Как сделать солнечный коллектор своими руками? Солнечный коллектор для нагрева воды своими руками Солнечный коллектор собственными руками

В этой публикации представлены результаты объемных исследований блогера Сергея Юрко. Показаны 3 солнечных коллектора, изготовленные мастером своими руками и наиболее эффективный из них – так называемый 3 пленочный коллектор, он нагревает воду до 60 градусов. Есть более простой 2 пленочный, и он способен доводить воду до 55 градусов. Самый простой и самый дешевый 1 пленочный, но он обеспечивает прогрев только до 35 или 40 градусов.

Стоимость одного квадратного метра этих примитивных коллекторов примерно в тысячу раз дешевле заводских аналогов, и поэтому возникает вопрос: а что же такого хорошего в фирменных коллекторах, что они стоят в тысячу раз дороже примитивных, которые может изготовить своими руками любой человек за несколько часов, потратив мизерные деньги.

Будем сравнивать простые коллекторы с дорогими заводскими моделями по эффективности, экономической целесообразности и другим характеристикам. И далеко не всегда это сопоставление в пользу заводских устройств. Ролик на тему: сделаем простейшие солнечные коллекторы и посмотрим, на что они способны. А также выясним, при каких случаях имеет смысл отказаться от дешёвого солнечного тепла с этих примитивных конструкций, чтобы заплатив сотни или тысячи раз дороже, получить такой же эффект от более дорогих устройств.

Личный интерес автора ролика к теме основан на предположении, что заводские солнечные коллекторы являются эволюционным тупиком солнечной тепловой энергетики, поскольку, например, солнечные батареи за последние несколько десятилетий подешевели больше чем в сто раз и график показывает процесс снижения цен.

Возникает мысль, что эволюция солнечных коллекторов пошла не по тому пути и поэтому имеет смысл вернуться к самым простым технологиям.

Черная пленка является единственной, из чего состоит 1-пленочный примитивный коллектор, то есть на пленку наливается вода и очевидно, что во время солнца это вода нагреется. Её можно купить на базаре в любом городе. Мастер приобрел три квадратных метра за 15 гривен. Стоимость коллектора выходит 15 евро цент за квадратный метр.

Но имеет смысл добавить еще одну – прозрачную пленку, которая покроет поверхность нагреваемой воды. Температура нагрева радикально увеличивается, поскольку вторая пленка останавливает испарение воды. Её продают на любом базаре для теплиц и из-за этого второго слоя стоимость коллектора увеличивается до 35 евро центов за квадратный метр.

Но есть еще и 3 пленочный вариант и дополнительная пленка тоже является прозрачной, она увеличит стоимость коллектора до 55 евро центов за квадратный метр.


Функция 3 пленки, как и у стекла заводского плоского коллектора, то есть между стеклом и черным абсорбером формируется слой воздуха толщиной несколько сантиметров, воздух является теплоизолятором.

Сколько пленок нужно для хорошего нагрева воды?

Экспериментальные измерения дали неожиданные результаты, поскольку оказалось что в нашем случае результат применения третьей пленки не является таким эффективным, как в случае заводского плоского коллектора – температура нагрева воды увеличивается, но всего лишь на несколько градусов. Причем наша тройка коллекторов может иметь разные конструкции. К примеру 2 пленочная – прозрачная полиэтиленовая пленка, продается на базарах в виде рукава. Вода заливается внутрь рукава, а роль нижней черной пленки выполняют черная поверхность крыши многоэтажки.


Аналогичное исследование, но с рукавом из не прозрачной, а черной пленки. Если вторая пленка черная, вариант предпочтительнее только при условии хорошей циркуляция воды через систему. Коллектор нагрел 100 литров воды до 66 градусов. Можно заметить несколько усложнений конструкции, в том числе лист пенополистирола толщинoй 3 сантиметра. но эксперименты показали, что теплоизоляция под коллектором увеличит температуру нагрева, но не радикально.

Эксперимент в августе с нагревом воды при температуре воздуха в тени 35 градусов показал, что пленочный коллектор на хорошей теплоизоляции нагрел воду до 63 градусов и в тот же самый момент другой коллектор нагрел воду до 57 градусов, хотя под ним теплоизоляции нет и его первая пленка лежит прямо на земле.

Дополнительные функции кустарного садового коллектора

Также интересно обратить внимание, что однопленочный коллектор во время дождя выполняет функцию сбора дождевой воды что для некоторых домов и местности может оказаться актуальным. кроме этого, 1 пленочные и 2 пленочные коллекторе ночью могут выполнять функцию градирни, то есть они отбирают тепло из воды, используемой для систем охлаждения. Можно использовать в режиме, когда днем через них циркулирует вода, которую нужно нагревать. а ночью коллектор охлаждает воду баков. днем вода из них используется для отбора тепла. в результате чего она нагревается. и поэтому следующей ночью ее нужно опять охлаждать коллекторами.

Интересно заметить, что высота воды в коллекторах может превышать несколько сантиметров. они являются одновременно и солнечным коллекторам и баком для горячей воды. То есть они работают как хорошо известная черная бочка на летнем душе.

Но очевидно, что после исчезновения солнца вода в коллекторе охлаждается. Для этого случая может оказаться интересным коллектор с тремя слоями пленки, вода в котором охлаждается медленно.

На фото. Стоимость заводских тепловых коллекторов в тысячу раз дороже представленных самодельных.

Статистика по измерениям эффективности самодельных и заводских солнечных нагревателей

1 августа проводил эксперимент по измерению производительности 2 пленочного коллектора. На протяжении солнечного дня измерял температуру воды и заносил в таблицу.


насколько эффективен нагреватель воды с пленкой

В следующий таблице интерпретация полученных результатов, в столбце количество теплоты, которую реально производил коллектор.


Описано в примечании фото, как рассчитывалось по результатам измерений температуры. В другом столбце количество солнечной радиации, которая попала на солнечный коллектор. причем важно заметить, что она зависит от угла солнца над горизонтом, точнее от синуса этого угла.

Интересно, что в данный временной промежуток производство тепла коллектором было больше, чем количество солнечной радиации. но никакого парадокса нет, если обратить внимание на разницу температур. В это время температура воздуха была больше, чем воды в коллекторе, и поэтому она нагревалась не только из-за поглощения солнечной радиации, но и вследствие нагрева от более теплого воздуха. но в другие временные промежутки вода была уже теплее воздуха. причем, чем больше разница температур, тем больше тепловые утечки из воды в окружающий воздух. тем меньше полезного тепла производят коллектор. Можно прийти к выводу, что как только температура воды достигнет примерно 60 градусов, она прекратит нагреваться, поскольку упомянутые тепловые утечки сравняются с поступлением энергии Солнца в коллектор.

В правом крайнем столбце таблицы зафиксирована измеренная мощность нагрева коллектора на единицу площади, ее можно сравнить с столбцом с мощностью нагрева одного квадратного метра заводского коллектора в тех же условиях. Описано, как вычислял мощности. Один квадратный метр заводской модели имеет преимущество над такой же площадью самодельного только при работе на высоких температурах воды. а если нужно греть воду с температурой выше 60-70 градусов, то кустарный коллектор не сможет работать вообще. в то же время 1 квадратный метр самодельного теплообменника произведет тепла заметно больше, чем один квадратный метр фабричного, когда температура воды меньше температуры окружающего воздуха.

Результаты объясняются энергетическими характеристиками 2 пленочного коллектора.


А это оценка характеристик других типа примитивных нагревателей.

Приблизительные характеристики заводских плоских коллекторов, представленных в паспорте.

В интернете можно найти такие характеристики практически для любой марки. По таблице видно, что фирменный обменник тепла имеет преимущество по этому коэффициенту, благодаря чему он способен работать на высоких температурах. но с другой стороны самопальный коллектор работает намного лучше заводского в случае, если нужно подогреть воду с температурой ниже воздуха. Например, если нужно нагревать 10 градусную воду подземной скважины во время 30-градусной жары. дело в том, что коэффициент корректнее называть не тепловыми потерями, а коэффициентом теплообмена. Поскольку если вода в коллекторе холоднее воздуха, то в коллекторе нет тепловых потерь, а наоборот, из более теплого воздуха в него поступает дополнительное тепло. Данный коэффициент интерпретируется так, что если разница температур между водой и воздухом увеличивается на 1 градус, то обмен тепла через каждый квадратный метр коллектора увеличивается на 20 ватт.

Эта характеристика (оптический КПД) показывает кпд преобразования солнечной радиации в полезное тепло в условиях, когда температура теплоносителя в коллекторе равна температуре окружающего среды. В примечании описано, почему у простейших коллекторов этот показатель немного лучше, чем у заводских. Но это указан кпд нового чистого коллектора, а примитивные очень чувствительны к грязи. Текст ниже описывает, как много грязи накапливается в них течение эксплуатации.

