Плазменная закалка оборудование. Поверхностное упрочнение деталей из стали и чугуна плазменной закалкой. Для продления срока службы деталей машин

1

Приведены результаты исследований регулирования глубины слоя, его фазового состава и микротвёрдости образцов из нормализованной стали У10 после поверхностной плазменной закалки без оплавления посредством изменения параметров процесса - тока плазменной дуги и скорости её перемещения относительно упрочняемой поверхности. Показано, что с повышением скорости при прочих постоянных параметрах режима закалки ширина, глубина и максимальная микротвёрдость упрочнённой зоны уменьшаются, а с повышением тока дуги – увеличиваются. При этом соотношение количества мартенсита и остаточного аустенита, а также твёрдость поверхности изменяется по сложной зависимости, определяется полнотой растворения цементита в аустените и гомогенизацией последнего. Возможность регулирования глубины, фазового состава и свойств упрочнённой зоны изменением параметров режима позволяет применять результаты проведённых исследований при практическом использовании плазменной закалки.

плазменная закалка

ток плазменной дуги и скорость её перемещения

глубина слоя зоны плазменного влияния

фазовый состав

микротвёрдость поверхности

1. Бердников А.А., Филиппов М.А., Студенок Е.С. Структура закаленных углеродистых сталей после плазменного поверхностного нагрева // МиТОМ. – 1997. – № 6. – С. 2–5.

2. Крапошин В.С. Термическая обработка стали и сплавов с применением лазерного луча и прочих прогрессивных видов нагрева. Металловедение и термическая обработка. Т. 2.: Итоги науки и техники. ВИНИТИ АН СССР. М., 1987. С. 144–206.

3. Линник В.А., Онегина А.К., Андреев А.И. Поверхностное упрочнение сталей методом плазменной закалки // МиТОМ. – 1983. – № 3. – С. 2–5.

4. Федосов С.А. Влияние лазерной обработки на содержание остаточного аустенита в углеродистых и хромистых сталях // ФиХОМ. – 1990. – №5. – С.18–22.

5. Rogger R. Durcissiment superficial par plasma des aciers an carbone et des to tes. – Revue de Metallugie, 1979, № 7, p. 532–537.

Для повышения износостойкости деталей машин и инструмента применяются различные способы поверхностного упрочнения. Наиболее перспективными являются способы с применением высококонцентрированных источников нагрева - лазера, электронного луча, низкотемпературной плазмы . При этом очевидным является выполнение двух условий - получение упрочнённого слоя глубиной, не превышающей величину допустимого износа, и получение в слое оптимальной для данного вида износа структуры и свойств. Первое особенно важно для деталей сменного оборудования (прокатные валки, штампы и др.), которые подвергают ремонту - переточке на меньший размер, поскольку механическая обработка невыработанного упрочнённого слоя вызывает затруднения.

Плазменной закалкой эффективно упрочняются тонкие (0,7-1,5 мм) или более глубокие (до 2-5 мм) слои изделий из углеродистых и низколегированных сталей с содержанием углерода 0,4 % и выше, а также чугунов, нитроцементированных и цементированных сталей. Образующиеся в зоне термического влияния закалочные структуры обладают повышенными твёрдостью, прочностью и износостойкостью.

Параметры процесса плазменной закалки - ток плазменной дуги и скорость перемещения (основные), расход плазмообразующего газа, расстояние между плазмотроном и изделием. Конкретной информации относительно взаимосвязи изменяемых параметров закалки с глубиной формирующегося слоя, его структурой и свойствами в литературе недостаточно.

В данной работе приведены результаты исследований регулирования глубины слоя, его микроструктуры и микротвёрдости образцов из стали У10 после поверхностной плазменной закалки без оплавления дугой прямого действия обратной полярности.

Материал и методы исследования

Химический состав стали удовлетворяет ГОСТ 1435-74, содержание углерода - 1,01%. Исходная структура нормализованной стали У10 состояла из перлита и структурного свободного цементита в виде сетки по границам зёрен. Постоянные параметры режима - длина дуги и расход плазмообразующего газа аргона - составили соответственно 6 мм и 7,5 л/мин. Для изучения особенностей формирования структуры, влияния параметров режима на фазовый состав и микротвёрдость зоны плазменного влияния (ЗПВ) исследовались плоские образцы размером 25 х 12 х 70 мм, упрочнённые при трёх фиксированных значениях линейной скорости перемещения плазмотрона относительно поверхности образца Vлин, равных 1,25 см/с, 2 см/с и 3 см/с в четырёх токовых интервалах I = 120-125 А, 140-150 А, 160-170 А и 195-205 А. Глубину ЗПВ измеряли на поперечных шлифах по центру упрочнённого сегмента, для замеров микротвёрдости (Нμ) использовали прибор ПМТ-3 при нагрузке 0,49 Н. Фазовый состав определяли на дифрактометре ДРОН-3 в железном Кα излучении.

