Основные операции над матрицами (сложение, умножение, транспонирование) и их свойства. Как научиться решать матрицы


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Матрицы, познакомьтесь с ее основными понятиями. Определяющими элементами матрицы являются ее диагонали - и побочная. Главная начинается с элемента в первом ряду, первом столбце и продолжается до элемента последнего столбца, последнего ряда (то есть идет слева направо). Побочная же диагональ начинается наоборот в первом ряду, но последнем столбце и продолжается до элемента, имеющего координаты первого столбца и последнего ряда (идет справа налево).

Для того чтобы перейти к следующим определениям и алгебраическим операциям с матрицами, изучите виды матриц. Самые простые из них - это квадратная, единичная, нулевая и обратная. В совпадает число столбцов и строк. Транспонированная матрица, назовем ее В, получается из матрицы А, путем замены столбцов на строки. В единичной все элементы главной диагонали - единицы, а другие - нули. А в нулевой даже элементы диагоналей нулевые. Обратная матрица - это та, на которую исходная матрица приходит к единичному виду.

Также матрица может быть симметрична относительно главной или побочной осей. То есть элемент, имеющий координаты а(1;2), где 1 - это номер строки, а 2 - столбца, равен а(2;1). А(3;1)=А(1;3) и так далее. Матрицы согласованными - это те, где количество столбцов одной равно количеству строк другой (такие матрицы можно перемножать).

Главные действия, которые можно совершить с матрицами - это сложение, умножение и нахождение определителя. Если матрицы одинакового размера, то есть имеют равное количество строк и столбцов, то их можно сложить. Складывать необходимо элементы, стоящие на одинаковых местах в матрицах, то есть а (m;n) сложите с в (m;n), где m и n - это соответствующие координаты столбца и строки. При сложении матриц действует главное правило обычного арифметического сложения - при перемене мест слагаемых сумма не меняется. Таким образом, если вместо простого элемента а стоит выражение а+в, то его можно сложить в элементом с другой соразмерной матрицы по правилам а+(в+с)= (а+в)+с.

Умножать можно согласованные матрицы, которым дано выше. При этом получается матрица, где каждый элемент - это сумма попарно перемноженных элементов строки матрицы А и столбца матрицы В. При перемножении очень важен порядок действий. m*n не равно n*m.

Также одно из главных действий - это нахождение . Еще его называют детерминантом и обозначают так: det. Эта величина определяется по модулю, то есть никогда не бывает отрицательной. Легче всего найти детерминант у квадратной матрицы 2х2. Для этого необходимо перемножить элементы главной диагонали и вычесть из них перемноженные элементы побочной диагонали.

Итак, в предыдущем уроке мы разобрали правила сложения и вычитания матриц. Это настолько простые операции, что большинство студентов понимают их буквально с ходу.

Однако вы рано радуетесь. Халява закончилась — переходим к умножению. Сразу предупрежу: умножить две матрицы — это вовсе не перемножить числа, стоящие в клеточках с одинаковыми координатами, как бы вы могли подумать. Тут всё намного веселее. И начать придётся с предварительных определений.

Согласованные матрицы

Одна из важнейших характеристик матрицы — это её размер. Мы уже сто раз говорили об этом: запись $A=\left[ m\times n \right]$ означает, что в матрице ровно $m$ строк и $n$ столбцов. Как не путать строки со столбцами, мы тоже уже обсуждали. Сейчас важно другое.

Определение. Матрицы вида $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, в которых количество столбцов в первой матрице совпадает с количеством строк во второй, называются согласованными.

Ещё раз: количество столбцов в первой матрице равно количеству строк во второй! Отсюда получаем сразу два вывода:

  1. Нам важен порядок матриц. Например, матрицы $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 5 \right]$ являются согласованными (2 столбца в первой матрице и 2 строки во второй), а вот наоборот — матрицы $B=\left[ 2\times 5 \right]$ и $A=\left[ 3\times 2 \right]$ — уже не согласованы (5 столбцов в первой матрице — это как бы не 3 строки во второй).
  2. Согласованность легко проверить, если выписать все размеры друг за другом. На примере из предыдущего пункта: «3 2 2 5» — посередине одинаковые числа, поэтому матрицы согласованы. А вот «2 5 3 2» — не согласованы, поскольку посередине разные числа.