Грязь и пузырьки в простых самодельных коллекторах

* В воду 1-пленочного коллектора извне приходит очень много разнообразной грязи. В 2-х и 3-пленочных устройствах эта проблема выражается в пылевом налете на верхней пленке, и после высыхания воды дождя или росы эта грязь группируется в непрозрачные пятна, которые могут очень заметно уменьшить КПД коллектора. Но с другой стороны, есть несколько несложных способов удалять эту грязь после дождя.
* Из воды тоже выпадает много грязи в виде мелких хлопьев на поверхности воды или крупных хлопьев на дне. Эти выпадения усиливаются из-за нагрева воды.
* Также накапливается «белый налет» (на верху 1-й и низу 2-й пленки), который заметно снижает КПД. Он прикрепляется к пленкам очень прочно, т.е. потоком воды не удаляется (и щеткой он оттирается с большим трудом и не полностью). Возможно, это выпадение солей из нагретой воды, возможно, это последствия разложения полиэтиленовых пленок.
* Часть грязи в коллекторе может быть объяснена продуктами разложения полиэтилена вследствие УФ-радиации и высокой температуры. Обычно полиэтилен разлагается на перекись водорода, альдегиды и кетоны. В основном, это газы или жидкости, хорошо растворимые в воде. т.е. в осадок они вроде бы не должны выпадать.
* КПД коллектора также снижается из-за большого количества газовых пузырьков (диаметром до нескольких миллиметров на верху 1-й и низу 2-й пленки), которые выделяются при нагреве воды (При нагреве уменьшается растворимость газов в воде). Интересно, что при расположении коллектора на земле на его 1-й пленке пузырьков практически нет (но они есть на низу 2-й)
* Под 2-й пленкой могут образовываться большие пузыри, а также воздух в складках. Эти участки быстро запотевают, и это уменьшает КПД.
* На краях коллектора 2-я пленка может не прилегать к воде: на таких участках низ запотевает и поэтому плохо пропускает солнечную радиацию.
* В 3-пленочных коллекторах могут быть запотевания низа 3-й пленки. Это случается при неправильной установке 2-й пленки (из-за чего пар из коллектора может проникать под 3-ю пленку) или из-за её повреждений. В таких случаях нужно устанавливать 3-ю пленку так, чтобы ветер слегка вентилировал пространство между нею и 3 слоем.

Загрязнение воды коллекторов из-за разложения полиэтиленовых пленок

Это разложение будет из-за одновременного воздействия кислорода воздуха, ультрафиолетовой солнечной радиации и температуры 50-60 град. Полиэтилен разлагается на альдегиды, кетоны, перекись водорода и др.
При нагреве в коллекторе каждого 1 куб. м воды его полиэтиленовые пленки будут выделять порядка 1 г продуктов разложения (На 1 кв. м коллектора приходится около 100 г 1-й и 2-й пленок, и за время своей службы они выделят, по очень приблизительным оценкам, около 10 г «продуктов разложения» и нагреют порядка 10 куб. м воды). Но непонятно, сколько из этих 1 мг/ литр перейдет в воду, а сколько улетит в атмосферу, выпадет в осадок на дне коллектора и бака горячей воды, перейдет в тот «белый налет» (о котором я говорил в предыдущем тексте), не выйдет за пределы массы полиэтилена
Кроме того, непонятно благоприятное влияние на очистку воды вследствие ее пребывания и нагрева в коллекторе (а там из нее выпадает очень много осадка), а также вследствие пребывания в баке горячей воды. Таким образом, по приблизительным оценкам, в воду поступит 0,1-0.5 мг / литр продуктов разложения полиэтилена, которые распределятся между десятками хим. веществ с концентрациями по 0.001-0,1 мг на литр нагреваемой воды. Поскольку это недалеко от ПДК вредных веществ, консультация с СЭС лишней не будет. Например, согласно стандарту ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»:
– Есть ограничения по 13 шт. альдегидов – ПДК от 0,003 мг / литр до 1 мг / литр, например, ПДК формальдегида – 0.05 мг / литр, а самые жесткие требования к бензальдегиду – 0.003 мг / литр
– ПДК перекиси водорода – 0,1 мг / литр
– По 3 шт. экзотических кетонов тоже есть ограничения с ПДК 0,1-1,0 мг / литр

Выводы:

1) Если вода «застоялась» коллекторах, то концентрация «продуктов разложения» в ней будет в разы или десятки раз больше. Возможно, такую воду лучше выбрасывать.
2) Желательно использовать более тонкие пленки (они будут давать меньше «продуктов разложения»).
3) Пленки желательно как можно стабилизированные. Например, тепличная предпочтительнее обычной (не подкрашенной) полиэтиленовой, она стабилизируется против воздействия УФ-радиации. Другой пример: полиэтилен высокой плотности медленнее разлагается из-за высокой температуры, чем низкой плотности.
4) Отношение площади коллекторов к потребности объекта (в горячей воде) желательно как можно меньше. Т.е., например, при суточной потребности 10 куб. м горячей воды, станция с 50 кв.м. коллекторов дает загрязнение (концентрация вредных веществ) воды в десятки раз меньше, чем станция с 500 кв.м. коллекторов, в том числе и из-за более низкой температуры нагрева воды коллекторами, что уменьшает скорость разложения полиэтилена.
5) Если 2-я пленка коллекторов будет черная (а не прозрачная), то загрязнение воды должно быть в разы меньше (поскольку УФ-излучение проникает только в верхний слой 2-й пленки).
6) Можно подумать над таким вариантом работы солнечной станции, когда коллекторы нагревают
техническую воду, которая затем передает свое тепло через теплообменник чистой воде ГВС.

Какую лучше применять пленку для сбора солнечного тепла – черную или прозрачную?

Оптический кпд заметно уменьшается из-за воздушных пузырьков и запотевания второго слоя пленки коллектора. это к тому, что кпд реально эксплуатируемого устройства по всему сроку эксплуатации окажется на несколько десятков процентов меньше. Поэтому не имеет смысла стремиться к дорогим пленкам с большой долговечностью, поскольку за несколько месяцев эксплуатации на них накопится столько грязи, что пленки захочется заменить. Из-за таких проблем с разнообразной грязью склоняемся к тому, что 2 пленка должна быть все таки непрозрачной, а черной.

У этого коллектора черная пленка и нет радикального уменьшения кпд из-за грязи. Но у него есть проблема – солнце нагревает только тонкий верхний слой воды. Тем не менее существует несколько вариантов решения проблемы, которые будут получены после исследований.

Важно иметь ввиду что ветер увеличивает коэффициент теплопотерь примитивных коллекторов, а в случае однопленочного это влияние ветра может быть радикальным, так как увеличиваются потери тепла из коллектора вследствие испарения воды и может дойти до того, что даже в идеально солнечный день, но при сильном ветре и низкой влажности 1-пленочный сможет нагреть воду только на несколько градусов выше температуры окружающего воздуха. Кроме этого коэффициент к1 нужно увеличить на несколько десятков процентов, если под коллектором нет теплоизоляции и он лежит непосредственно на земле, на поверхности крыши и тому подобное.

Во 2 серии этого фильма сравниваются примитивные и заводские коллекторы по темам работы зимой, простоте подключения, экономической целесообразности, областям применения на практике.

Вторая часть (о работе зимой)


3, 4 серии (техобслуживание)


– Эксперимент с заливкой воды в рукав полиэтиленовой пленки:

Солнечный коллектор - это устройство, предназначенное для поглощения солнечной энергии и преобразования её в тепловую с целью дальнейшей её передаче теплоносителю. Классическое устройство представляет собой чёрную металлическую пластину, помещённую в стеклянный или пластмассовый корпус, поверхность которой поглощает радиацию. Их существует несколько видов и предназначение может быть разное. Давайте рассмотрим подробнее принцип работы этого устройства, а также поэтапное изготовление этого объекта своими руками.

Какие существуют

В зависимости от температуры, которую могут достигать пластины, коллекторы бывают:

  • низких температур - не дают энергии большой мощности, они нагревают воду не более 50 градусов по Цельсию;
  • средних температур - прогревают воду уже до 80 градусов, поэтому их можно использовать для обогрева помещений;
  • высоких температур - используются в основном на промышленных предприятиях, и в домашних условиях их сделать невозможно.

Интегрированные коллекторы делятся на:

  • накопительные интегрированные;
  • плоские;
  • жидкостные;
  • воздушные.

Накопительный интегрированный или по-другому термосифонный коллектор. Он может не только нагревать воду, но и какое-то время поддерживать некоторое время нужную температуру. В нем нет насосов, поэтому он гораздо экономичнее остальных вариантов. Устройство-накопитель представляет собой конструкцию из одного или нескольких баков, заполненный водой и помещённых в теплоизоляционный ящик. Сверху на баках лежит стеклянная крышка, которая проходит через стекло и нагревает воду. Это недорогой, лёгкий в обслуживании и простой в эксплуатации вариант. Однако зимой его применение весьма затруднительно.

Плоский коллектор внешне напоминает обычный плоский металлический ящик, внутри которого помещена чёрная пластина, поглощающая солнечный свет. Стеклянная крышка ящика усиливает его, стекло имеет низкое содержание железа, такие образом способствуя поглощению всех лучей. Сам ящик термоизолирован, а чёрная пластина тепловоспринимающая, благодаря чему и выделяется тепло. Однако КПД пластины всего 10%, поэтому она дополнительно покрывается слоем аморфного полупроводника. Плоские коллекторы используются для , отопления помещений и иных бутовых нужд.

В жидкостных накопителях основным теплоносителем становится жидкость.Они бывают остеклёнными и неостеклёнными, с замкнутой и разомкнутой системой теплообмена.

Воздушные коллекторы гораздо дешевле своих водных собратьев. Они не замерзают зимой, не подтекают. Их используют для сушки сельскохозяйственных продуктов.

Существует еще один вид - концентраторы, они отличаются концентрацией солнечных лучей. Это происходит благодаря зеркальной поверхности, которая направляет свет на поглотители. Главный их недостаток - это невозможность работы в пасмурные дни, поэтому их используют в странах с жарким климатом.

Солнечные печи и дистилляторы. Дистилляторы работают на принципе испарения воды, тем самым не только дают теплоэнергию, но и очищают воду. Печи также используют как для обогрева, так и для стерилизации воды.

