Как находится определитель матрицы 4 порядка. Вычисление определителя

Лекция 6

Матрицы

6.1. Основные понятия

Определение 1. Матрицей называется прямоугольная таблица чисел.

Для обозначения матрицы используются круглые скобки или сдвоенные вертикальные линии:

Числа, составляющие матрицу, называются ее элементами , элементматрицырасположен в ее-й строке и-м столбце.

Числа и(число строк и столбцов матрицы) называются ее порядками.

Говорят также, что - матрица размером
.

Если
, матрицаназываетсяквадратной .

Для краткой записи используется также обозначение
(или
) и далее указывается, в каких пределах изменяютсяи, например,
,
,
. (Запись читается так: матрицас элементами,изменяется отдо,- отдо.)

Среди квадратных матриц отметим диагональные матрицы , у которых все элементы с неравными индексами (
) равны нулю:

.

Будем говорить, что элементы
расположены на главной диагонали.

Диагональная матрица вида

называется единичной матрицей.

В дальнейшем будут встречаться матрицы вида

и
,

которые называются треугольными матрицами, а также матрицы, состоящие из одного столбца:

и одной строки:

(матрица-столбец и матрица-строка ).

Матрица, все элементы которой равны нулю, называется нулевой.

6.2. Определители порядка n

Пусть дана квадратная матрица порядка :

. (6.1)

Составим всевозможные произведения элементов матрицы, расположенных в разных строках и разных столбцах, т.е. произведения вида

. (6.2)

Число произведений вида (6.2) равно (примем этот факт без доказательства).

Будем считать все эти произведения членами определителя порядка , соответствующего матрице (6.1).

Вторые индексы множителей в (6.2) составляют перестановку первых натуральных чисел
.

Говорят, что числа ив перестановке составляютинверсию , если
, а в перестановкерасположено раньше.

Пример 1. В перестановке шести чисел,
, числаи,и,и,и,исоставляют инверсии.

Перестановка называется четной , если число инверсий в ней четно, инечетной , если число инверсий в ней нечетно.

Пример 2. Перестановка
- нечетная, а перестановка
- четная (инверсий).

Определение 2. Определителем порядка , соответствующим матрице (6.1), называется алгебраическая сумма членов , составленная следующим образом : членами определителя служат всевозможные произведения элементов матрицы , взятых по одному из каждой строки и каждого столбца , причем слагаемое берется со знаком "+", если множество вторых индексов является четной перестановкой чисел
, и со знаком "–", если нечетной.

Обозначать определитель матрицы (6.1) принято так:

.

Замечание. Определение 2 для
и
приводит к уже знакомым нам определителям 2-го и 3-го порядка:

,

Транспонированием вокруг главной диагонали матрицыназывается переход к матрице
, для которой строки матрицыявляются столбцами, а столбцы - строками:

.

Будем говорить, что определитель
получен транспонированием определителя.

Свойства определителя порядка п:

1.
(определитель не меняется при транспонировании вокруг главной диагонали).

2. Если одна из строк определителя состоит из нулей, определитель равен нулю.

3. От перестановки двух строк определитель меняет лишь знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на число , определитель умножится на.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы -й строки определителя представлены в виде суммы
, то определитель равен сумме двух определителей, у которых все строки, кроме-й, такие же, как в исходном определителе, а-я строка в одном определителе состоит из, а в другом - из.

Определение 3. -я строка определителя называется линейной комбинацией остальных его строк , если такие , что, умножая -ю строку на, а затем складывая все строки , кроме , получаем -ю строку.

8. Если одна из строк определителя является линейной комбинацией остальных его строк, определитель равен нулю.

9. Определитель не изменится, если к элементам одной его строки прибавить соответствующие элементы другой, умноженные на одно и то же число.

Замечание. Мы сформулировали свойства определителя для строк. В силу свойства 1 (
) они справедливы и для столбцов.

Все приведенные свойства были доказаны на практических занятиях для
; для произвольногопримем их без доказательства.

Если в определителе порядкавыбрать элементи вычеркнуть столбец и строку, на пересечении которых расположен, оставшиеся строки и столбцы образуют определитель порядка
, который называетсяминором определителя, соответствующим элементу.

Пример 3. В определителе

минором элемента
является определитель
.

