу энергии при загрязнении воздушного фильтра.

Автоматизация вентиляции позволяет решать сложные задачи в любых условиях и при различных режимах эксплуатации оборудования. Каждая схема вентилирования воздуха монтируется с автоматической системой управления процессом.

В заключение, отметим основные моменты, на которые следует обращать пристальное внимание при покупке приборов оснащения щита автоматического управления устройством вентилирования зданий.

Основной критерий выбора - это надежность комплектующих. Обязательно попросите у менеджера сертификат качества данных приборов, а также гарантии компании изготовителя щитов вентиляции и каждой отдельной детали. Обращайте внимание на наличие производственной базы для выполнения ремонта, гарантийного сервисного обслуживания вентиляционного оборудования, схемы автоматического управления процессом.

Каждый прибор должен иметь паспорт, инструкцию, схему подключения. Сегодня на рынке вентиляционного оборудования, различные производители предлагают разнообразный ассортимент комплектующих и схем устройств щитов вентиляции. Сделав правильный выбор, качественно выполнив монтаж автоматических шкафов, вы получаете надежное, безопасное оборудование, на достаточно долгое время.

Диспетчеризация систем вентиляции и кондиционирования. Автоматизация вентиляции.

Специалисты Группы компаний "ЕвроХолод" имеют богатый опыт по проектированию, установке и запуску систем диспетчеризации вентиляции и кондиционирования в зданиях различного назначения.

Система диспетчеризации и мониторинга систем вентиляции и кондиционирования осуществляет контроль и управление на основе сигналов, поступающих от датчиков влажности, температуры, содержания углекислого газа и пыли в воздухе.

Зачастую подобные устройства монтируются в помещениях и воздуховодах. В совокупности представленные датчики позволяют отслеживать ресурс, а также аварийные режимы работы оборудования.

Основные функции диспетчеризации систем вентиляции и кондиционирования воздуха:

  • Индикация параметров отдельных узлов подсистемы с возможностью их настройки
  • Извещение диспетчера в случае отказа отдельных устройств и агрегатов, а также при возникновении внештатных ситуаций
  • Оперативный перевод систем в аварийные режимы работы в предопределенных ситуациях, например, выключение агрегатов общеобменной вытяжной и приточной вентиляции
  • Запуск аварийной вентиляции при пожаре для удаления дыма (осуществляется в случае срабатывания пожарной сигнализации)
  • Поддержание параметров воздуха в соответствии санитарным нормам
  • Регулирование температуры и влажности воздуха, проникающего в систему воздуховодов приточной вентиляции
  • Перевод систем как приточной, так и вытяжной вентиляции в режим энергосбережения в часы пониженных нагрузок
  • Отработка заданных алгоритмов группового включения/выключения вентиляционно-кондиционирующих установок.

Монтаж



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.