Фотогалерея: различные виды коллекторов

В конструкции накопительного коллектора может быть несколько баков Плоские коллекторы чаще используют для отопления помещений и подогрева воды в бассейнах В жидкостном коллекторе носитель тепла вода Воздушные коллекторы можно также применять для сушки фруктов

Схема работы

Коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора, который преобразует энергию радиации в тепловую энергию и передаёт её теплоносителю. Накопители могут быть вакуумными, трубными и плоскими. В первых конструкция похожа на термос: одна труба вставлена в другую, а между ними имеется вакуум, создающий идеальную теплоизоляцию. Благодаря цилиндрической форме труб, солнечные лучи попадают на них перпендикулярно и передают максимум энергии.

Солнечный коллектор состоит из двух главных частей: светоулавливателя и теплообменного аккумулятора

Теплоносителем в таких конструкциях является обыкновенная вода. Она может не только отапливать помещение, но и служить для бытовых нужд. При этом нет выделений углекислого газа в атмосферу, что весьма актуально в наши дни. К тому же не требуется никаких затрат на топливо, а эффективность коллектора составляет 80%. На большей части России в период с марта по октябрь в среднем в сутки солнцем вырабатывается 4−5 кВтч/м 2 , что позволяет небольшим устройством размером 2м 2 нагревать ежедневно до 100 л воды.

Для всесезонного использования коллектор должен иметь обширную поверхность, два контура с антифризом и дополнительные теплообменники . Таким образом, благодаря грамотно использованной энергии можно получать бесплатное тепло 7 месяцев в году, независимо от того ясно на улице или нет.

Тепловая энергия для вашего дома: как сделать коллектор своими руками?

Для изготовления устройства в ход могут идти листы поликарбоната, медные или полипропиленовые трубы.

Самой универсальной конструкцией является разработка болгарского инженера Станислава Станилова. Основной принцип действия этого коллектора - это использование парникового эффекта. Накопитель представляет собой помещённый в теплоизолированную деревянную коробку трубчатый радиатор, сваренный их стальных труб. Для подведения и отведения воды используются водопроводные трубы диаметром 1 или ¾ дюйма.

Коробка теплоизолируется со всех сторон при помощи пенопласта, пенополистирола , минеральной или эковатой. Особенно тщательно изолируется дно, куда поверх изоляции кладётся лист оцинкованного кровельного железа, на который ставится сам радиатор. Он закрепляется в коробке стальными хомутами. Металлический лист и радиатор красятся чёрной матовой краской, а коробка со всех сторон, кроме стеклянной крышки, покрывается белой краской. Покровное стекло, через которое будет проходить к радиатору солнечный свет, хорошо герметизируется. Накопителем тепла может служить металлическая бочка, помещённая в дощатой или фанерной коробке, в полости которой заполняется эковатой, сухими опилками, керамзитом, песком.

Необходимые инструменты и материалы

Основной принцип действия такого коллектора - использование парникового эффекта

  • стекло (например, 1700/750 мм);
  • рама под стекло;
  • оргалит для дна;
  • доска сечением 120/25 мм;
  • стальная полоса сечением 20/2,5 мм, длина 3 м;
  • накладка-уголок;
  • деревянный брусок сечением 50/30 мм;
  • соединительная муфта;
  • труба радиатора;
  • приёмная труба радиатора;
  • хомуты для крепления;
  • оцинкованное железо в качестве отражателя;
  • теплоизолятор;
  • бак на 200−300 литров.

Изготовление: пошаговые действия

Конструкция солнечного коллектора проста

  1. Из досок сколачивается короб, днище которого усиливается брусом.
  2. На дно укладывается теплоизоляция (пенопласт, пенополистирол, минеральная вата), поверх которой кладётся лист железа или жести.
  3. Сверху ставится радиатор и закрепляется хомутами из стальной полосы.
  4. Все соединения герметизируются, стыки и щели замазываются.
  5. Трубы радиатора и металлический лист выкрашиваются в чёрный цвет.
  6. Короб и бак для воды выкрашивается в серебристый цвет. Бак для воды помещается в теплоизолированный короб или бочку (между баком и стенами короба насыпается теплоизоляционный материал).
  7. Для создания постоянного небольшого давления приобретается аквакамера с поплавковым клапаном, как в бочке унитаза. Её можно приобрести в магазине сантехники.
  8. На чердаке дома, под крышей размещается аквакамера и накопитель воды (бак). Аквакамера помещена выше бака как минимум на 0,8 м.
  9. Коллектор размещается на крыше южной стороны дома под углом 45 0 к горизонту.
  10. Далее идёт соединение всей системы между собой трубами: полудюймовыми трубами монтируется высоконапорная часть системы от аквакамеры до водопроводного ввода. Дюймовыми трубами монтируются низконапорные части. Минимальное количество труб - 12 штук, но, в зависимости от расстояний между частями коллектора, понадобится 18−15 труб, но не менее 12.
  11. Чтобы избежать воздушных пробок, система заполняется водой с нижней части радиатора. Как только вся система наполнится водой, из дренажной трубки аквакамеры польётся вода.
  12. Открываем вентиль в трубе для заполнения бака.
  13. Вода начинает нагреваться сразу же. Тёплая вода поднимается вверх, вытесняя холодную, и та автоматически поступает в радиатор.
  14. Как только часть воды будет использована, поплавковый клапан в аквакамере сработает, и холодная вода снова поступит в нижнюю часть системы. Смешивания воды при этом не происходит.

В ночное время желательно перекрывать доступ воды в бак, чтобы не возникли теплопотери.

Видео: устройство воздушного солнечного коллектора для отопления дома

Видео: используем солнечную энергию для подогрева бассейна

Видео: изготовление и установка коллектора для обогрева теплицы

Видео: простое устройство для сбора солнечной энергии из пивных банок

Используйте солнечную энергию для отопления дома, обогрева теплицы или бассейна. Солнечный коллектор поможет вам сэкономить немало средств и прослужит очень долго.

Если вы являетесь сторонником альтернативных методик получения недорогой тепловой энергии, попробуйте сделать элементарный солнечный коллектор своими руками. Его устройство сравнительно простое, а эффективность достаточно высока.

Разновидности солнечных коллекторов – какими они бывают?

Под коллекторами понимают устройства, которые способны поглощать солнечную энергию, модифицировать ее в тепло, а затем отправлять на теплоноситель. Стандартный солнечный коллектор выполняется в виде пластмассового либо металлического корпуса, в который устанавливают пластины черного цвета из металла. Эти пластинки могут нагреваться до какой-либо определенной температуры.

В зависимости от ее величины, коллекторы делят на высоко-, средне- и низкотемпературные. Высокотемпературные устройства изготовить в домашних условиях нереально. Они создаются по сложным технологиям для эксплуатации на промышленных крупных объектах. Среднетемпературные конструкции, аккумулирующие достаточное количество солнечной энергии, можно применять для отопления жилых домов, а низкотемпературные – для подогрева воды. Эти два типа коллекторов вполне возможно сделать самому.

Интересующие нас устройства подразделяют на следующие виды:

  • плоские;
  • накопительные;
  • воздушные;
  • жидкостные.

Плоский коллектор – это конструкция в виде ящика из металла с пластиной для поглощения света от Солнца. Она накрыта крышкой из стекла с небольшим содержанием железа, за счет чего на тепловоспринимающую пластинку попадает практически весь солнечный свет. Конструкция обязательно термоизолируется. Коэффициент полезного действия такого коллектора объективно мал – около 10 % . Увеличить его можно посредством нанесения специального полупроводника с аморфными характеристиками на пластину. Такие устройства годятся для нагрева воды в быту.

Более эффективным считается термосифонный (накопительный) коллектор. Его используют для нагрева воды и поддержания температуры на заданном уровне в помещении в течение некоторого времени. Конструктивно он выполняется в виде 1–3 баков, устанавливаемых в ящик с теплоизоляцией. Как и плоское устройство, его накрывают крышкой из стекла. В холодную пору применять такой коллектор затруднительно. А вот летом, когда свет от Солнца очень сильный, его можно эксплуатировать в домашних условиях.

Жидкостные солнечные конструкции используют в качестве теплоносителя воду. Они изготавливаются с разомкнутым либо замкнутым принципом теплообмена, могут быть без стекол и остекленными. Эксплуатация подобных устройств сопряжена с неудобствами – они часто подтекают и вполне могут замерзнуть в зимние месяцы. Этих проблем лишены воздушные коллекторы, которые чаще всего применяются для сушки фруктов, овощей и относительно небольших объемов другой сельскохозяйственной продукции. Воздушный аппарат конструктивно прост, его легко обслуживать, поэтому он пользуется заслуженной популярностью.

Как работает коллектор – все просто

Любая из рассматриваемых в статье конструкций для преобразования солнечной энергии в тепловую имеет два основных компонента – теплообменное и светоулавливающее аккумуляторное устройство. Второе служит для улавливания солнечных лучей, первое – для их модификации в тепло.

Самый прогрессивный коллектор – вакуумный. В нем аккумуляторы-трубы вставляются друг в друга, а между ними формируется безвоздушное пространство. По сути, мы имеем дело с классическим термосом. Вакуумный коллектор за счет своей конструкции обеспечивает идеальную теплоизоляцию устройства. Трубы в нем, кстати, имеют цилиндрическую форму. Поэтому лучи Солнца попадают на них перпендикулярно, что гарантирует получение коллектором большого количества энергии.

Существуют и более простые устройства – трубные и плоские. Вакуумный коллектор превосходит их по всем показателям. Единственная его проблема – относительно высокая сложность изготовления. Собрать такой прибор дома можно, но потребуется приложить немало усилий.

Теплоносителем в солнечных коллекторах для отопления, о которых идет речь, выступает вода, которая стоит мало, в отличие от любых современных видов топлива, и не выделяет в окружающую среду углекислого газа. Устройство для улавливания и преобразования лучей Солнца, которое можно сделать самому, с геометрическими параметрами 2х2 квадратных метра, способно в течение 7–9 месяцев обеспечивать вас ежедневно примерно 100 литрами теплой воды. А конструкции больших размеров вполне можно эксплуатировать и для отопления дома.