Определение 4. Алгебраическим дополнением элементаопределителяназывается его минор , умноженный на
, где - номер строки , - номер столбца , в которых расположен выбранный элемент .

Пример 4. В определителе

алгебраическое дополнение
.

Теорема 1 (о разложении по строке). Определитель равен сумме произведений всех элементов любой строки на их алгебраические дополнения.

Теорема 1 позволяет свести вычисление определителя порядка к вычислениюопределителей порядка
.

Пример 5 . Вычислить определитель четвертого порядка:

.

Воспользуемся теоремой 1 и разложим определитель по 4-й строке:

Замечание. Можно вначале упростить определитель, воспользовавшись свойством 9, а затем использовать теорему 1. Тогда вычисление определителя порядкасведется к вычислениювсего одного определителя порядка
.

Пример 6. Вычислить

.

Прибавим первый столбец ко второму и первый столбец, умноженный на (
), к третьему, в результате получим

.

Теперь применим теорему 1 и разложим по последней строке:

,

вычисление определителя 4-го порядка свелось к вычислению всего одного определителя 3-го порядка.

,

вычисление определителя третьего порядка свелось к вычислению всего одного определителя второго порядка.

Пример 7. Вычислить определитель порядка:

.

Первую строку прибавим ко второй, третьей и т.д. -й строке. Придем к определителю

.

Получен определитель треугольного вида.

Применим
раз теорему 1 (разложим по первому столбцу) и получим

.

Замечание. Определитель треугольного вида равен произведению элементов главной диагонали.

6.3. Основные операции над матрицами

Определение 5. Две матрицы
,
,
, и
,
,
, будем называть равными, если
.

Краткая запись:
.

Таким образом, две матрицы считаются равными, если они имеют одинаковые порядки и их соответствующие элементы равны.

Определение 6. Суммой двух матриц
,
,
, и
,
,
, называется такая матрица
,
,
, что
.

Иначе говоря, складывать можно только матрицы одних и тех же порядков, причем сложение осуществляется поэлементно.

Пример 8. Найти сумму матриц

и
.

В соответствии с определением 6 найдем

.

Правило сложения матриц распространяется на сумму любого конечного числа слагаемых.

Определение 7. Произведением матрицы
,
,
, на вещественное число называется такая матрица
,
,
, для которой
.

Иными словами, чтобы умножить матрицу на число, нужно умножить на это число все ее элементы и оставить полученные произведения на прежних местах.

Пример 9. Найти линейную комбинацию
матриц

и
.

Пользуясь определением 7, получаем

,
,

.

Свойства операций сложения матриц

и умножения на число:

1. Сложение коммутативно:
.

2. Сложение ассоциативно:.

3. Существует нулевая матрица
, удовлетворяющая условию
для всехА .

4. Для любой матрицы А существует противоположная матрицаВ , удовлетворяющая условию
.

Для любых матриц А иВ и любых действительных чисел
имеют место равенства:

5.
.

6.
.

7.
.

8.
.

Проверим свойство 1. Обозначим
,
. Пусть
,

,
. Имеем

и так как равенство доказано для произвольного элемента, в соответствии с определением 5
. Свойство 1 доказано.

Аналогично доказывается свойство 2.

В качестве матрицы возьмем матрицу порядка
, все элементы которой равны нулю.

Сложив с любой матрицейпо правилу, данному в определении 6, мы матрицуне изменим, и свойство 3 справедливо.

Проверим свойство 4. Пусть
. Положим
. Тогда
, следовательно, свойство 4 справедливо.

Проверку свойств 5 - 8 опустим.

Определение 8. Произведением матрицы
,
,
, на матрицу
,
,
, называется матрица
,
,
, с элементами
.

Краткая запись:
.

Пример 10. Найти произведение матриц

и
.

В соответствии с определением 8 найдем

Пример 11. Перемножить матрицы

и
.

Замечание 1. Число элементов в строке матрицыравно числу элементов в столбце матрицы(число столбцов матрицыравно числу строк матрицы).

Замечание 2. В матрице
строк столько же, сколько в матрице, а столбцов столько же, сколько в.

Замечание 3. Вообще говоря,
(умножение матриц некоммутативно).

Чтобы обосновать замечание 3, достаточно привести хотя бы один пример.

Пример 12. Перемножим в обратном порядке матрицыииз примера 10.

таким образом, в общем случае
.