Кроме того, капитан очевидность как бы намекает, что квадратные матрицы одинакового размера $\left[ n\times n \right]$ согласованы всегда.

В математике, когда важен порядок перечисления объектов (например, в рассмотренном выше определении важен порядок матриц), часто говорят об упорядоченных парах. Мы встречались с ними ещё в школе: думаю, и ежу понятно, что координаты $\left(1;0 \right)$ и $\left(0;1 \right)$ задают разные точки на плоскости.

Так вот: координаты — это тоже упорядоченные пары, которые составляются из чисел. Но ничто не мешает составить такую пару из матриц. Тогда можно будет сказать: «Упорядоченная пара матриц $\left(A;B \right)$ является согласованной, если количество столбцов в первой матрице совпадает с количеством строк во второй».

Ну и что с того?

Определение умножения

Рассмотрим две согласованные матрицы: $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$. И определим для них операцию умножения.

Определение. Произведение двух согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой считаются по формуле:

\[\begin{align} & {{c}_{i;j}}={{a}_{i;1}}\cdot {{b}_{1;j}}+{{a}_{i;2}}\cdot {{b}_{2;j}}+\ldots +{{a}_{i;n}}\cdot {{b}_{n;j}}= \\ & =\sum\limits_{t=1}^{n}{{{a}_{i;t}}\cdot {{b}_{t;j}}} \end{align}\]

Обозначается такое произведение стандартно: $C=A\cdot B$.

У тех, кто впервые видит это определение, сразу возникает два вопроса:

  1. Что это за лютая дичь?
  2. А почему так сложно?

Что ж, обо всём по порядку. Начнём с первого вопроса. Что означают все эти индексы? И как не ошибиться при работе с реальными матрицами?

Прежде всего заметим, что длинная строчка для расчёта ${{c}_{i;j}}$ (специально поставил точку с запятой между индексами, чтобы не запутаться, но вообще их ставить не надо — я сам задолбался набирать формулу в определении) на самом деле сводится к простому правилу:

  1. Берём $i$-ю строку в первой матрице;
  2. Берём $j$-й столбец во второй матрице;
  3. Получаем две последовательности чисел. Перемножаем элементы этих последовательностей с одинаковыми номерами, а затем складываем полученные произведения.

Данный процесс легко понять по картинке:


Схема перемножения двух матриц

Ещё раз: фиксируем строку $i$ в первой матрице, столбец $j$ во второй матрице, перемножаем элементы с одинаковыми номерами, а затем полученные произведения складываем — получаем ${{c}_{ij}}$. И так для всех $1\le i\le m$ и $1\le j\le k$. Т.е. всего будет $m\times k$ таких «извращений».

На самом деле мы уже встречались с перемножением матриц в школьной программе, только в сильно урезанном виде. Пусть даны вектора:

\[\begin{align} & \vec{a}=\left({{x}_{a}};{{y}_{a}};{{z}_{a}} \right); \\ & \overrightarrow{b}=\left({{x}_{b}};{{y}_{b}};{{z}_{b}} \right). \\ \end{align}\]

Тогда их скалярным произведением будет именно сумма попарных произведений:

\[\overrightarrow{a}\times \overrightarrow{b}={{x}_{a}}\cdot {{x}_{b}}+{{y}_{a}}\cdot {{y}_{b}}+{{z}_{a}}\cdot {{z}_{b}}\]

По сути, в те далёкие годы, когда деревья были зеленее, а небо ярче, мы просто умножали вектор-строку $\overrightarrow{a}$ на вектор-столбец $\overrightarrow{b}$.

Сегодня ничего не поменялось. Просто теперь этих векторов-строк и столбцов стало больше.

Но хватит теории! Давайте посмотрим на реальные примеры. И начнём с самого простого случая — квадратных матриц.