Если вы хотите сделать коллектор для круглогодичного использования, нужно будет установить на него добавочные теплообменники, два контура с веществом-антифризом и увеличить его поверхность. Подобные устройства обеспечат вас теплом и в солнечную, и в пасмурную погоду.

Установка Станилова – как изготовить самостоятельно?

В Европе востребованными являются установки для отопления дома, производимые по чертежам Станислава Станилова – известного изобретателя и инженера из Болгарии. Собрать такой солнечный коллектор своими руками можете и вы, руководствуясь далее приведенной схемой выполнения работ:

  1. Берем деревянные доски сечением 12х2,5 (3) см, сколачиваем из них короб, усиливая дополнительно его днище брусками 5х3 см.
  2. Укладываем на дно получившегося ящика теплоизолирующий материал – минвату, пенополистирольные либо пенопластовые плиты, а сверху – лист жести или обыкновенного железа.
  3. Из стальных труб нужно будет сделать радиатор трубчатого типа (сварить между собой несколько трубных изделий) и установить его в короб.
  4. Тщательно фиксируем радиатор стальными , замазываем щели и зазоры в ящике, герметизируем его.
  5. Внешние элементы конструкции окрашиваем в белый либо серебристый цвет (тем самым значительно уменьшаем тепловые потери), радиатор и дно короба – в черный цвет.

После этого нужно будет сделать тепловой накопитель и специальную аванкамеру. Функцию первого может выполнять любая герметичная емкость объемом 150–400 литров. Допускается брать несколько баков и соединять их между собой. Аванкамеру несложно сделать из сосуда (обязательно герметичного) объемом 40 и более литров. В нее следует поместить обычный шар-кран, используемый в . Он необходим для формирования небольшого, но постоянного давления в камере.

Накопитель самодельного устройства для отопления дома теплоизолируют и ставят в заранее подготовленный короб из фанеры. Расстояние между его стенками и накопительным баком заполняют пенопластом, минеральной ватой. Некоторые умельцы используют для изоляции и обычные древесные опилки, чтобы снизить стоимость конструкции. Теперь можно приступать к сборке и установке коллектора. Сначала монтируете аванкамеру и накопитель в одну конструкцию. В накопителе уровень воды должен быть по отношению к уровню в аванкамере ниже на 0,8–0,9 метров.

Затем подсоединяете к составляющим коллектора трубы: подпитки накопителя, подачи воды (горячей) к смесителям, подачи воды (холодной) к аванкамере и к смесителям, ввода холодной воды и две дренажные – для аванкамеры и для накопителя. На участки с малым напором воды рекомендуется ставить трубные изделия сечением 1 дюйм, с высоким напором – 1/2 дюйма. Для подсоединения труб используются сгоны, тройники, переходники, фитинги. Здесь нужно смотреть по ситуации, какие элементы приобретать, монтируя коллектор для отопления частного дома.

Собранную конструкцию ставят на кровле южной стороны постройки. По отношению к горизонту угол ее наклона должен составлять примерно 45°.

Как собрать воздушный коллектор для дома из водосточных труб?

Еще проще и дешевле изготовить устройство, которое вместо воды использует воздух в качестве теплоносителя. Воздушный коллектор для нагрева воды и отопления дома делают так:

  1. Собирают каркас из 3–4-сантиметровых досок. На заднюю его стенку дополнительно крепят лист фанеры (около 1 см толщиной) с высокими влагостойкими свойствами.
  2. Боковые поверхности собранного ящика изолируем пенополистиролом, а заднюю стенку утепляем минеральной ватой.
  3. Абсорбер, которым будет располагать наш воздушный коллектор, делают из тонкого алюминиевого листа, алюминиевых водосточных труб и хомутов для крепления этих элементов в одну систему. Лист укладывается в корпус, к нему прикрепляют трубы. Последние добавочно фиксируются перегородкой из древесины.
  4. Делаем с одной стороны корпуса вход и выход для труб.
  5. Окрашиваем в черный цвет наш воздушный коллектор.

На лицевую часть конструкции крепим лист сотового поликарбоната. Теперь можно устанавливать сделанный воздушный коллектор. Выполняется эта процедура на устойчивые опоры (устройство получится достаточно тяжелым) с южной стороны строения. Затем нужно просто подключить воздушный коллектор к вентиляционной системе здания.

Наглядно вся процедура доступна на видео. Пользуйтесь на здоровье альтернативной – практически бесплатной солнечной энергией!

С проблемами обогрева жилых помещений и получения горячей воды приходится сталкиваться практически каждому владельцу частного дома. На сегодняшний день существует множество самых разнообразных систем, позволяющих с успехом решать упомянутые задачи. Отдельного внимания заслуживают альтернативные источники отопления, в частности коллектор, использующий в качестве топлива солнечную энергию. Такой агрегат предельно прост в сборке и выгоден в эксплуатации.

Солнечный коллектор своими руками

Основные сведения о самодельных солнечных коллекторах

Средний коэффициент полезного действия самодельных солнечных коллекторов достигает 50-60%, что является вполне хорошим показателем.

Профессиональные агрегаты имеют КПД порядка 80-85%, но нужно учитывать тот факт, что стоят они довольно дорого, а приобрести материалы для сборки самодельного коллектора может себе позволить практически каждый.

Мощности обыкновенного солнечного коллектора будет достаточно для подогрева воды и отопления жилых комнат.

В данном отношении все зависит от особенностей конструкции, которые определяются и просчитываются в индивидуальном порядке.

Сборка агрегата не требует наличия сложных в обращении и труднодоступных инструментов и дорогостоящих материалов.

Инструменты для самостоятельной сборки солнечного коллектора

  1. Перфоратор.
  2. Электродрель.
  3. Молоток.
  4. Ножовка.

Существует несколько разновидностей рассматриваемой конструкции. Они отличаются друг от друга эффективностью и итоговой стоимостью. При любых обстоятельствах самодельный агрегат будет стоить на порядок дешевле, чем заводская модель с аналогичными характеристиками.

Одним из наиболее оптимальных вариантов является вакуумный солнечный коллектор. Это наиболее бюджетный и простой в своем исполнении вариант.

Конструкция солнечного коллектора

Конструкция солнечного коллектора

Рассматриваемые агрегаты имеют довольно простую конструкцию. В целом система включает в свой состав пару коллекторов, аванкамеру и накопительную емкость. Работа солнечного коллектора осуществляется по простому принципу: в процессе прохождения солнечных лучей через стекло происходит их превращение в тепло. Система организована так, что выйти из замкнутого пространства эти лучи не в состоянии.

Установка функционирует по термосифонному принципу. В процессе нагревания теплая жидкость устремляется вверх, вытесняя оттуда холодную воду и направляя ее к источнику тепла. Это позволяет отказаться даже от применения насоса, т.к. жидкость будет циркулировать сама по себе. Установка накапливает энергию солнца и на протяжение продолжительного времени сохраняет ее внутри системы.

Компоненты для сборки рассматриваемой установки продаются в специализированн ых магазинах. По своей сути такой коллектор является трубчатым радиатором, установленным в специальную коробку из древесины, одна из граней которой выполнена из стекла.

Для изготовления упомянутого радиатора используются трубы. Оптимальным материалом изготовления труб является сталь. Подводка и отводка делаются из труб, традиционно применяемых при устройстве водопровода. Обычно используются трубы на ¾ дюйма, также хорошо подойдут изделия на 1 дюйм.

Решетка делается из труб меньшего размера с более тонкими стенами. Рекомендованный диаметр составляет 16 мм, оптимальная толщина стенок — 1,5 мм. Каждая решетка радиатора должка включать в свой состав 5 труб длиной по 160 см каждая.

Важные нюансы сборки коллектора своими руками

Первый этап – сборка короба. Для сборки упоминавшегося ранее короба используются деревянные доски шириной порядка 12 см и толщиной 3-3,5 см. Днище выполняется из оргалита либо фанерного листа. Дно обязательно усиливается при помощи реек размером 5х3 см. Длину реек подбирайте по размерам днища.

Второй этап – утепление короба. Короб нуждается в качественном утеплении. Лучший и наиболее удобный в использовании вариант – плиты пенопласта. Также хорошо подойдет минеральная вата. Утеплитель укладывается на дно короба.

Третий этап – обустройство короба для радиатора. Уложенный утеплитель необходимо укрыть слоем оцинкованного листового металла. Для соединения радиатора и уложенного листа металла используются хомуты. Предварительно окрасьте трубу радиатора и металлический настил черной матовой краской.

Снаружи коробка окрашивается в белый, а стекло герметизируется при помощи специально предназначенных для таких задач составов. Это позволит минимизировать потери тепла. Соединение труб выполняется в стандартном порядке при помощи тройников, муфт, а также уголков. Применяемые при сборке коллектора трубы без особых усилий соединяются вручную.

Четвертый этап – подготовка аккумулирующего бака. За накопление тепла в рассматриваемой системе отвечает бак, емкость которого может находиться в пределах 200-400 л. Конкретный объем подбирайте с учетом вашей личной потребности в воде. Бак можно сделать из бочки. Если найти подходящую бочку не удастся, используйте трубы.

Бак нуждается в утеплении. Лучше всего установить его в короб из фанерных листов или деревянных досок, а пространство между стенками коробки и емкости заполнить опилками, пенопластом или другим теплоизоляционны м материалом.

Пятый этап – подготовка аванкамеры. В состав рассматриваемой системы входит агрегат под названием аванкамера. Главной функцией этого приспособления является нагнетание постоянного избыточного давления, требуемого для полноценной работы системы на основе солнечного коллектора. Аванкамера изготавливается из подходящей емкости на 35-45 л. Прекрасно подойдет бидон. Дополнительно агрегат комплектуется подпитывающим устройством для автоматизации работы.