Отметим, что в частном случае равенство
возможно.

Матрицы и, для которых выполняется равенство
, называютсяперестановочными, иликоммутирующими .

Упражнения.

1. Найти все матрицы, перестановочные с данной:

а)
; б)
.

2. Найти все матрицы второго порядка, квадраты которых равны нулевой матрице.

3. Доказать, что
.

Свойства умножения матриц:

    Умножение дистрибутивно.

Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два» :

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке .
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу :

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

БУДЬТЕ ВНИМАТЕЛЬНЫ!

Лекция 6

Матрицы

6.1. Основные понятия

Определение 1. Матрицей называется прямоугольная таблица чисел.

Для обозначения матрицы используются круглые скобки или сдвоенные вертикальные линии:

Числа, составляющие матрицу, называются ее элементами , элементматрицырасположен в ее-й строке и-м столбце.

Числа и(число строк и столбцов матрицы) называются ее порядками.

Говорят также, что - матрица размером
.

Если
, матрицаназываетсяквадратной .

Для краткой записи используется также обозначение
(или
) и далее указывается, в каких пределах изменяютсяи, например,
,
,
. (Запись читается так: матрицас элементами,изменяется отдо,- отдо.)

Среди квадратных матриц отметим диагональные матрицы , у которых все элементы с неравными индексами (
) равны нулю:

.

Будем говорить, что элементы
расположены на главной диагонали.

Диагональная матрица вида

называется единичной матрицей.

В дальнейшем будут встречаться матрицы вида

и
,

которые называются треугольными матрицами, а также матрицы, состоящие из одного столбца:

и одной строки:

(матрица-столбец и матрица-строка ).

Матрица, все элементы которой равны нулю, называется нулевой.

6.2. Определители порядка n

Пусть дана квадратная матрица порядка :

. (6.1)

Составим всевозможные произведения элементов матрицы, расположенных в разных строках и разных столбцах, т.е. произведения вида

. (6.2)

Число произведений вида (6.2) равно (примем этот факт без доказательства).

Будем считать все эти произведения членами определителя порядка , соответствующего матрице (6.1).

Вторые индексы множителей в (6.2) составляют перестановку первых натуральных чисел
.

Говорят, что числа ив перестановке составляютинверсию , если
, а в перестановкерасположено раньше.

Пример 1. В перестановке шести чисел,
, числаи,и,и,и,исоставляют инверсии.

Перестановка называется четной , если число инверсий в ней четно, инечетной , если число инверсий в ней нечетно.

Пример 2. Перестановка
- нечетная, а перестановка
- четная (инверсий).

Определение 2. Определителем порядка , соответствующим матрице (6.1), называется алгебраическая сумма членов , составленная следующим образом : членами определителя служат всевозможные произведения элементов матрицы , взятых по одному из каждой строки и каждого столбца , причем слагаемое берется со знаком "+", если множество вторых индексов является четной перестановкой чисел
, и со знаком "–", если нечетной.

Обозначать определитель матрицы (6.1) принято так:

.

Замечание. Определение 2 для
и
приводит к уже знакомым нам определителям 2-го и 3-го порядка:

,

Транспонированием вокруг главной диагонали матрицыназывается переход к матрице
, для которой строки матрицыявляются столбцами, а столбцы - строками:

.

Будем говорить, что определитель
получен транспонированием определителя.

Свойства определителя порядка п:

1.
(определитель не меняется при транспонировании вокруг главной диагонали).

2. Если одна из строк определителя состоит из нулей, определитель равен нулю.

3. От перестановки двух строк определитель меняет лишь знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на число , определитель умножится на.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы -й строки определителя представлены в виде суммы
, то определитель равен сумме двух определителей, у которых все строки, кроме-й, такие же, как в исходном определителе, а-я строка в одном определителе состоит из, а в другом - из.

Определение 3. -я строка определителя называется линейной комбинацией остальных его строк , если такие , что, умножая -ю строку на, а затем складывая все строки , кроме , получаем -ю строку.

8. Если одна из строк определителя является линейной комбинацией остальных его строк, определитель равен нулю.

9. Определитель не изменится, если к элементам одной его строки прибавить соответствующие элементы другой, умноженные на одно и то же число.

Замечание. Мы сформулировали свойства определителя для строк. В силу свойства 1 (
) они справедливы и для столбцов.