Умножение квадратных матриц

Задача 1. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\]

Решение. Итак, у нас две матрицы: $A=\left[ 2\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Понятно, что они согласованы (квадратные матрицы одинакового размера всегда согласованы). Поэтому выполняем умножение:

\[\begin{align} & \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot \left(-2 \right)+2\cdot 3 & 1\cdot 4+2\cdot 1 \\ -3\cdot \left(-2 \right)+4\cdot 3 & -3\cdot 4+4\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 4 & 6 \\ 18 & -8 \\\end{array} \right]. \end{align}\]

Вот и всё!

Ответ: $\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]$.

Задача 2. Выполните умножение:

\[\left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}}9 & 6 \\ -3 & -2 \\\end{array} \right]\]

Решение. Опять согласованные матрицы, поэтому выполняем действия:\[\]

\[\begin{align} & \left[ \begin{matrix} 1 & 3 \\ 2 & 6 \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} 9 & 6 \\ -3 & -2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 1\cdot 9+3\cdot \left(-3 \right) & 1\cdot 6+3\cdot \left(-2 \right) \\ 2\cdot 9+6\cdot \left(-3 \right) & 2\cdot 6+6\cdot \left(-2 \right) \\\end{array} \right]= \\ & =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]. \end{align}\]

Как видим, получилась матрица, заполненная нулями

Ответ: $\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \\\end{matrix} \right]$.

Из приведённых примеров очевидно, что умножение матриц — не такая уж и сложная операция. По крайней мере для квадратных матриц размера 2 на 2.

В процессе вычислений мы составили промежуточную матрицу, где прямо расписали, какие числа входят в ту или иную ячейку. Именно так и следует делать при решении настоящих задач.

Основные свойства матричного произведения

В двух словах. Умножение матриц:

  1. Некоммутативно: $A\cdot B\ne B\cdot A$ в общем случае. Бывают, конечно, особые матрицы, для которых равенство $A\cdot B=B\cdot A$ (например, если $B=E$ — единичной матрице), но в абсолютном большинстве случаев это не работает;
  2. Ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$. Тут без вариантов: стоящие рядом матрицы можно перемножать, не переживая за то, что стоит левее и правее этих двух матриц.
  3. Дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$ и $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$ (в силу некоммутативности произведения приходится отдельно прописывать дистрибутивность справа и слева.

А теперь — всё то же самое, но более подробно.

Умножение матриц во многом напоминает классическое умножение чисел. Но есть отличия, важнейшее из которых состоит в том, что умножение матриц, вообще говоря, некоммутативно .

Рассмотрим ещё раз матрицы из задачи 1. Прямое их произведение мы уже знаем:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}4 & 6 \\ 18 & -8 \\\end{array} \right]\]

Но если поменять матрицы местами, то получим совсем другой результат:

\[\left[ \begin{array}{*{35}{r}} -2 & 4 \\ 3 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 & 2 \\ -3 & 4 \\\end{array} \right]=\left[ \begin{matrix} -14 & 4 \\ 0 & 10 \\\end{matrix} \right]\]

Получается, что $A\cdot B\ne B\cdot A$. Кроме того, операция умножения определена только для согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, но никто не гарантировал, что они останутся согласованными, если их поменять местами. Например, матрицы $\left[ 2\times 3 \right]$ и $\left[ 3\times 5 \right]$ вполне себе согласованы в указанном порядке, но те же матрицы $\left[ 3\times 5 \right]$ и $\left[ 2\times 3 \right]$, записанные в обратном порядке, уже не согласованы. Печаль.:(

Среди квадратных матриц заданного размера $n$ всегда найдутся такие, которые дают одинаковый результат как при перемножении в прямом, так и в обратном порядке. Как описать все подобные матрицы (и сколько их вообще) — тема для отдельного урока. Сегодня не будем об этом.:)

Тем не менее, умножение матриц ассоциативно:

\[\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)\]

Следовательно, когда вам надо перемножить сразу несколько матриц подряд, совсем необязательно делать это напролом: вполне возможно, что некоторые рядом стоящие матрицы при перемножении дают интересный результат. Например, нулевую матрицу, как в Задаче 2, рассмотренной выше.