Поэтапное руководство по сборке агрегата

Схема циркуляции теплоносителя

Первый этап – установка накопителя и аванкамеры. Упомянутые агрегаты размещаются на чердаке дома. Убедитесь, что потолок в месте установки сможет выдержать вес емкостей с водой. Установите аванкамеру рядом с накопителем. Сделайте это так, чтобы уровень жидкости в аванкамере был выше уровня воды в накопительной емкости примерно на 100 см.

Второй этап – выбор места для установки солнечного обогревателя. Агрегат закрепляется на южной стене строения. Важно выдержать правильный уклон обогревателя к горизонту. Оптимальным считается значение в 45 градусов. Коллектор необходимо прикрепить к дому так, чтобы солнечные панели выглядели как продолжение кровли.

Третий этап – соединение отдельных элементов. Для выполнения этой задачи вам нужно купить дюймовые и полудюймовые стальные трубы. Полудюймовые вы будете использовать для соединения высоконапорных элементов системы – от места ввода воды до аванкамеры. Дюймовые трубы применяются в низконапорной части.

Важно, чтобы соединения были герметичными, воздушные пробки в данном случае недопустимы.

Предварительно трубы необходимо покрасить в белый или другой светлый цвет. Поверх краски закрепляется слой теплоизоляционно го материала. В данном случае оптимально подойдет поролон. Поверх утеплителя наматывается слой полиэтилена, а затем тканой ленты. В завершении трубы снова окрашиваются в белый цвет.

Четвертый этап – заполнение системы жидкостью. Воду нужно подавать через специальные дренажные вентили, установленные внизу радиаторов. Это позволит избежать образования воздушных заторов. Когда из дренажа начнет течь вода, операцию можно считать завершенной.

Пятый этап – подключение аванкамеры. Данный агрегат необходимо подключить к водопроводному вводу. После подсоединения следует открыть расходный вентиль. Вы увидите, что количество воды в аванкамере начнет уменьшаться.

Преимуществом подобного солнечного коллектора, собранного своими руками, является то, что он сможет подогревать воду даже при пасмурной погоде.

Ночью температура воздуха становится ниже температуры подогретой воды. В подобных условиях коллектор начнет обогревать окружающую среду и в целом работать в обратном режиме. Чтобы этого избежать, система комплектуется вентилем, позволяющим предупреждать возможность обратной циркуляции. Достаточно будет попросту перекрыть этот вентиль вечером, и энергия сохранится в системе.

При недостаточно высокой теплопроводности коллектора ее можно повысить путем добавления секций. Конструкция позволит вам сделать это безо всяких затруднений.

Можно конечно искусственно регулировать направление солнечных панелей по отношению к Солнцу, подкладывая под коллектор дополнительные конструкции

Таким образом, в самостоятельной сборке солнечного обогревателя нет ничего сложного. Больших денежных вложений такая работа тоже не требует, однако настоятельно рекомендуется покупать только высококачественн ые материалы от известных производителей. Подойдите к работе с максимальной ответственностью, не нарушайте приведенные рекомендации, и вы получите отличный источник тепла и горячей воды, работающий на бесплатной энергии. Удачной работы!

Солнечный коллектор своими руками - инструкция по монтажу!


Узнайте, как сделать солнечный коллектор своими руками. Пошаговая инструкция с описанием основных технологических этапов. Фото + видео.

Изготовление солнечных коллекторов своими руками

Солнечные коллекторы (водонагреватели) широко применяются для нагрева воды и отопления домов за счет энергии солнца, причем не только в летний период, а на протяжении всего года. В данном разделе вы узнаете, как сделать солнечный коллектор (водонагреватель) своими руками из подручных материалов и минимальными затратами.

Как сделать солнечный коллектор с высоким КПД из металлопластиковой трубы

КПД самодельного солнечного коллектора, можно значительно увеличить , внеся в конструкцию незначительные доработки, а именно установить на трубы абсорберы . Таким образом, даже используя в качестве теплообменника металлопластиковую трубу, можно построить солнечный коллектор, который в солнечную погоду способен вскипятить воду.

Какое выбрать стекло при изготовлении солнечного коллектора своими руками

Эффективность солнечного коллектора напрямую зависит от применяемого остекления.

Остекление должно обладать следующими свойствами:

– Обладать малым весом

– Стойкость к УФ излучению

– Противостоять повышенным температурам

Выбор утеплителя при изготовлении солнечного коллектора

Существует масса различных марок и видов утеплителей. Они отличаются по своим теплоизоляционным свойствам, физическим характеристикам, стоимости, удобности применения. Для вас будет представлен перечень утеплителей, которые наиболее распространены на рынке и какие из этого перечня можно применять.

Выбор труб для изготовления теплообменника солнечного коллектора

На сегодняшний день производители обеспечивают рынок большим ассортиментом труб из разных материалов. Все эти трубы по своим показателям имеют свои достоинства и недостатки. Здесь будут рассмотрены трубы которые наиболее оптимально подходят для изготовления коллекторов и разводки водоснабжения.

Изготовление солнечного водонагревателя своими руками

При изготовлении солнечного водонагревателя своими руками преследовалась цель, обеспечить теплой водой летний душ, в котором, при частом использовании вода просто напросто не успевала нагреваться даже при сильной солнечной активности.

Расчет площади солнечного коллектора

При строительстве системы горячего водоснабжения, используя солнечные коллекторы, многие задаются вопросом: "Какую площадь коллектора необходимо использовать? ". Чтобы не пугать вас сложными формулами и вычислениями, предложу схему, по которой вы сможете без проблем рассчитать примерную площадь коллектора для ваших нужд.

Как сделать солнечный концентратор из плоских зеркал

Преимущество солнечных концентраторов в том, что они могут преобразовывать воду в пар (в зависимости от скорости движения воды в теплообменнике). Зачем это надо? А необходимо это, например, для пропарки изделий из бетона, древесины, запуска парового двигателя и т.д.

Изготовление солнечного коллектора с медным теплообменником

Если ваша крыша покрыта черным рубероидом или битумной черепицей темного цвета, вы можете немного сэкономить на теплоизоляции задней стенки и изготовить солнечный коллектор (водонагреватель) своими руками . Разумеется, участок, где будет установлен солнечный коллектор, должен быть обращен по направлению к солнцу.

Солнечный концентратор для нагрева воды своими руками

Основное достоинство солнечного концентратора (рефлектора) в том, что они могут достигать более высоких КПД. Фокусируя высокую плотность солнечной энергии в одной точке, они способны превращать воду в пар в считанные секунды.

Как сделать солнечный коллектор для бассейна на 2кВт

После строительства бюджетного бассейна, пришла мысль построить солнечный коллектор, который способен будет нагреть 10 кубов воды, до комфортной для купания температуры. Для этого был построен коллектор площадью 4кв.м. и ориентировочной мощностью 2кВт.

Делаем солнечный коллектор из старой оконной рамы

Многие из нас уже давно сменили старые деревянные окна на металлопластиковые. И такая замена, в большей степени связанна не с экстерьером, а с сохранением тепла в наших квартирах. Старые оконные рамы вместе со стеклами, мы за ненадобностью просто выбрасывали на мусорник. Хотя с другой стороны, оконная рама (которая открывается книжкой) нам может еще сослужить хорошую службу в качестве солнечного коллектора (водонагревателя).

Базовые схемы подключения солнечных коллекторов

Эффективность работы солнечного коллектора зависит не только от материалов, из которых он изготовлен, но и от того, насколько правильно он установлен и смонтирован. Схема подключения во многом зависит от требований, предъявляемых к солнечному коллектору. Поскольку вариаций подключения великое множество, приведу лишь основные, базовые схемы.

Как сделать солнечный коллектор из пластиковых бутылок

В период летней жары, наибольшим спросом среди населения пользуется минеральная вода, напитки, соки и т.д. Однако, сами того не замечая, мы увеличиваем количество мусора на планете, выкидывая использованные пластиковые бутылки и тетра паки в мусорный бак. С другой стороны, данный "мусор" можно использовать с пользой для себя, т.е. сделать солнечный коллектор из пластиковых бутылок . Таким образом, мы получим бесплатную горячую воду, потратив на это минимум средств, и сделаем нашу планету чуточку чище.

Солнечный коллектор из старого холодильника своими руками

Для получения горячей воды при помощи энергии солнца, можно собрать своими руками простенький солнечный коллектор из материалов, которые вполне можно найти на своем хоз. дворе. При этом затраты на изготовление будут весьма мизерные. В качестве теплообменника (основы солнечного коллектора), будем использовать конденсатор от старого холодильника (решетка, которая крепится с тыльной стороны холодильника).

Солнечный водонагреватель из старого электрического бойлера

Многие, неисправные электрические бойлеры просто напросто выкидывают на свалку, хотя с другой стороны, бойлеру можно предоставить вторую жизнь, и своими руками изготовить из него солнечный водонагреватель , используя для нагрева воды бесплатную энергию солнца.

Как сделать плоский солнечный коллектор из полипропилена

Как сделать большой солнечный коллектор из PEX трубы

Частенько строительство одного большого коллектора по цене выходит дешевле, чем строительство маленьких, но большего количества. Речь пойдет о строительстве солнечного коллектора из пластиковой трубы , только более внушительных размеров.

Как сделать солнечный коллектор из шланги

Многие, замечали, что если оставить шлангу с водой на солнце, то после включения воды из шланга течет очень горячая вода (особенно если шланг темного цвета). Так почему бы нам не сделать солнечный коллектор , используя шлангу или полиэтиленовую трубу просто свернув в кольцо.