Результаты исследования и их обсуждение

Кривые изменения микротвёрдости закалённой зоны по глубине исследуемых образцов приведены на рис. 1 (а-к). Полнота протекания процесса растворения вторичного и перлитного цементита при плазменном нагреве и гомогенизации аустенита определяются температурой, которая зависит от величины тока плазменной дуги, и временем пребывания при этой температуре, то есть скоростью перемещения плазмотрона. В микроструктуре образцов, обработанных плазмой при минимальном I (а, следовательно, и температуре) при всех исследуемых Vлин обнаружены нерастворённые при нагреве карбиды, что, по-видимому, и объясняет пониженную микротвёрдость мартенсита закалки (рис. 1 а, б, в). С увеличением скорости обработки от 1,25 см/с до 3 см/с максимальная микротвёрдость мартенсита уменьшается с 10000 МПа до 8800 МПа (рис. 2). На поверхности образцов, обработанных в первом токовом интервале, по данным рентгеноструктурного анализа содержится остаточный аустенит, сосредоточенный в тонком поверхностном слое: при скорости перемещения плазмотрона 1,25 см/с - 47 %, при скорости 2 см/с - 29 %, при скорости 3 см/с - 27 %. Металлографически было выявлено, что именно в этом слое наблюдается снижение микротвёрдости (рис. 1 а-в). Результирующая средняя микротвёрдость поверхности (рис. 3) определяется тремя конкурирующими факторами: максимальной микротвёрдостью мартенсита охлаждения (условно Мзак), количеством менее твёрдого остаточного аустенита γост и обеднённого углеродом мартенсита (условно Мотп), образовавшегося на участках неполной гомогенизации аустенита. Незавершённость процессов гомогенизации γ-твёрдого раствора подтверждается асимметрией линий (111) и (200) аустенита на дифрактограмме со стороны больших углов. Глубина ЗПВ (h) при данной величине I с увеличением Vлин от 1,25 cм/с до 3 см/с уменьшается с 0,45 мм до 0, 25 мм (рис. 4).

При токе дуги 140-150 А на поверхности закалённых образцов также формируется структура аустенитно-мартенситного типа с содержанием γост 70 %, что, естественно, приводит к уменьшению микротвёрдости поверхности до 9000-9500 МПа (рис. 1 г, д; рис. 3). На глубине от поверхности ~ 200 мкм структура этих образцов состоит преимущественно из высокоуглеродистого αм мартенсита, имеющего максимальную микротвёрдость Hμ = 11000 МПа и 10500 МПа (рис. 2), что выше Hμ αм, полученного при I = 125 А. Поскольку эти значения микротвёрдости αм для стали У10 являются предельными, можно предположить наличие дисперсных карбидов в структуре наряду с мартенситом. Переходная зона, где нерастворённые карбиды отчётливо видны в форме бывшей цементитной сетки и отдельных включений, состоит из мартенсита, троосто-мартенсита и перлитоподобных структур. Увеличение I со 120-125 А до 140-150 А сопровождается увеличением h при всех Vлин (рис. 1).

Дальнейшее повышение тока дуги до 160-170 А в ещё большей степени способствует насыщению аустенита углеродом при нагреве и увеличению максимальной Hμ Мзак до 12000-11000 МПа (рис. 1 е, ж, з; рис. 2; рис. 3). При этом необходимо отметить и увеличение количества γост на поверхности образцов до 78 % и 58 % соответственно Vлин = 2 и 3 см/сек, хотя твёрдость поверхности остаётся на уровне 9500 МПа и даже несколько выше - 10000 МПа. Взаимосвязь Hμ αм и % γост на рис. 5 поясняет отсутствие снижения микротвёрдости. Однако при Vлин = 1,25 см/с оно есть и со снижением γост с 70 % до 41 % микротвёрдость поверхности падает до 8000 МПа (рис. 1 е). Изменение при данной скорости % γост в меньшую сторону не является исключением, а указывает на сложный характер его зависимости от тока дуги: при Imax, близком к критическому, при котором начинается микрооплавление поверхности, % γост за счёт наиболее полной гомогенизации аустенита минимален. Падение же микротвёрдости обусловлено более сильным разогревом образца, снижением за счёт этого скорости охлаждения и увеличением Мотп к общему количеству мартенсита до 100 %. Глубина ЗПВ в третьем интервале токов также уменьшается с 1,51 мм до 0,47 мм с увеличением скорости перемещения плазмотрона (рис. 1 е, ж, з).

В четвёртом интервале токов дуги 195-200 А зафиксирована максимальная из исследуемых микротвёрдость α мартенсита, равная 12500 МПа (рис. 1 и, к; рис. 2). Подобная микротвёрдость мартенсита в стали У10, согласно литературным данным, указывает на предельное насыщение аустенита углеродом ~ 1,0 % при нагреве, то есть на полное растворение карбидов. Увеличение скорости перемещения плазмы до 3 см/с при том же токе не обеспечивает столь же высокую микротвёрдость αм, что, очевидно, объясняется недостатком времени температурного воздействия для протекания диффузионных процессов в полном объёме. Тем не менее, микротвёрдость поверхности закалки этих образцов невелика и составляет 8000-7500 МПа. Причиной тому наличие в структуре до 85 % γост.