В реальных задачах чаще всего приходится перемножать квадратные матрицы размера $\left[ n\times n \right]$. Множество всех таких матриц обозначается ${{M}^{n}}$ (т.е. записи $A=\left[ n\times n \right]$ и \ означают одно и то же), и в нём обязательно найдётся матрица $E$, которую называют единичной.

Определение. Единичная матрица размера $n$ — это такая матрица $E$, что для любой квадратной матрицы $A=\left[ n\times n \right]$ выполняется равенство:

Такая матрица всегда выглядит одинаково: на главной диагонали её стоят единицы, а во всех остальных клетках — нули.

\[\begin{align} & A\cdot \left(B+C \right)=A\cdot B+A\cdot C; \\ & \left(A+B \right)\cdot C=A\cdot C+B\cdot C. \\ \end{align}\]

Другими словами, если нужно умножить одну матрицу на сумму двух других, то можно умножить её на каждую из этих «двух других», а затем результаты сложить. На практике обычно приходится выполнять обратную операцию: замечаем одинаковую матрицу, выносим её за скобку, выполняем сложение и тем самым упрощаем себе жизнь.:)

Заметьте: для описания дистрибутивности нам пришлось прописать две формулы: где сумма стоит во втором множителе и где сумма стоит в первом. Это происходит как раз из-за того, что умножение матриц некоммутативно (и вообще, в некоммутативной алгебре куча всяких приколов, которые при работе с обычными числами даже не приходят в голову). И если, допустим, вам на экзамене нужно будет расписать это свойство, то обязательно пишите обе формулы, иначе препод может немного разозлиться.

Ладно, всё это были сказки о квадратных матрицах. А что насчёт прямоугольных?

Случай прямоугольных матриц

А ничего — всё то же самое, что и с квадратными.

Задача 3. Выполните умножение:

\[\left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]\]

Решение. Имеем две матрицы: $A=\left[ 3\times 2 \right]$ и $B=\left[ 2\times 2 \right]$. Выпишем числа, обозначающие размеры, в ряд:

Как видим, центральные два числа совпадают. Значит, матрицы согласованы, и их можно перемножить. Причём на выходе мы получим матрицу $C=\left[ 3\times 2 \right]$:

\[\begin{align} & \left[ \begin{matrix} \begin{matrix} 5 \\ 2 \\ 3 \\\end{matrix} & \begin{matrix} 4 \\ 5 \\ 1 \\\end{matrix} \\\end{matrix} \right]\cdot \left[ \begin{array}{*{35}{r}} -2 & 5 \\ 3 & 4 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 5\cdot \left(-2 \right)+4\cdot 3 & 5\cdot 5+4\cdot 4 \\ 2\cdot \left(-2 \right)+5\cdot 3 & 2\cdot 5+5\cdot 4 \\ 3\cdot \left(-2 \right)+1\cdot 3 & 3\cdot 5+1\cdot 4 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 41 \\ 11 & 30 \\ -3 & 19 \\\end{array} \right]. \end{align}\]

Всё чётко: в итоговой матрице 3 строки и 2 столбца. Вполне себе $=\left[ 3\times 2 \right]$.

Ответ: $\left[ \begin{array}{*{35}{r}} \begin{array}{*{35}{r}} 2 \\ 11 \\ -3 \\\end{array} & \begin{matrix} 41 \\ 30 \\ 19 \\\end{matrix} \\\end{array} \right]$.

Сейчас рассмотрим одно из лучших тренировочных заданий для тех, кто только начинает работать с матрицами. В нём нужно не просто перемножить какие-то две таблички, а сначала определить: допустимо ли такое умножение?

Задача 4. Найдите все возможные попарные произведения матриц:

\\]; $B=\left[ \begin{matrix} \begin{matrix} 0 \\ 2 \\ 0 \\ 4 \\\end{matrix} & \begin{matrix} 1 \\ 0 \\ 3 \\ 0 \\\end{matrix} \\\end{matrix} \right]$; $C=\left[ \begin{matrix}0 & 1 \\ 1 & 0 \\\end{matrix} \right]$.