Изготовление солнечных коллекторов своими руками


Солнечные коллекторы (водонагреватели) широко применяются для нагрева воды и отопления домов за счет энергии солнца, причем не только в летний период, а на протяжении всего года. Вы узнаете, как сделать солнечный коллектор (водонагреватель) своими руками из подручных материалов и минимальными затратами.

Рассказываем как сделать солнечный коллектор для отопления своими руками

Всевозможные солнечные коллекторы разрабатываются с применением новейших технологий и современных материалов. Благодаря таким устройствам происходит преобразование солнечной энергии . Полученная энергия может нагревать воду, отапливать помещения, теплицы и оранжереи.

Аппараты можно укреплять на стенах, крышах частного дома, теплицы . Для больших помещений рекомендовано приобретать фабричные устройства. Сейчас гелиосистемы постоянно совершенствуются. Поэтому солнечные батареи сильно подают в цене, привлекая внимание потребителей. Стоимость фабричных устройств почти равноценна финансовым затратам, потраченным на их изготовление. Повышение цены происходит только из-за финансовой накрутки перекупщиков. Стоимость коллектора соизмерима с денежными затратами, которые потребуются на установку классической системы отопления.

На сегодняшний момент изготовление таких устройств набирает все большую популярность. Стоит заметить, что эффективность самодельного аппарата по своему качеству сильно уступает фабричным устройствам . Но обогреть небольшое помещение, частный дом или хозяйственные постройки агрегат, выполненный своими руками, может легко и быстро.

Принцип работы

Но принцип водонагрева идентичен – все устройства работают по одной разработанной схеме . В хорошую погоду лучи солнца начинают нагревать теплоноситель. Он проходит по тонким изящным трубочкам, попадая в бак с жидкостью. Теплоноситель и трубочки размещаются по всей внутренней поверхности бака. Благодаря такому принципу происходит нагревание жидкости, находящейся в аппарате. Позже нагретую воду разрешено применять на бытовые нужды. Таким образом, можно отапливать помещение, использовать нагретую жидкость для душевых кабин как горячее водоснабжение.

Температуру воды можно контролировать разработанными датчиками. Если произошло слишком сильное охлаждение жидкости, ниже заданного уровня, то автоматически включится специальный резервный подогрев. Солнечный коллектор можно подключить к электрическому или газовому котлу.

Представлена схема работы, подходящая для всех солнечных водонагревателей. Такое устройство отлично подойдет для отопления небольшого частного дома. На сегодняшний момент разработано несколько устройств: плоские, вакуумные и воздушные приспособления. Принцип действия таких устройств очень схож. Происходит нагрев теплоносителя от солнечных лучей с дальнейшей отдачей энергии. Но в работе наблюдается очень много различий.

Плоский коллектор

Нагревание теплоносителя в таком устройстве происходит благодаря пластинчатому абсорберу. Он представляет собой плоскую пластину теплоемкого металла. Верхняя поверхность пластины в темный оттенок специально разработанной краской. К нижней части устройства приварена змеевидная трубка.

Темная селективная краска, покрывающая верхнюю поверхность пластины, поглощает мощные солнечные лучи. Отражение солнца сводится к минимуму. Поглощенная энергия прогревает теплоноситель под абсорбером. Чтобы минимизировать потери тепла – можно применить теплоизоляцию корпуса при помощи закаленного стекла. Такой материал содержит минимальное количество окислов железа. Стекло крепят над абсорбером. Устройство служит верхней крышкой корпуса. Также закаленное стекло создает «парниковый эффект» в виде изолирующей теплицы. Это значительно увеличивает нагрев абсорбера, повышая температуру теплоносителя. Такое устройство отлично подойдет для отопления частного дома. Также агрегат устанавливается в теплицы, душевые кабины, садовые оранжереи и парники .

Вакуумный коллектор

По сравнению с плоским устройством, вакуумный коллектор имеет другую конструкцию. Основными рабочими элементами принято считать вакуумированные трубки, а также теплоноситель. Благодаря высокоселективному покрытию стеклянная поверхность устройства поглощает большое количество солнца. Солнечная энергия начинает быстро нагревать внутренний теплоноситель. Ликвидация теплопотерь происходит при помощи вакуумной прослойки. Аккумулированное тепло проходит через теплосборник, двигаясь к самой системе устройства.

Если рассматривать работу в целом, то вакуумный коллектор обладает наибольшей производительностью, по сравнению с плоским устройством. Агрегат можно устанавливать на крышу частного дома, в оранжереи, теплицы, парники, летние душевые кабины.

Воздушный коллектор

Воздушный коллектор является одной из самых успешных разработок . Но солнечные батареи воздушного типа встречаются очень редко. Такие устройства не пригодны для отопления дома или горячего водоснабжения. Их применяют для кондиционирования воздуха. Теплоносителем является кислород, который нагревается под воздействием солнечной энергии. Солнечные батареи данного типа идентифицируются с ребристой стальной панелью, выкрашенной в темный оттенок. Принцип действия данного устройства представляет собой натуральную или автоматическую подачу кислорода в частные дома. Кислород при помощи солнечных излучений прогревается под панелью, создавая при этом кондиционирование воздуха.

Плюсы гелиосистем

  • Сокращение расхода электроэнергии минимум в 2-3 раза;
  • Из-за сильного истощения природных ресурсов агрегаты, выполненные своими руками, могут стать незаменимыми источниками отопления;
  • В воздушный аппарат, для придания специфических определенных ароматических свойств, разрешено добавлять дополнительные вещества. В воду плоского и вакуумного коллектора доливают антифризы. Они помогают не замерзать жидкости при низкой атмосферной температуре;

Минусы гелиосистем

  • Недавнее введение устройств в эксплуатацию;
  • Невозможность установки агрегатов в некоторых регионах из-за часового пояса, длины светового дня, расположения местности, погодных условий;
  • В большинстве случаев устройство, выполненное своими руками, рекомендовано применять только как дополнительный источник энергии. Использовать солнечные батареи для полной генерации тепла нецелесообразно;

Схема подключения солнечной установки:

Что понадобится?

Для того чтобы изготовить воздушный, плоский или вакуумный агрегат своими руками, понадобятся :

  • Температурные датчики, находящиеся в устройстве и накопителе;
  • Переходники для подключения системы к холодному водоснабжению;
  • Водосток для горячего водоснабжения;
  • Специальные температурные датчики для подогрева жидкости;
  • Расширительный бак;
  • Циркуляционный насос;
  • Солнечный регулятор;

Чертеж конструкции:

Инструкция по сборке

В первую очередь необходимо определить габариты будущего устройства . Поэтому рекомендовано тщательно провести точный расчет площади, на которой будет находиться устройство. Важным фактором при расчете является определение интенсивности солнечного излучения. В наиболее холодных регионах энергия солнца ослаблена, в южных регионах страны – повышена. Также на расчеты влияет местоположение дома, теплицы или других источников, в которых будет располагаться агрегат. Еще одним немаловажным фактом считается материал нагревательного контура. Чем ниже показатель материала – тем меньше температура воздушного или водяного потока.

Процесс сборки

Главные этапы работы:

  • Производство короба;
  • Производство специального теплообменника, а также радиатора;
  • Производство накопителя и аванкамеры;
  • Агрегатирование;

Введение в эксплуатацию;

Производство короба

Для коробки понадобится обрезная доска 30х120 мм ±5 мм. Днище короба делают текстолитовым, оснащая его специальными ребрами. Благодаря пенопласту создается хорошая теплоизоляция. Дно покрывают оцинкованным листом.

Производство теплообменника

  • Понадобятся металлические трубки. Длина труб должна быть не менее 1,6 м. Количество: 15 штук. Также в работе необходимо использовать две дюймовые трубы длиной 0,7 м.
  • В утолщенных трубках следует просверлить небольшие отверстия с идентичным диаметром меньших труб. Отверстия понадобятся для установки труб. Высверленные отверстия должны быть соосными, расположенными на одной оси. Их максимальный шаг должен составлять не более 4,5 см.
  • Все необходимые для работы трубки необходимо собрать в целую конструкцию. Для надежности их сваривают при помощи сварочного аппарата.
  • На оцинковку, прикрывающую дно короба, монтируют теплообменник. Для надежности его можно зафиксировать металлическими зажимами или стальными хомутами.
  • Для лучшего поглощения лучей дно конструкции выкрашивают в темный оттенок. Внешние составляющие конструкции выкрашивают в светлый оттенок. Отлично подойдет белый оттенок. Он помогает снизить потерю тепла.
  • Около перегородок устанавливается покровное стекло. Стыки тщательно герметизируют.
  • Среднее расстояние между элементами конструкции равно 11 мм.

Производство накопителя

Разрешено использовать как цельнокроеную бочку, так и различные сваренные конструкции. Накопительный бак следует изолировать от тепловых потерь. Аванкамера должна быть оснащена шарнирным краном – механизмом, подающим жидкость. Объем аванкамеры должен быть равен 36-40 л.

Агрегатирование

  • В первую очередь устанавливаются накопитель и аванкамера. Высота воды в аванкамере должен быть на 0,8 м выше, чем в накопителе. Необходимо продумать устройство перекрытия жидкости.
  • Коллектор, предназначенный для отопления, закрепляется на каркасе строения. Устройство, предназначенное для нагрева воды, можно разместить на крыше теплицы, оранжереи или дома. Для размещения устройства выбирают южную сторону. Установка должна иметь наклон к горизонту, равный 35-40°.
  • Расстояние между теплообменником и накопителем должно быть не более 50-70 см. В ином случае потери солнечной энергии будут сильно ощутимы.
  • Коллектор должен располагаться ниже накопителя, а накопитель ниже аванкамеры.