На основании полученных результатов установлено, как в общем случае меняется глубина ЗПВ, максимальная микротвёрдость αм и средняя микротвёрдость поверхности закалки в зависимости от Vлин и I. На рис. 2 показано изменение max Hμ мартенсита с увеличением Vлин. Для всех исследуемых диапазонов I дуги эта зависимость одинакова: с увеличением скорости обработки максимальная микротвёрдость мартенсита уменьшается. Результирующая микротвёрдость мартенсита закалки зависит от содержания в нём углерода и обусловлена степенью обогащения аустенита углеродом при нагреве и скоростью охлаждения этого аустенита. Причём, если в первом случае с уменьшением скорости обработки насыщение аустенита углеродом увеличивается, что приводит к увеличению микротвёрдости мартенсита, то во втором случае напротив - уменьшение скорости охлаждения может повлечь самоотпуск мартенсита и, следовательно, уменьшение его микротвёрдости. При всех исследованных режимах, несмотря на высокую скорость охлаждения, происходит в той или иной степени процесс самоотпуска: мартенсит, образующийся в результате охлаждения, так же, как и остаточный аустенит, неоднороден по своему составу и на рентгенограммах присутствуют линии Мотп. Таким образом, скорость обработки неоднозначно влияет на факторы, определяющие микротвёрдость мартенсита закалки. Анализ результатов данного исследования показывает, что в случае плазменной обработки стали У10 решающую роль играет степень насыщения матрицы углеродом при нагреве , то есть с уменьшением скорости обработки в интервале от 3 до 1,25 см/с при неизменном токе микротвёрдость мартенсита увеличивается.

Аналогичное объяснение можно дать зависимости Hμ αм от I (рис. 3), поскольку увеличение температуры при одном и том же времени выдержки также сопровождается большей полнотой протекания диффузионных процессов при нагреве, то есть способствует обогащению αм углеродом.

Проанализированы зависимости изменения Hμ поверхности закалённых образцов от I, график приведен на рис. 3. Очевидно, что максимальная микротвёрдость мартенсита закалки, которая определяется количеством углерода в нём, пропорционально связана с количеством γост на поверхности закалённых образцов. Это подтверждает предположение о том, что количество γост в заэвтектоидной стали может служить индикатором полноты протекания диффузионных процессов в ЗПВ. Однако, исследование должно быть продолжено и выяснена возможная роль атмосферного азота в формировании структуры тонкого поверхностного слоя, что не исключает автор работы . Полученные данные (рис. 3) объясняют наличие максимума на кривых 4, 5, 6, когда результирующая микротвёрдость на поверхности скоростной закалки определяется, с одной стороны, микротвёрдостью мартенсита, а с другой - количеством остаточного аустенита в нём.

Уменьшение глубины h с увеличением Vлин (рис. 4) прослеживается для всех четырёх исследованных диапазонов токов. Эта зависимость вполне оправдана, так как скорость перемещения плазмотрона определяет время воздействия температуры и, следовательно, глубину прогрева металла. На том же рисунке показана также связь глубины ЗПВ и величины тока дуги при трёх скоростях её перемещения. Наиболее существенно, от 0,45 до 1,51 мм, h возрастает с увеличением I от 120 до 160 А при Vлин = 1,25 см/с. При Vлин = 2 см/с h изменяется от 0,38 до 1,25 мм с ростом I от 125 до 195 А, а при Vлин = 3 см/с - от 0,25 до 0,74 мм соответственно. Очевидно, что с увеличением скорости перемещения плазмотрона относительно поверхности образца влияние величины тока на глубину ЗПВ становится всё менее существенным.

Выводы

1. При плазменной закалке дугой прямого действия обратной полярности нормализованной стали У10 в исследуемом интервале линейных скоростей обработки и токов дуги глубина упрочнённой зоны составляет 0,25-1,51 мм.

2. Сложный характер зависимости фазового состава и микротвёрдости на поверхности и по глубине зоны плазменного влияния от параметров режима плазменной закалки без оплавления определяется полнотой растворения цементита в аустените и гомогенизацией последнего, то есть, максимальной температурой нагрева и временем пребывания при этой температуре.

3. Увеличение силы тока или уменьшение скорости перемещения плазменной дуги вызывает увеличение степени растворения избыточного цементита и, как следствие, образование высокоуглеродистого мартенсита с повышенной микротвёрдостью при охлаждении.

4. Возможность регулирования глубины, фазового состава и свойств упрочнённой зоны изменением параметров режима позволяет применять результаты проведённых исследований при практическом использовании плазменной закалки.


Рис. 1. Распределение микротвёрдости по глубине ЗПВ

а, г, е - Vлин=1,25 см/с; б, д, ж, и - Vлин=2 см/с; в, з, к - Vлин=3 см/с;

а, б, в - I=120-125 A; г, д - I=140-150 A; е, ж, з - I=160-170 A;

и, к - I=195-205 A.


Рис. 2. Зависимость максимальной микротвёрдости от скорости перемещения плазменной дуги: 1 - I=120-125 A; 2- I=140-150 A;

3 - I=160-170 А; 4 - I=195-205 А.