Решение. Для начала запишем размеры матриц:

\;\ B=\left[ 4\times 2 \right];\ C=\left[ 2\times 2 \right]\]

Получаем, что матрицу $A$ можно согласовать лишь с матрицей $B$, поскольку количество столбцов у $A$ равно 4, а такое количество строк только у $B$. Следовательно, можем найти произведение:

\\cdot \left[ \begin{array}{*{35}{r}} 0 & 1 \\ 2 & 0 \\ 0 & 3 \\ 4 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}-10 & 7 \\ 10 & 7 \\\end{array} \right]\]

Промежуточные шаги предлагаю выполнить читателю самостоятельно. Замечу лишь, что размер результирующей матрицы лучше определять заранее, ещё до каких-либо вычислений:

\\cdot \left[ 4\times 2 \right]=\left[ 2\times 2 \right]\]

Другими словами, мы просто убираем «транзитные» коэффициенты, которые обеспечивали согласованность матриц.

Какие ещё возможны варианты? Безусловно, можно найти $B\cdot A$, поскольку $B=\left[ 4\times 2 \right]$, $A=\left[ 2\times 4 \right]$, поэтому упорядоченная пара $\left(B;A \right)$ является согласованной, а размерность произведения будет:

\\cdot \left[ 2\times 4 \right]=\left[ 4\times 4 \right]\]

Короче говоря, на выходе будет матрица $\left[ 4\times 4 \right]$, коэффициенты которой легко считаются:

\\cdot \left[ \begin{array}{*{35}{r}} 1 & -1 & 2 & -2 \\ 1 & 1 & 2 & 2 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]\]

Очевидно, можно согласовать ещё $C\cdot A$ и $B\cdot C$ — и всё. Поэтому просто запишем полученные произведения:

Это было легко.:)

Ответ: $AB=\left[ \begin{array}{*{35}{r}} -10 & 7 \\ 10 & 7 \\\end{array} \right]$; $BA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 2 & -2 & 4 & -4 \\ 3 & 3 & 6 & 6 \\ 4 & -4 & 8 & -8 \\\end{array} \right]$; $CA=\left[ \begin{array}{*{35}{r}} 1 & 1 & 2 & 2 \\ 1 & -1 & 2 & -2 \\\end{array} \right]$; $BC=\left[ \begin{array}{*{35}{r}}1 & 0 \\ 0 & 2 \\ 3 & 0 \\ 0 & 4 \\\end{array} \right]$.

Вообще, очень рекомендую выполнить это задание самостоятельно. И ещё одно аналогичное задание, которое есть в домашней работе. Эти простые на первый взгляд размышления помогут вам отработать все ключевые этапы умножения матриц.

Но на этом история не заканчивается. Переходим к частным случаям умножения.:)

Вектор-строки и вектор-столбцы

Одной из самых распространённых матричных операций является умножение на матрицу, в которой одна строка или один столбец.

Определение. Вектор-столбец — это матрица размера $\left[ m\times 1 \right]$, т.е. состоящая из нескольких строк и только одного столбца.

Вектор-строка — это матрица размера $\left[ 1\times n \right]$, т.е. состоящая из одной строки и нескольких столбцов.

На самом деле мы уже встречались с этими объектами. Например, обычный трёхмерный вектор из стереометрии $\overrightarrow{a}=\left(x;y;z \right)$ — это не что иное как вектор-строка. С точки зрения теории разницы между строками и столбцами почти нет. Внимательными надо быть разве что при согласовании с окружающими матрицами-множителями.

Задача 5. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]\]

Решение. Перед нами произведение согласованных матриц: $\left[ 3\times 3 \right]\cdot \left[ 3\times 1 \right]=\left[ 3\times 1 \right]$. Найдём это произведение:

\[\left[ \begin{array}{*{35}{r}} 2 & -1 & 3 \\ 4 & 2 & 0 \\ -1 & 1 & 1 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 1 \\ 2 \\ -1 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} 2\cdot 1+\left(-1 \right)\cdot 2+3\cdot \left(-1 \right) \\ 4\cdot 1+2\cdot 2+0\cdot 2 \\ -1\cdot 1+1\cdot 2+1\cdot \left(-1 \right) \\\end{array} \right]=\left[ \begin{array}{*{35}{r}} -3 \\ 8 \\ 0 \\\end{array} \right]\]

Ответ: $\left[ \begin{array}{*{35}{r}}-3 \\ 8 \\ 0 \\\end{array} \right]$.