Введение в эксплуатацию

Для окончательной сборки понадобится специальная запорная арматура в виде различных переходников, сгонов или фитингов. Высоконапорные участки солнечной батареи соединяют специальными трубами диаметром 0,5 дюймов. Для низконапорных участков рекомендовано применять трубы диаметром 1 дюйм.

  • При помощи нижнего дренажного отверстия конструкция заполняется водой;
  • К устройству присоединяется аванкамера;
  • Производится урегулирование уровней жидкости;
  • Рекомендовано произвести проверку батареи на утечку воды;

После сборки и проверки конструкции можно приступать к эксплуатации;

Изготовление или покупка готового решения?

Самодельные устройства, предназначенные для отопления и нагрева воды, обладают низким КПД. Поэтому такие конструкции рекомендовано использовать для обогрева теплицы, цветочной оранжереи, небольшого частного помещения. Воздушный, плоский или вакуумный аппарат может значительно повысить уровень комфорта на даче или в загородном доме. Аппараты снижают затраты на электроэнергию, потребляемую обычными источниками питания. Благодаря введению новых технологий, применение гелиосистем набирает все большие обороты. Но для холодных регионов страны следует приобретать фабричные конструкции.

Солнечный коллектор для отопления своими руками


Говорим о возможности сделать солнечный коллектор для отопления своими руками. Благодаря таким устройствам происходит преобразование солнечной энергии.

Коллектор солнечный своими руками: виды, принцип работы и фото

Использование солнечной энергии давно уже не новшество. Использовать ее можно для местного нагрева воды, например, на даче. Применить такой нагрев можно и для отопления, но стоимость дополнительного оборудования выйдет довольно высокой. Соорудить солнечный коллектор своими руками – не фантастика!

Для использования энергии солнца применяют специальные коллекторы. Для применения в разных целях существуют несколько вариантов устройств. Существуют такие типы элементов:

Плоский коллектор

Им можно назвать солнечную панель. Плоский солнечный коллектор своими руками создать выгодно и несложно. В центре данного устройства расположена панель поглотителя. Выполнена такая панель из металлов, которые хорошо проводят тепло, чаще всего это медь или алюминий.Чтобы коллектор хорошо выполнял свою функцию, а именно максимально поглощал солнечную энергию и с минимальными потерями преобразовывал ее в тепловую, на его поверхность должен быть нанесен специальный состав. Его поверхность защищает стекло с минимальным содержанием в своем составе железа. Такое стекло обладает хорошей пропускной способностью, минимальным отражением света и является хорошей защитой от воздействий внешней среды. По периметру поглотитель имеет корпус для защиты от механических воздействий, выполнен он обычно из стали или алюминия. Корпус и нижняя часть коллектора имеют теплоизоляцию. Плоский элемент способен передавать тепло тому теплоносителю, который в нем расположен. Это может быть простая вода или антифриз.

Расположить плоский коллектор можно в любом положении. Обычно его закрепляют на крыше, но и в другом месте он будет работать не хуже. Соорудить такой солнечный коллектор своими руками можно без больших вложений.

Если говорить о заводских элементах, то плоские могут быть стандартных размеров, площадью до 2,5 м 2 .
Если требуется большая мощность, можно устанавливать несколько стандартных панелей вместе. Они будут составлять единую систему солнечного тепла.

У плоских коллекторов есть преимущество – они дешевле аналогов вакуумных. Но при низких температурах окружающей среды такие коллекторы теряют много энергии и уровень КПД снижается. Поэтому для применения в летний период достаточно будет плоского коллектора, а вот зимой он уступит вакуумному коллектору почти в два раза.

Такой коллектор состоит из трубок, внутри них вакуум. Устройство каждой трубки напоминает устройство термоса, в основе которого стержень из меди, оболочка такого термоса – колба из дойного стекла, как раз между ними вакуум. Внутренняя оболочка трубки покрыта специальной черной краской, а внешнее стекло прозрачное. Трубки объединяются при помощи соединительного модуля.

Ценовая категория такого типа коллекторов выше аналогов плоских моделей, но преимущество определяется их выгодой использования в зимний период. Своими руками для дома солнечные коллекторы сделать можно из подручных материалов. Они могут быть от других устройств, например, от холодильника. В ремонте устройств вакуумного типа сложностей возникнуть не должно. Если одна из трубок выйдет из строя, сам коллектор продолжит работу. Но выход тепла будет меньше.

Вакуумные элементы можно подразделить на:

Вакуумный солнечный коллектор своими руками смонтировать сложнее, чем плоский. Выйдет это немного дороже, но надо оценить преимущества вакуумного перед его установкой.

Солнечный коллектор своими руками соорудить не так сложно. Но стоит помнить, что он не будет также эффективен, как аналогичный произведенный в промышленных условиях. Необходимо сделать соответствующий расчет выгоды и эффективности данного устройства.

Как изготовить солнечный коллектор своими руками?

Для того чтобы приступить к устройству такого солнечного накопителя тепла, нужно самостоятельно совершить следующие действия:

  • подготовить основу будущего коллектора;
  • подготовить для установки радиатор;
  • подготовить накопитель тепла;
  • произвести монтаж непосредственно коллектора.

Основой устройства может служить обрезная доска с размерами от 25-100 мм до 35-135 мм. Из них следует сделать коробку походящего размера, ее дно изолировать и положить утеплитель (подойдет обычная стекловата), сверху укрыть оцинкованным листом.

Теплообменник изготавливается следующим образом:

  1. Следует приобрести металлические трубки: тонкостенные и толстостенные.
  2. В толстостенных трубках надо сделать отверстия по диаметру тонких труб с шагом не более 45 мм. Сверлятся они по одной стороне. Конечно, солнечный коллектор, своими руками сделанный, потребует времени на подготовку не только необходимого материала, но и инструмента.
  3. На этом этапе следует надежно укрепить трубки в отверстиях и закрепить их сваркой.
  4. Сооруженная конструкция закрепляется на оцинкованном листе, находящемся на коробе.
  5. Следующим этапом будет покраска коробки коллектора в черный цвет. Желательно только дно покрасить темным, а остальные части оставить светлыми, так как именно днище будет поглощать солнечные лучи.
  6. Затем устанавливается стекло покрова, соблюдая расстояние между ним и трубками не менее 1 см.
  7. Накопителем для коллектора может служить любая герметичная емкость. Объем ее может достигать 400 литров (минимум 150 литров).
  8. Следующий этап – изготовление аванкамеры. Это может быть емкость до 40 литров, на ней устанавливают кран, именно это устройство будет подавать воду.
  9. Чтобы избежать потерь тепла, надо основательно изолировать бак и сам коллектор.

Сборка устройства

Теперь нужно окончательно собрать его в единое целое. Сборка производится в несколько этапов:

  1. Установка накопителя и аванкамеры. Важное условие – жидкость в накопителе обязательно должна быть ниже уровня в аванкамере на 80 мм.
  2. Размещение коллектора в подготовленном месте. Можно это сделать на крыше. Надо соблюсти угол наклона в 35-40 градусов, установив элемент при этом с южной стороны.
  3. Чтобы минимизировать потери тепла, следует соблюсти расстояние не меньше 50 см между теплообменником и накопителем.
  4. Накопитель должен располагаться выше коллектора и ниже аванкамеры.

Остается самый ответственный этап – подключение к системе.

Для этого нужно заполнить систему водой, отрегулировать ее количество, убедиться в отсутствии протечек. Если соблюдены все условия, таким коллектором можно пользоваться ежедневно.

Такой сделанный солнечный коллектор для отопления своими руками сбережет немало средств. Водонагревательные системы, в основе которых лежит солнечный коллектор, можно разделить по типу циркуляции воды.

Естественная циркуляция воды

При такой системе циркуляции бак-накопитель располагается выше коллектора. По естественным законам, вода нагревается и поступает вверх в бак. При этом происходит вытеснение холодной воды, она уход вниз и поступает в коллектор. Там она нагревается и снова поднимается. Бак такой конструкции можно оснастить только двумя шлангами: для подачи холодной воды и отведения горячей. Подойдет такая система для небольших дачных нужд – летней кухни или душа.

Принудительная

Такая система не зависит от того, где располагается коллектор или накопительный бак. Вода циркулирует в такой системе благодаря дополнительно поставленному насосу. Из-за того, что требуется установка электронасоса, стоимость коллектора возрастает. При этом повышается производительность.

Наряду с плоскими и вакуумными устройствами существует возможность создать воздушный солнечный коллектор своими руками. Устройство его намного проще, чем водяного, но и главный недостаток существенен – он не может передать все накопленное тепло. Воздух – проводник тепла намного хуже, чем вода.

Однозначно сказать, какой коллектор лучше выбрать – нельзя. Все будет зависеть от того, где он будет применен и какой уровень КПД нужен в конкретном случае. Но поможет сделать выбор сравнение положительных качеств и недостатков каждого из видов по следующим параметрам:


Выгода от солнечного элемента

Преимущества установки коллектора есть, но в каждом индивидуальном случае их будет больше или меньше. Основные общие плюсы:

  • Экономия ресурсов, выработанных искусственным путем.
  • Отказ от искусственных ресурсов полностью. Это можно осуществить, если речь идет о небольшом потреблении.
  • Экономия на покупке готового оборудования, при возможности монтажа коллектора собственноручно из доступных материалов.
  • Независимость от общих сетей отопления. Если нет возможности подключения к центральной магистрали, солнечные коллекторы – удачная замена.

Если дом большой и проживает в нем достаточное количество человек, полный отказ от искусственных ресурсов невозможен, но их сокращение и экономия на этом – вполне реально выполнимая задача.

Коллектор солнечный своими руками: виды, принцип работы и фото


Использование солнечной энергии давно уже не новшество. Использовать ее можно для местного нагрева воды, например, на даче. Применить такой нагрев можно и для отопления, но стоимость дополнительного оборудования выйдет довольно дорого. Соорудить коллектор солнечный своими руками давно уже не фантастика.