Рис. 3. Зависимость микротвёрдости от тока плазменной дуги:

1, 2, 3 - Hmax мартенсита закалки; 4, 5, 6 - твёрдость поверхности;

1, 4 - Vлин=1,25 см/с; 2, 5 - Vлин=2 см/с; 3, 6 - Vлин=3 см/с.

Рис. 4. Зависимость глубины ЗПВ от скорости перемещения:

1 - I=120-125 A; 2- I=140-150 A; 3 - I=160-170 А; 4 - I=195-205 А.

Рецензенты:

Фарбер В.М., д.т.н., профессор кафедры термообработки и физики металлов, Уральский Федеральный Университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург;

Юдин Ю.В., д.т.н., профессор кафедры термообработки и физики металлов, Уральский Федеральный Университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург.

Библиографическая ссылка

Бердников А.А., Филиппов М.А., Бердников А.А., Алисова Г.В., Безносков Д.В. РЕГУЛИРОВАНИЕ ГЛУБИНЫ УПРОЧНЁННОГО СЛОЯ, ФАЗОВОГО СОСТАВА И СТРУКТУРЫ СТАЛИ У10 ПРИ ПЛАЗМЕННОЙ ЗАКАЛКЕ // Современные проблемы науки и образования. – 2015. – № 2-3.;
URL: http://science-education.ru/ru/article/view?id=23982 (дата обращения: 25.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

ВЕСТИ IT

ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВ^

2. СП 52-104-2006*. Сталефибробетонные конструкции. - М.: НИИЖБ: ОАО «НИЦ «Строительство», 2010. - 68 с.

3. Рабинович Ф. Н. Композиты на основе дисперсно-армированных бетонов. Вопросы теории проектирования, технологии, конструкции / Ф. Н. Рабинович. - М.: Изд-во АСВ, 2004. - 560 с.

4. СНиП 2.03.01-84*. Бетонные и железобетонные конструкции. - М.: НИИЖБ Госстроя СССР, 1989. - 80 с.

5. СНиП 2.03.03-85*. Армоцементные конструкции. - М.: НИИЖБ Госстроя СССР, 1986. -

УДК 621.785; 621.791; 621.762 В. А. Коротков,

Разработанная в 2002 г. установка УДГЗ-200 позволяет вручную закаливать то, что ранее закалке не подвергалось, быстро изнашивалось и становилось причиной частых и дорогостоящих ремонтов. "Ухудшение шероховатости поверхности и искажение размеров при закалке столь незначительные, что многие детали после нее не нуждаются в финишной механообработке, а сразу направляются в эксплуатацию, что снижает продолжительность и себестоимость их производства. Слой плазменной закалки многократно превосходит в износостойкости металл в нормализованном или состоянии объемной закалки с отпуском, что делает применение плазменной закалки высокоэффективным. Плазменная закалка установкой УДГЗ-200 производится без подачи воды на деталь, что позволяет выполнять ее не только в специализированных термических цехах, но также по месту обработки и эксплуатации деталей. Это в совокупности с тем, что закалку установкой УДГЗ-200 осваивают сварщики 2-3-го разрядов, упрощает внедрение ее в производство.

Developed in 2002, setting UDGZ-200 allows you to manually temper what had previously not been subject to hardening, wear out quickly and cause frequent and costly repairs. Deterioration of surface roughness and dimensional distortion during hardening so minor that many of the items after her do not needfinish machining, and immediately sent to the operation, "which reduces the duration and cost of production. Layer of plasma hardening surpasses in wear metal in the normalized condition or bulk quenched and tempered, "which makes use of a highly effective plasma hardening. Plasma hardening installation UDGZ-200 is produced "without the water supply is not the item that allows her not only in specialized thermal shops, but also at the place of processing and operation details. This coupled "with the fact that the hardening installation UDGZ-200 master welder 2-3 discharges facilitates its introduction intoproduction.

Ключевые слова: плазменная поверхностная закалка, износостойкость.

Key words:plasma surface hardening, wear resistance.

В современный век роботов и «безлюдных» производств разработка ручной технологии может показаться ошибочной. Однако ручные технологии благодаря универсальности демонстрируют живучесть. В мире основной объем сварки (более 80 %) продолжает выполняться электродами или полуавтоматами, то есть вручную. По аналогии полагали (этот расчет оправдался), что с разработкой ручного способа поверхностной закалки объемы ее применения возрастут и произойдет

д-р техн. наук, профессор, Нижнетагильский филиал

Уральского федерального университета

ТЕХНОЛОГИЯ ручной плазменной закалки

TECHNOLOGY MANUAL PLASMA HARDENING

Введение

ДВЕСТИ И К

государственного университета

МОРСКОГО И РЕЧНОГО ФЛОТА ИМЕНИ АДМИРАЛА С. О. МАКАРОВА

это за счет тех изделий, которые ранее по тем или иным причинам закалить было невозможно. Это контактные поверхности корпусов и станин оборудования, а также иных крупногабаритных деталей. Их термическому упрочнению известными способами мешают большие размеры и масса, а также плохая восприимчивость к закалке некоторых сталей, из которых они изготавливаются. Вместе с тем упрочнение этих поверхностей является важным в решении задач по увеличению сроков межремонтной эксплуатации и надежности оборудования .