Задача 6. Выполните умножение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]\]

Решение. Опять всё согласовано: $\left[ 1\times 3 \right]\cdot \left[ 3\times 3 \right]=\left[ 1\times 3 \right]$. Считаем произведение:

\[\left[ \begin{array}{*{35}{r}} 1 & 2 & -3 \\\end{array} \right]\cdot \left[ \begin{array}{*{35}{r}} 3 & 1 & -1 \\ 4 & -1 & 3 \\ 2 & 6 & 0 \\\end{array} \right]=\left[ \begin{array}{*{35}{r}}5 & -19 & 5 \\\end{array} \right]\]

Ответ: $\left[ \begin{matrix} 5 & -19 & 5 \\\end{matrix} \right]$.

Как видите, при умножении вектор-строки и вектор-столбца на квадратную матрицу на выходе мы всегда получаем строку или столбец того же размера. Этот факт имеет множество приложений — от решения линейных уравнений до всевозможных преобразований координат (которые в итоге тоже сводятся к системам уравнений, но давайте не будем о грустном).

Думаю, здесь всё было очевидно. Переходим к заключительной части сегодняшнего урока.

Возведение матрицы в степень

Среди всех операций умножения отдельного внимания заслуживает возведение в степень — это когда мы несколько раз умножаем один и тот же объект на самого себя. Матрицы — не исключение, их тоже можно возводить в различные степени.

Такие произведения всегда согласованы:

\\cdot \left[ n\times n \right]=\left[ n\times n \right]\]

И обозначаются точно так же, как и обычные степени:

\[\begin{align} & A\cdot A={{A}^{2}}; \\ & A\cdot A\cdot A={{A}^{3}}; \\ & \underbrace{A\cdot A\cdot \ldots \cdot A}_{n}={{A}^{n}}. \\ \end{align}\]

На первый взгляд, всё просто. Посмотрим, как это выглядит на практике:

Задача 7. Возведите матрицу в указанную степень:

${{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}$

Решение. Ну ОК, давайте возводить. Сначала возведём в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1\cdot 1+1\cdot 0 & 1\cdot 1+1\cdot 1 \\ 0\cdot 1+1\cdot 0 & 0\cdot 1+1\cdot 1 \\\end{array} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right] \end{align}\]

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 2 \\ 0 & 1 \\\end{array} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 1 & 3 \\ 0 & 1 \\\end{array} \right] \end{align}\]

Вот и всё.:)

Ответ: $\left[ \begin{matrix}1 & 3 \\ 0 & 1 \\\end{matrix} \right]$.

Задача 8. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}\]

Решение. Вот только не надо сейчас плакать по поводу того, что «степень слишком большая», «мир не справедлив» и «преподы совсем берега потеряли». На самом деле всё легко:

\[\begin{align} & {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{10}}={{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot {{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{3}}\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right] \right)\cdot \left(\left[ \begin{matrix} 1 & 3 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right] \right)= \\ & =\left[ \begin{matrix} 1 & 6 \\ 0 & 1 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \\\end{matrix} \right]= \\ & =\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right] \end{align}\]

Заметьте: во второй строчке мы использовали ассоциативность умножения. Собственно, мы использовали её и в предыдущем задании, но там это было неявно.

Ответ: $\left[ \begin{matrix} 1 & 10 \\ 0 & 1 \\\end{matrix} \right]$.

Как видите, ничего сложного в возведении матрицы в степень нет. Последний пример можно обобщить:

\[{{\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \\\end{matrix} \right]}^{n}}=\left[ \begin{array}{*{35}{r}} 1 & n \\ 0 & 1 \\\end{array} \right]\]

Этот факт легко доказать через математическую индукцию или прямым перемножением. Однако далеко не всегда при возведении в степень можно выловить подобные закономерности. Поэтому будьте внимательны: зачастую перемножить несколько матриц «напролом» оказывается проще и быстрее, нежели искать какие-то там закономерности.