Все приведенные свойства были доказаны на практических занятиях для
; для произвольногопримем их без доказательства.

Если в определителе порядкавыбрать элементи вычеркнуть столбец и строку, на пересечении которых расположен, оставшиеся строки и столбцы образуют определитель порядка
, который называетсяминором определителя, соответствующим элементу.

Пример 3. В определителе

минором элемента
является определитель
.

Определение 4. Алгебраическим дополнением элементаопределителяназывается его минор , умноженный на
, где - номер строки , - номер столбца , в которых расположен выбранный элемент .

Пример 4. В определителе

алгебраическое дополнение
.

Теорема 1 (о разложении по строке). Определитель равен сумме произведений всех элементов любой строки на их алгебраические дополнения.

Теорема 1 позволяет свести вычисление определителя порядка к вычислениюопределителей порядка
.

Пример 5 . Вычислить определитель четвертого порядка:

.

Воспользуемся теоремой 1 и разложим определитель по 4-й строке:

Замечание. Можно вначале упростить определитель, воспользовавшись свойством 9, а затем использовать теорему 1. Тогда вычисление определителя порядкасведется к вычислениювсего одного определителя порядка
.

Пример 6. Вычислить

.

Прибавим первый столбец ко второму и первый столбец, умноженный на (
), к третьему, в результате получим

.

Теперь применим теорему 1 и разложим по последней строке:

,

вычисление определителя 4-го порядка свелось к вычислению всего одного определителя 3-го порядка.

,

вычисление определителя третьего порядка свелось к вычислению всего одного определителя второго порядка.

Пример 7. Вычислить определитель порядка:

.

Первую строку прибавим ко второй, третьей и т.д. -й строке. Придем к определителю

.

Получен определитель треугольного вида.

Применим
раз теорему 1 (разложим по первому столбцу) и получим

.

Замечание. Определитель треугольного вида равен произведению элементов главной диагонали.

6.3. Основные операции над матрицами

Определение 5. Две матрицы
,
,
, и
,
,
, будем называть равными, если
.

Краткая запись:
.

Таким образом, две матрицы считаются равными, если они имеют одинаковые порядки и их соответствующие элементы равны.

Определение 6. Суммой двух матриц
,
,
, и
,
,
, называется такая матрица
,
,
, что
.

Иначе говоря, складывать можно только матрицы одних и тех же порядков, причем сложение осуществляется поэлементно.

Пример 8. Найти сумму матриц

и
.

В соответствии с определением 6 найдем

.

Правило сложения матриц распространяется на сумму любого конечного числа слагаемых.

Определение 7. Произведением матрицы
,
,
, на вещественное число называется такая матрица
,
,
, для которой
.

Иными словами, чтобы умножить матрицу на число, нужно умножить на это число все ее элементы и оставить полученные произведения на прежних местах.

Пример 9. Найти линейную комбинацию
матриц

и
.

Пользуясь определением 7, получаем

,
,

.

Свойства операций сложения матриц

и умножения на число:

1. Сложение коммутативно:
.

2. Сложение ассоциативно:.

3. Существует нулевая матрица
, удовлетворяющая условию
для всехА .

4. Для любой матрицы А существует противоположная матрицаВ , удовлетворяющая условию
.

Для любых матриц А иВ и любых действительных чисел
имеют место равенства:

5.
.

6.
.

7.
.

8.
.

Проверим свойство 1. Обозначим
,
. Пусть
,

,
. Имеем

и так как равенство доказано для произвольного элемента, в соответствии с определением 5
. Свойство 1 доказано.

Аналогично доказывается свойство 2.

В качестве матрицы возьмем матрицу порядка
, все элементы которой равны нулю.

Сложив с любой матрицейпо правилу, данному в определении 6, мы матрицуне изменим, и свойство 3 справедливо.

Проверим свойство 4. Пусть
. Положим
. Тогда
, следовательно, свойство 4 справедливо.

Проверку свойств 5 - 8 опустим.

Определение 8. Произведением матрицы
,
,
, на матрицу
,
,
, называется матрица
,
,
, с элементами
.

Краткая запись:
.

Пример 10. Найти произведение матриц

и
.

В соответствии с определением 8 найдем

Пример 11. Перемножить матрицы

и
.