Проблема ручной плазменной закалки была решена в 2002 г. в ООО «Композит», созданном в 1990 г. при Нижнетагильском филиале УПИ (ныне - УрФУ). Здесь выполнили разработку способа и установки УДГЗ-200 для ручной плазменной закалки. В установке (рис. 1, табл. 1) предусмотрена горелка, небольшие размеры которой делают ее удобной для ручного манипулирования и позволяют добираться до труднодоступных мест, то есть упрочнять, что ранее эксплуатировалось без упрочнения и становилось причиной частых и дорогостоящих ремонтов.

Рис. 1. Закалка установкой УДГЗ-200: слева - вручную, справа - роботом

Таблица 1

Характеристики установки УДГЗ-200 и процесса плазменной закалки

Процесс закалки Установка УДГЗ-200

Производительность - 25-85 см2/мин Рабочий газ - аргон (15л/мин) Глубина закалки -0,5-1,5мм Твердость - HRC35-65 (зависит от марки стали) Напряжение сети - 380 В Мощность - 10 кВт Масса - 20 + 20 кг (источник питания и блок охлаждения горелки)

Установка УДГЗ-200 выпускается по ТУ 3862-001-47681378-2007. К концу 2013 г. было произведено более 50 шт. установок, которые поставлены на предприятия России, Украины, Казахстана, Киргизии. В 2008 г. установка была отмечена серебряной медалью на Женевском салоне изобретений и инноваций

При закалке сварщик перемещает дугу по поверхности со скоростью, обеспечивающей «вспотевание» (состояние, предшествующее плавлению) поверхности под дугой. Это контролировать не труднее, чем плавление при сварке, но оно обеспечивает необходимый для закалки нагрев и не допускает грубого оплавления поверхности. Работу на установке осваивают сварщики 2-3 -го разрядов, при этом она может применяться в механизированных, автоматизированных и роботизированных (рис. 1, справа) комплексах, что делает ее пригодной к применению в современных высокотехнологичных производствах. Наличие установок УДГЗ-200 восполняет отсутствие традиционного оборудования для закалки, делает закалку экологически чистой.

Общие сведения о свойствах закаленного слоя

Дуга оставляет на поверхности закаленные полосы шириной 7-12 мм, окрашенные «цветами побежалости», то есть покрытые тонкой пленкой окислов, которые не оказывают существенного влияния на шероховатость в диапазоне Rz 8-60 (рис. 2). Глубина закаленного слоя составляет ~ 1 мм, благодаря чему не происходит значительных деформаций закаливаемых деталей. Это в совокупности с минимальным изменением шероховатости позволяет многие детали отправлять в эксплуатацию без трудоемкой финишной механообработки твердого закаленного слоя, что снижает себестоимость их изготовления .

Рис. 2. Плазменная дуга и оставленная ею закаленная полоса

Расчетами и экспериментально установлено, что при закалке массивных тел на режимах, типичных для УДГЗ-200, скорости охлаждения превышают критические . При закалке пластин они уменьшаются, но возможность неполной закалки углеродистых сталей (на твердость ~ HV360) сохраняется для толщин > 4 мм. Это дает возможность выполнять закалку без подачи воды на место нагрева, что упрощает организацию рабочих мест и позволяет применять установку УДГЗ-200 на ремонтных площадках, по месту механообработки и эксплуатации деталей, а не только в термических цехах. Благодаря этому расширяется номенклатура упрочняемых деталей - закалке подлежит то, что ранее было ей недоступно.

Рис. 3. Распределение твердости в слое плазменной закалки на стали 40

Типичная структура закаленного слоя аналогична зоне термического влияния в основном металле сварных соединений . У поверхности возможно образование дендритной структуры

от ее оплавления; ниже идет участок перегрева с укрупненным зерном; затем - мелкозернистый участок нормализации; еще ниже - участок неполной перекристаллизации, за которым следует последний участок - отпуска. Таким образом, твердость закаленного слоя по мере удаления от поверхности снижается постепенно (рис. 3), что предупреждает образование отколов.

Износостойкость слоя плазменной закалки

Исследовалась износостойкость сталей с плазменной закалкой на машине трения по схеме «диск-колодка» без смазки. Частота вращения диска (d 40*10 мм) 425 об/мин. Предусматривалось пять этапов испытаний по 5 мин с нагрузкой 200Н на первых четырех и полуторным увеличением нагрузки до 300 Н на 5-м этапе со взвешиванием после каждого этапа для определения износа. На первом этапе происходит приработка пар, 2-4-й этапы характеризуют установившийся процесс изнашивания. Пятый этап показывает способность пар трения выдерживать перегрузку; во всех случаях применения плазменной закалки увеличения износа на пятом этапе не наблюдалось. В каждом сочетании материалов испытывались три пары образцов.