В общем, не ищите высший смысл там, где его нет. В заключение рассмотрим возведение в степень матрицы большего размера — аж $\left[ 3\times 3 \right]$.

Задача 9. Возведите матрицу в указанную степень:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}\]

Решение. Не будем искать закономерности. Работаем «напролом»:

\[{{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}={{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}\cdot \left[ \begin{matrix}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\]

Для начала возведём эту матрицу в квадрат:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{2}}=\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right] \end{align}\]

Теперь возведём в куб:

\[\begin{align} & {{\left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]}^{3}}=\left[ \begin{array}{*{35}{r}} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \\\end{array} \right]\cdot \left[ \begin{matrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\\end{matrix} \right]= \\ & =\left[ \begin{array}{*{35}{r}} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{array} \right] \end{align}\]

Вот и всё. Задача решена.

Ответ: $\left[ \begin{matrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \\\end{matrix} \right]$.

Как видите, объём вычислений стал больше, но смысл от этого нисколько не поменялся.:)

На этом урок можно заканчивать. В следующий раз мы рассмотрим обратную операцию: по имеющемуся произведению будем искать исходные множители.

Как вы уже, наверное, догадались, речь пойдёт об обратной матрице и методах её нахождения.

Математическая матрица – это таблица упорядоченных элементов. Размеры этой таблицы определяются по количеству строк и столбцов в ней. Что касается решения матриц, то им называют огромное количество операций, которые производятся над этими самыми матрицами. Математики различают несколько видов матриц. Для некоторых из них действуют общие правила по решению, а для других не действуют. Например, если матрицы имеют одинаковую размерность, то их можно сложить, а если они согласовываются между собой, то их можно перемножить. Обязательно для решения любой матрицы необходимо найти детерминант. Кроме того, матрицы подвергаются транспонированию и нахождению в них миноров. Итак, давайте рассмотрим, как решать матрицы.

Порядок решения матриц

Сначала записываем заданные матрицы. Считаем сколько в них строк и столбцов. Если количество строк и столбцов одинаковое, то такая матрица называется квадратной. Если каждый элемент матрицы оказался равен нулю, то такая матрица нулевая. Следующее, что мы делаем, это находим главную диагональ матрицы. Элементы такой матрицы находятся от правого нижнего угла до левого верхнего. Вторая же диагональ в матрице является побочной. Теперь необходимо произвести транспонирование матрицы. Чтобы это сделать, необходимо заменить в каждой из двух матриц элементы строк на соответствующие элементы столбцов. Например, элемент под а21 окажется элементом а12 или же наоборот. Таким образом, после этой процедуры должна появиться совершенно иная матрица.

Если матрицы имеют совершенно одинаковую размерность, то их можно запросто сложить. Чтобы это сделать, мы берем первый элемент первой матрицы а11 и складываем его с подобным элементом второй матрица b11. То, что получится в результате, записываем на ту же позицию, только уже в новую матрицу. Теперь аналогичным образом складываем все остальные элементы матрицы, пока не получится новая совершенно иная матрица. Посмотрим еще несколько способов, как решать матрицы.

Варианты действий с матрицами

Также мы можем определить, являются ли согласованными матрицы. Для этого нам нужно сравнить количество строк в первой матрице с количеством столбцов второй матрицы. В случае если они оказываются равными, можно их перемножить. Чтобы это сделать, мы попарно умножаем элемент строки одной матрицы на аналогичный элемент столбца другой матрицы. Только после этого можно будет посчитать сумму получившихся произведений. Исходя из этого, начальный элемент той матрицы, которая должна получиться в результате будет равен g11 = а11* b11 + а12*b21 + а13*b31 + … + а1m*bn1. После того как будет выполнено сложение и умножение всех произведений, вы сможете заполнить итоговую матрицу.

Также можно при решении матриц найти их детерминант и определитель для каждой. Если матрица квадратная и имеет размерность 2 на 2, то определитель можно найти как разницу всех произведений элементов главной и побочной диагоналей. Если матрица уже трехмерная, то определитель можно будет найти, применив следующую формулу. D = а11* а22*а33 + а13* а21*а32 + а12* а23*а31 - а21* а12*а33 - а13* а22*а31 - а11* а32*а23.