Основной задачей солнечного коллектора является преобразование полученной от солнца энергии в электричество. Принцип работы и конструкция оборудования несложные, поэтому технически сделать его легко. Как правило, полученную энергию используют для обогрева зданий. Изготовление солнечного коллектора для отопления дома своими руками необходимо начинать с подбора всех комплектующих.

    Показать всё

    Конструкция и принцип работы

    Отопление дома с помощью преобразования солнечной энергии в электрическую используется, как правило, в качестве дополнительного источника тепла, а не основного. С другой стороны, если установить конструкцию большой мощности, а все приборы в доме переоборудовать под электричество, тогда можно обойтись только солнечным коллектором.

    Но стоит помнить, что отопление с помощью солнечных коллекторов без дополнительных источников тепла возможно только в южных регионах. При этом панелей должно быть достаточно много. Их необходимо располагать таким образом, чтобы на них не падала тень (например, от деревьев). Размещать панели следует лицевой стороной в направлении, максимально освещаемом солнцем на протяжении всего дня.

    Концентраторы солнечной энергии

    Хоть сегодня существует много разновидностей таких устройств, принцип работы у всех одинаковый. Любая схема забирает солнечную энергию и передаёт её потребителю, представляя собой контур с последовательным расположением приборов. Комплектующими, производящими электроэнергию, являются солнечные батареи или коллекторы.

    Коллектор состоит из трубок, которые последовательно соединены со входным и выходным отверстием. Также они могут располагаться в виде змеевика. Внутри трубок находится техническая вода или смесь воды и антифриза. Иногда они наполняются просто воздушным потоком. Циркуляция осуществляется благодаря физическим явлениям, таким как испарение, изменение агрегатного состояния, давление и плотность.

    Абсорберы выполняют функцию сбора энергии солнца. Они имеют вид сплошной металлической пластины чёрного цвета либо конструкции из множества пластин, соединённых между собой трубками.

    Для изготовления крышки корпуса используют материалы с высокой пропускной способностью света. Зачастую это либо оргстекло, либо закалённые виды обычного стекла. Иногда используются полимерные материалы, но изготовление коллекторов из пластика не рекомендуется. Связано это с его большим расширением от нагревания солнцем. В результате может произойти разгерметизация корпуса.

    Если система будет эксплуатироваться только осенью и весной, то в качестве теплоносителя можно использовать воду. Но в зимнее время её необходимо заменить на смесь антифриза и воды . В классических конструкциях роль теплоносителя играет воздух, который движется по каналам. Их можно сделать из обычного профлиста.

    Опыт эксплуатации солнечной батареи изготовленной самостоятельно (солнечная батарея часть 3).

    Если коллектор необходимо устанавливать для обогрева небольшого здания, которое не подключено к автономной системе отопления частного дома или централизованным сетям, то подойдёт простая система с одним контуром и нагревательным элементом в её начале. Схема простая, но целесообразность её установки оспаривается, так как работать она будет только солнечным летом. Однако для её функционирования не потребуются циркуляционные насосы и дополнительные нагреватели.

    При двух контурах всё гораздо сложнее, но количество дней, когда станет активно вырабатываться электроэнергия, увеличивается в несколько раз. При этом коллектор будет обрабатывать только один контур. Большая часть нагрузки возлагается на одно устройство, которое работает на электроэнергии или другом виде топлива.

    Хоть производительность устройства напрямую зависит от количества солнечных дней в году, а цена на него завышена, оно всё равно пользуется большой популярностью среди населения. Не менее распространённым является производство солнечных теплообменников своими руками.

    Классификация по температурным показателям

    Гелиосистемы классифицируются по различным критериям. Но в приборах, которые можно изготовить самостоятельно, следует обратить внимание на вид теплоносителя. Такие системы можно разделить на два типа:

    • использование различных жидкостей;
    • воздушные конструкции.

    Первые применяются чаще всего. Они более производительные и позволяют напрямую подключить коллектор к отопительной системе. Также распространена классификация по температуре, в пределах которой может работать устройство:

    Солнечная батарея своими руками Part11

    Последний вид гелиосистем работает благодаря очень сложному принципу передачи солнечной энергии. Оборудованию требуется много места. Если разместить его на загородной даче, тогда оно займет преобладающую часть участка. Для производства энергии понадобится специальное оборудование, поэтому сделать такую солнечную систему самостоятельно будет практически невозможно.


    Изготовление своими руками

    Процесс изготовления солнечного обогревателя своими руками довольно увлекательный, а готовая конструкция принесёт много пользы хозяину. Благодаря такому устройству можно решить проблему обогрева помещений, нагрева воды и других важных хозяйственных задач.

    Материалы для самостоятельного производства

    В качестве примера можно привести процесс создания отопительного устройства, которое будет поставлять нагретую воду в систему. Самым дешёвым вариантом производства солнечного коллектора является использование в качестве основных материалов деревянного бруска и фанеры, а также плит ДСП. Как альтернативу можно использовать алюминиевые профили и металлические листы, но они обойдутся дороже.

    Все материалы должны быть влагоустойчивыми, то есть отвечать требованиям использования на открытом воздухе. Качественно изготовленный и установленный солнечный коллектор может служить от 20 до 30 лет. В связи с этим материалы должны иметь необходимые характеристики эксплуатации для применения на протяжении всего срока. Если корпус создан из дерева или плит ДСП, тогда для продления срока службы его пропитывают водно-полимерными эмульсиями и лаком.

    Обзор: Самодельная солнечная панель (батарея).

    Необходимые материалы для изготовления можно либо купить на рынке в свободном доступе, либо сделать конструкцию из подручных материалов, которые найдутся в любом хозяйстве. Поэтому основное, на что нужно обращать внимание, - это цена материалов и комплектующих.

    Обустройство теплоизоляции

    Чтобы уменьшить потери тепла, на дно короба укладывается изоляционный материал. Для него можно использовать пенопласт, минеральную вату и т. п. Современная промышленность предоставляет большой выбор различных утеплителей. Например, хорошим вариантом станет использование фольги. Она не только предотвратит потерю тепла, но и будет отражать солнечные лучи, а значит, увеличит нагрев теплоносителя.

    В случае использования пенопласта или полистирола для утепления можно вырезать для трубок канавки и монтировать их таким образом. Как правило, абсорбер фиксируется к днищу корпуса и укладывается по изоляционному материалу.

    Теплоприемник коллектора

    Теплоприемником солнечного коллектора выступает абсорбирующий элемент. Он представляет собой систему, состоящую из трубок, по которым движется теплоноситель, и других деталей, производящихся обычно из листов меди.

    Лучшим материалом для трубчатой части является медь. Но домашние умельцы изобрели более дешёвый вариант - полипропиленовые шланги , которые скручиваются в спиральную форму. Для подсоединения к системе на входе и выходе применяются фитинги.

    Подручные материалы и средства разрешается использовать различные, то есть практически любые, которые есть в хозяйстве. Тепловой коллектор своими руками можно изготовить из старого холодильника, полипропиленовых и полиэтиленовых труб, панельных радиаторов из стали и других подручных средств. Важным фактором при выборе теплообменника является теплопроводность материала, из которого он изготовлен.


    Идеальным вариантом для создания самодельного водяного коллектора является медь. Она имеет самую высокую теплопроводность. Но использование медных трубок вместо полипропиленовых не означает, что устройство будет выдавать намного больше тёплой воды. На равных условиях медные трубки будут на 15-25% эффективнее, чем установка полипропиленовых аналогов. Поэтому применение пластика тоже является целесообразным, к тому же он намного дешевле меди.

    При использовании меди или полипропилена необходимо делать все соединения (резьбовые и сварные) герметичными. Возможное расположение труб - параллельное или в виде змеевика. Верх основной конструкции с трубками закрывается стеклом. При форме в виде змеевика уменьшается количество соединений и, соответственно, возможное образование утечек, а также обеспечивается равномерное движение теплоносителя по трубкам.

    Для покрытия короба можно использовать не только стекло. В этих целях применяют полупрозрачные, матовые или рифлёные материалы. Использовать можно акриловые современные аналоги или монолитные поликарбонаты.

    При изготовлении классического варианта можно использовать закалённое стекло или оргстекло, поликарбонатные материалы и т. п. Хорошей альтернативой станет применение полиэтилена.

    Важно учитывать, что использование аналогов (рифлёных и матовых поверхностей) способствует уменьшению пропускной способности света. В заводских моделях применяют для этого специальное солярное стекло. Оно имеет немного железа в своём составе, что обеспечивает низкую теплопотерю.

    Накопительный бак установки

    Чтобы создать накопительный бак, можно использовать любую ёмкость объёмом от 20 до 40 литров. Также применяется схема с несколькими резервуарами, которые соединяются между собой в одну систему. Бак желательно утеплить, в противном случае подогретая вода быстро остынет.

    Если разобраться, то аккумуляции в этой системе нет, а нагретый теплоноситель необходимо использовать сразу же. Поэтому накопительная ёмкость используется для:

    • поддержания давления в системе;
    • замены аванкамеры;
    • распределения нагретой воды.

    Разумеется, что солнечный коллектор, сделанный своими руками в домашних условиях, не обеспечит качество и эффективность, характерные для моделей заводского производства. Используя только подручные материалы, о высоком коэффициенте полезного действия не стоит и говорить. В промышленных образцах такие показатели в несколько раз выше. Однако и финансовые затраты станут здесь намного меньше, так как используются подручные средства. Сделанная своими руками солнечная установка значительно повысит уровень комфорта в загородном доме, а также уменьшит расходы на другие энергоресурсы.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.