Рис. 4. Средний износ (г) дисков (Д) из конструкционных сталей с различной твердостью (НВ) на этапах 2-4-м установившегося изнашивания. Виды упрочнения дисков:

Норм - нормализация, 03 - объемная закалка с отпуском, ПЗ - плазменная закалка

Проведено сравнение износостойкости дисков из конструкционных сталей при трении о нормализованную колодку из стали 45. Из рис. 4 видно, что в нормализованном состоянии износ легированной стали 30ХГСА примерно втрое меньше, чем углеродистой стали 45. Объемная закалка с отпуском почти не отразилась на износе стали 30ХГСА. Плазменная закалка по сравнению с нормализованным состоянием существенно уменьшила износ обеих сталей: примерно в 10 раз стали 45и в 4 раза стали 30ХГСА.

Из табл. 2 видно, что плазменная закалка колодок из рельсовой стали снизила их износ в 126 раз; при этом неупрочненный диск из колесной стали не только не снизил износостойкости, но и увеличил ее в 2,1 раза. Существенное увеличение износостойкости в результате плазменной закалки объясняется сменой механизма изнашивания. Поверхности трения без упрочнения имели возможность «схватываться», то есть образовывать выступами микронеровностей точечные сварные соединения, которые создавали абразивный фактор, ускоряющий износ. Исключение явлений схватывания за счет упрочнения плазменной закалкой привело к более медленному изнашиванию по механизму усталостного диспергирования.

Таблица 2

Влияние плазменной закалки на износ* рельсовой стали в парах трения с колесной сталью

Колодка, рельсовая сталь Диск, колесная сталь 65Г

Состояние Износ, г Киз Состояние Износ, г Киз

Без закалки 1,507 1,0 Сорбитизация 2,125 1,0

С плазменной закалкой 0,012 126 Сорбитизация 1,021 2,1

* Суммарный за 1-4 циклы испытаний.

Было также установлено, что закаленные диски из низкоуглеродистой стали 20ГЛ снижают износ по сравнению с нормализованным состоянием в ~ 9 раз, а сопрягаемые с ним колодки из той же стали - в 1,8 раза. Отсюда следует целесообразность применения установки УДГЗ-200 для упрочнения контактных поверхностей корпусных частей оборудования, обычно изготавливающихся из низкоуглеродистых сталей и термическому упрочнению не подвергающихся из-за высоких затрат при минимальном упрочняющем эффекте.

Рис. 5. Износ чугунных колодок при трении о диски из стали ЗОХГСА

Были приготовлены колодки из чугуна: ВЧ120, ВЧ60, СЧ25, и диски из стали ЗОХГСА (НВ 330); результаты испытаний представлены на рис. 5. Чугун ВЧ60 без плазменной закалки сразу получил износ на глубину 3 мм, то есть больше обычного в 250 раз. Еще больше был износ серого чугуна СЧ25, поэтому эти результаты на графике не приведены. Наименьший износ получил чугун ВЧ60 с плазменной закалкой, который оказался меньше износа чугуна ВЧ120 на ~ 50 %. Износ серого чугуна СЧ25 с плазменной закалкой, хотя и больше износа ВЧ120 на ~ 80%, но не катастрофичен как износ СЧ25 без плазменной закалки. Отсюда можно сделать заключение о целесообразности применения плазменной закалки подшипниковых гнезд крупных редукторов, изготавливаемых из чугуна, и других изделий.

Примеры практического применения плазменной закалки

Корпуса конусов дробилок мелкого и среднего дробления (КСМД-2200, Sandvik-7800, FKB-2100 и др.) быстро изнашиваются по поясу контактирования со сменной броней. На Качканарском ГОКе ежегодно восстановлению наплавкой подлежало до 25 конусов. С конца 2011 г. приступили к упрочнению их плазменной закалкой (рис. 6), благодаря этому потребность в восстановлении изношенных конусов в 2013 г. снизилась до 5 шт., то есть в пять раз.

Рис. 6. Корпус конуса дробилки среднего дробления, контактный пояс которого упрочнен плазменной закалкой

Рис. 7. Технологический барабан с зубчатым венцом, упрочненным плазменной закалкой

Зубчатый венец (40ГЛ) крупногабаритного технологического барабана (рис. 7), работающий в зацеплении с приводной шестерней (34ХН1М), представляет собой дорогостоящее изделие. Наработка до предельного износа зубьев (30 %) составляла: венца - 2 месяца, приводной шестерни - один месяц. Плазменная закалка увеличила наработку до износа закаленного слоя толщиной 1 мм: у венца - до 4 месяцев, а у приводной шестерни - до 2,5 месяцев. Затем во время плановых профилактических ремонтов без демонтажа деталей была выполнена повторная закалка зубьев установкой УДГЗ-200. До предельного износа зубьев закалку повторяют 4 раза, что увеличило срок службы зубчатого венца до 12-16 месяцев, а приводной шестерни до 6-8 месяцев, то есть приблизительно в 7 раз. Экономия от применения плазменной закалки составила 38 млн руб. при эффективности вложений в плазменную закалку 5 руб. экономии на рубль затрат.

Быстро изнашиваемыми являются ручьи канатных блоков и барабанов. Малые размеры горелки установки УДГЗ-200 позволяют производить их закалку (рис. 8). На Качканарском ГОКе плазменная закалка двух витков, наиболее часто включающихся в работу, канатных барабанов узла «напора» карьерного экскаватора ЭКГ-8 и втрое увеличила их межремонтную наработку; одновременно замечено увеличение сроков службы канатов.