Чтобы найти минор заданного элемента, нужно вычеркнуть столбец и строку, там, где находится этот элемент. После этого найдите детерминант данной матрицы. Он и будет соответствующим минором. Подобный метод решающих матриц был разработан еще несколько десятилетий тому назад для того, чтобы повысить достоверность результата путем разделения проблемы на подпроблемы. Таким образом, решать матрицы не так уж сложно, если вы знаете основные математические действия.

Решение матриц – понятие обобщающее операции над матрицами. Под математической матрицей понимается таблица элементов. О подобной таблице, в которой m строк и n столбцов, говорят что это матрица размером m на n.
Общий вид матрицы

Основные элементы матрицы:
Главная диагональ . Её составляют элементы а 11 ,а 22 …..а mn
Побочная диагональ. Её слагают элементы а 1n ,а 2n-1 …..а m1 .
Перед тем как перейти к решению матриц рассмотрим основные виды матриц:
Квадратная – в которой число строк равно числу столбцов (m=n)
Нулевая – все элементы этой матрицы равны 0.
Транспонированная матрица - матрица В, полученная из исходной матрицы A заменой строк на столбцы.
Единичная – все элементы главной диагонали равны 1, все остальные 0.
Обратная матрица - матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. То есть, если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 . то матрица симметрична относительно главной диагонали. Симметричными бывают только квадратные матрицы.
Теперь перейдем непосредственно к вопросу, как решать матрицы.

Сложение матриц.

Матрицы можно алгебраически складывать, если они обладают одинаковой размерностью. Чтобы сложить матрицу А с матрицей В, необходимо элемент первой строки первого столбца матрицы А сложить с первым элементом первой строки матрицы В, элемент второго столбца первой строки матрицы А сложить с элементом элемент второго столбца первой строки матрицы В и т.д.
Свойства сложения
А+В=В+А
(А+В)+С=А+(В+С)

Умножение матриц .

Матрицы можно перемножать, если они согласованы. Матрицы А и В считаются согласованными, если количество столбцов матрицы А равно количеству строк матрицы В.
Если А размерностью m на n, B размерностью n на к, то матрица С=А*В будет размерностью m на к и будет составлена из элементов

Где С 11 – сумма папарных произведений элементов строки матрицы А и столбца матрицы В, то есть элемента сумма произведения элемента первого столбца первой строки матрицы А с элементом первого столбца первой строки матрицы В, элемента второго столбца первой строки матрицы А с элементом первого столбца второй строки матрицы В и т.д.
При перемножении важен порядок перемножения. А*В не равно В*А.

Нахождение определителя.

Любая квадратная матрица может породить определитель или детерминант. Записывает det. Или | элементы матрицы |
Для матриц размерностью 2 на 2. Определить есть разница между произведением элементов главной и элементами побочной диагонали.

Для матриц размерностью 3 на 3 и более. Операция нахождения определителя сложнее.
Введем понятия:
Минор элемента – есть определитель матрицы, полученной из исходной матрицы, путем вычеркивания строки и столбца исходной матрицы, в которой этот элемент находился.
Алгебраическим дополнением элемента матрицы называется произведение минора этого элемента на -1 в степени суммы строки и столбца исходной матрицы, в которой этот элемент находился.
Определитель любой квадратной матрицы равен сумме произведения элементов любого ряда матрицы на соответствующие им алгебраические дополнения.

Обращение матрицы

Обращение матрицы - это процесс нахождения обратной матрицы, определение которой мы дали в начале. Обозначается обратная матрица также как исходная с припиской степени -1.
Находиться обратная матрица по формуле.
А -1 = A * T x (1/|A|)
Где A * T - Транспонированная матрица Алгебраических дополнений.

Примеры решения матриц мы сделали в виде видеоурока

:

Если хотите разобраться, смотрите обязательно.

Это основные операции по решению матриц. Если появится дополнительные вопросы о том, как решить матрицы , пишите смело в комментариях.

Если все же вы не смогли разобраться, попробуйте обратиться к специалисту.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.