Замечание 1. Число элементов в строке матрицыравно числу элементов в столбце матрицы(число столбцов матрицыравно числу строк матрицы).

Замечание 2. В матрице
строк столько же, сколько в матрице, а столбцов столько же, сколько в.

Замечание 3. Вообще говоря,
(умножение матриц некоммутативно).

Чтобы обосновать замечание 3, достаточно привести хотя бы один пример.

Пример 12. Перемножим в обратном порядке матрицыииз примера 10.

таким образом, в общем случае
.

Отметим, что в частном случае равенство
возможно.

Матрицы и, для которых выполняется равенство
, называютсяперестановочными, иликоммутирующими .

Упражнения.

1. Найти все матрицы, перестановочные с данной:

а)
; б)
.

2. Найти все матрицы второго порядка, квадраты которых равны нулевой матрице.

3. Доказать, что
.

Свойства умножения матриц:

    Умножение дистрибутивно.

Равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е. , где i 0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i 0 .

Назначение сервиса . Данный сервис предназначен для нахождения определителя матрицы в онлайн режиме с оформлением всего хода решения в формате Word . Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите размерность матрицы, нажмите Далее.

Размерность матрицы 2 3 4 5 6 7 8 9 10
Вычислить определитель можно будет двумя способами: по определению и разложением по строке или столбцу . Если требуется найти определитель созданием нулей в одной из строк или столбцов, то можно использовать этот калькулятор .

Алгоритм нахождения определителя

  1. Для матриц порядка n=2 определитель вычисляется по формуле: Δ=a 11 *a 22 -a 12 *a 21
  2. Для матриц порядка n=3 определитель вычисляется через алгебраические дополнения или методом Саррюса .
  3. Матрица, имеющая размерность больше трех, раскладывается на алгебраические дополнения, для которых вычисляются свои определители (миноры). Например, определитель матрицы 4 порядка находится через разложение по строкам или столбцам (см. пример).
Для вычисления определителя, содержащего в матрице функции, применяются стандартные методы. Например, вычислить определитель матрицы 3 порядка:

Используем прием разложения по первой строке.
Δ = sin(x)× + 1× = 2sin(x)cos(x)-2cos(x) = sin(2x)-2cos(x)

Методы вычислений определителей

Нахождение определителя через алгебраические дополнения является распространенным методом. Его упрощенным вариантом является вычисление определителя правилом Саррюса . Однако при большой размерности матрицы, используют следующие методы:
  1. вычисление определителя методом понижения порядка
  2. вычисление определителя методом Гаусса (через приведение матрицы к треугольному виду).
В Excel для расчета определителя используется функция =МОПРЕД(диапазон ячеек) .

Прикладное использование определителей

Вычисляют определители, как правило, для конкретной системы, заданной в виде квадратной матрицы. Рассмотрим некоторые виды задач на нахождение определителя матрицы . Иногда требуется найти неизвестный параметр a , при котором определитель равнялся бы нулю. Для этого необходимо составить уравнение определителя (например, по правилу треугольников ) и, приравняв его к 0 , вычислить параметр a .
разложение по столбцам (по первому столбцу):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.
Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 .

Определим минор для (2,1): для этого вычеркиваем из матрицы вторую строку и первый столбец.

Найдем определитель для этого минора. ∆ 2,1 = (0 (-2)-2 (-2)) = 4 . Минор для (3,1): Вычеркиваем из матрицы 3-ю строку и 1-й столбец.
Найдем определитель для этого минора. ∆ 3,1 = (0 1-2 (-2)) = 4
Главный определитель равен: ∆ = (1 (-6)-3 4+1 4) = -14

Найдем определитель, использовав разложение по строкам (по первой строке):
Минор для (1,1): Вычеркиваем из матрицы первую строку и первый столбец.


Найдем определитель для этого минора. ∆ 1,1 = (2 (-2)-2 1) = -6 . Минор для (1,2): Вычеркиваем из матрицы 1-ю строку и 2-й столбец. Вычислим определитель для этого минора. ∆ 1,2 = (3 (-2)-1 1) = -7 . И чтобы найти минор для (1,3) вычеркиваем из матрицы первую строку и третий столбец. Найдем определитель для этого минора. ∆ 1,3 = (3 2-1 2) = 4
Находим главный определитель: ∆ = (1 (-6)-0 (-7)+(-2 4)) = -14

Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.