Рис. 8. Канатный барабан (слева) и шкивы, упрочненные плазменной закалкой

Половина рельсов (КР-100) кранового пути была упрочнена плазменной закалкой, а другая половина поставлена без упрочнения. Через год эксплуатации износ незакаленных рельсов составил 2 мм, а износ закаленных характеризовался как «потертость». Еще через год эксплуатации износ незакаленных рельсов составлял 4 мм, а закаленных достиг значения, доступного измерению - около 1 мм.

Заключение

Разработанная в 2002 г. установка УДГЗ-200 позволяет вручную закаливать то, что ранее закалке не подвергалось, быстро изнашивалось и становилось причиной частых и дорогостоящих ремонтов.

Ухудшение шероховатости поверхности и искажение размеров при закалке столь незначительные, что многие детали после нее не нуждаются в финишной механообработке, а сразу направляются в эксплуатацию, что снижает продолжительность и себестоимость их производства.

Слой плазменной закалки многократно превосходит в износостойкости металл в нормализованном или состоянии объемной закалки с отпуском, что делает применение плазменной закалки высокоэффективным.

Плазменная закалка установкой УДГЗ-200 производится без подачи воды на деталь, что позволяет выполнять ее не только в специализированных термических цехах, но также по месту обработки и эксплуатации деталей. Это в совокупности с тем, что закалку установкой УДГЗ-200 осваивают сварщики 2-3-го разрядов, упрощает внедрение ее в производство.

Список литературы

1. Хренов К. К. Дуговая поверхностная закалка / К. К. Хренов, Г. В. Васильев // Автогенное дело. - 1950. - № 10. - С. 1-5.

2. Кобяков О. С. Использование микроплазменного нагрева в процессах упрочняющей технологии / О. С. Кобяков, Е. Г. Гринзбург // Автоматическая сварка. - 1985. - № 5. - С. 65-67.

3. Лещинский Л. К. Структура и свойства наплавленного металла углеродистых сталей, упрочненных плазменной струей / Л.К Лещинский, И. И. Пирч, С. С. Самотугин [и др.] // Сварочное производство - 1985. - № 11. - С. 20-22.

4. Бердников А. А. Упрочнение чугунных валков методом плазменной закалки / А. А. Бердников, В. С. Демин, Е. Л. Серебрякова [и др.] // Сталь. - 1995. - № 1. - С. 56-59.

5. Сафонов Е. Н. Поверхностное упрочнение железоуглеродистых сплавов дуговой закалкой / Е. Н. Сафонов, В. И. Журавлев // Сварочное производство - 1997. - № 10. - С. 30-32.

6. Орлов П. И. Основы конструирования: справ.-метод. Пособие: в 2 кн. / П. И. Орлов; под ред. П. Н. Учаева. - М.: Машиностроение, 1988. - Кн. 1. - 560 с.

7. Korotkov V. A. Investigations into plasma quenching / V. A. Korotkov, A. V. Shekurov //Welding International. - 2008. - Vol. 22, № 7.

8. Korotkov V. A. Surfacing of plungers for high-pressure vessels / V. A. Korotkov, S. P. Anan’ev,

A. V. Shekurov II Welding International. - 2013. - T. 27, № 5.

9. Теория сварочных процессов / под ред. В.М. Неровного. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2007.

Сущность плазменной закалки состоит в высокоскоростном нагреве потоком плазмы поверхностного слоя металла и быстром его охлаждении в результате передачи тепла в глубинные слои материала детали.

Цель плазменной закалки - изготовление деталей и инструмента с упрочненным поверхностным слоем толщиной до нескольких миллиметров при неизменном общем химическом составе материала и сохранении во внутренних слоях первоначальных свойств исходного металла.

Материалы, подвергаемые плазменной закалке - инструментальные стали, чугуны, твердые сплавы, цементированные и нитроцементированные стали, цветные сплавы и другие материалы.

Эффект от плазменной закалки определяется повышением эксплуатационных свойств детали, благодаря изменению физико-механических характеристик поверхностного слоя, вследствие образования специфической структуры и фазового состава металла с высокой твердостью и дисперсностью, а также получения на поверхности сжимающих остаточных напряжений.

Плазменная закалка низкоуглеродистых сталей, обычно объемной закалке не подвергающихся, позволяет получить низкоуглеродистый пакетный мартенсит с твердостью 32…38 HRC. При обработке на режимах, обеспечивающих нагрев в области Ас1…Ас3, отдельные участки на месте перлитных зерен общей площадью 10…30 % имеют структуру высокоуглеродистой стали - мартенсит и остаточный аустенит с твердостью 750…820 HV. Такая комбинированная структура (феррит, перлит, мартенсит и остаточный аустенит) сочетает высокую износостойкость и пластичность, что позволяет расширить область применения низкоуглеродистых сталей. Плазменная закалка среднеуглеродистых литейных и конструкционных сталей обеспечивает в зоне упрочнения мартенситно-аустенитную структуру и твердость на 2…4 единицы HRC выше по сравнению с объемной закалкой и закалкой ТВЧ. После плазменной закалки в поверхностном слое фиксируется до 50 % остаточного аустенита, что позволяет реализовать энергопоглощающий процесс деформационного мартенситного пре- вращения в ходе эксплуатации. Износостойкость деталей, особенно при контактно-ударном взаимодействии и абразивном изнашивании, в этом случае многократно возрастает. С высокой эффективностью упрочняются углеродистые инструментальные стали типа У8, У10, стали для инструмента холодного деформирования типа 5ХВ2С, 9ХС, Х12, стали для инструмента горячего деформирования типа 5ХНМ, 60ХН и др. Образующаяся в поверхностном рабочем слое мелкозернистая мартенситно-аустенитная структура с твердостью до 65 HRC обладает повышенными прочностью и износостойкостью. Регулирование соотношения структурных составляющих в зоне упрочнения инструментальных сталей осуществляется путем тепловой стабилизации аустенита в области мартенситного превращения, подбором режимов предварительной термообработки и плазменной закалки. При плазменной закалке чугунов (с пластинчатым графитом типа СЧ 15-32, СПХН-45, СПХН-49; с шаровидным графитом - СШХНМ-42, СШХН-49 и др.) в поверхностном слое формируется структура с высокими твердостью (до 60 HRC) и износостойкостью. В зоне микрооплавления образуется ледебурит, вокруг графитных включений наблюдается высокоуглеродистый аустенит, в котором при охлаждении образуются участки мартенсита. В зоне плазменной закалки перлитных чугунов образуется мартенситно-аустенитная структура, ферритных - сорбито-троститная. Важными достоинствами упрочненных плазменной закалкой чугунных прокатных валков являются высокие твердость и, одновременно, сопротивляемость образованию трещин разгара за счет наличия аустенитной составляющей, что повышает их износостойкость на 40...60 %. Технологический процесс закалки включает механическую обработку (при необходимости) или очистку поверхности, подлежащей упрочнению, и плазменную термообработку, которая, как правило, является финишной операцией. Важной особенностью плазменной закалки является возможность ее эффективного применения для дополнительного упрочнения поверхности деталей, прошедших обычную объемную термическую обработку. Широкое внедрение процессов плазменной закалки в производство невозможно без обобщения результатов исследований и производственного опыта, научного обоснования закономерностей формирования фазового состава, структуры и свойств модифицированного термической обработкой поверхностного слоя, обеспечивающих гарантированное получение требуемых эксплуатационных характеристик деталей в зависимости от технологических параметров режима обработки. Сущность плазменного термоупрочнения железоуглеродистых сплавов заключается в нагреве локального участка поверхности детали выше критических температур фазовых переходов (Ас1, Ас3, Асm) и последующем охлаждении с высокой скоростью, гарантирующей образование закалочных структур. Как и при обычной термообработке, особенности полученного в результате плазменной закалки структурного состояния определяются степенью гомогенизации аустенита при нагреве, его продолжительностью, а также исходными составом и структурой сплава. Окончательное структурное состояние и свойства, сформированные в зоне термического влияния после поверхностного нагрева, зависят от скорости охлаждения в температурном интервале наименьшей устойчивости аустенита, состава и размеров его зерна, ряда других факторов, определяемых пара- метрами термического цикла в ЗТВ. Для генерации концентрированного потока энергии при плазменной закалке используются специальные устройства - плазмотроны. В сравнении с обычной свободно горящей дугой, генерируемой горелкой с неплавящимся электродом в защитной атмосфере аргона плазменная дуга при сопоставимой электрической мощности имеет повышенную (15000…20000 К) температуру и более сосредоточенный тепловой поток . Это достигается уменьшением проводящего сечения дуги, сжатой в канале сопла потоком плазмообразующего газа, молекулы которого, в свою очередь, ионизируются в столбе дугового разряда, повышая тем самым долю ионного тока. Большинство плазмотронов работает на постоянном токе прямой полярности (отрицательный потенциал на электроде), поскольку тепловыделение в анодном пятне дуги выше, чем в катодном. Такое распределение потенциалов увеличивает термический КПД нагрева детали и снижает тепловую нагрузку на электрод. В плазмотронах, генерирующих сжатую дугу прямого действия, горящую между электродом и поверхностью детали, теплопередача в деталь осуществляется за счет теплопроводности, конвекции, излучения и кинетической энергии заряженных частиц, запасенной в электрическом поле.

Ионная имплантация (ионное внедрение, ионное легирование) - введение примесных атомов в твёрдое тело бомбардировкой его поверхности ускоренными ионами. При ионной бомбардировке мишени происходит проникновение ионов вглубь мишени. Внедрение ионов становится существенным при энергии ионов Е>1 кэВ.

Формально ионной имплантацией следовало бы называть облучение поверхности твердого тела атомами или атомарными ионами с энергией не менее 5-10 энергий связи атома в решетке облучаемой мишени (тогда до остановки ион или атом пройдет не менее 2-3 межатомных расстояний, т.е. внедрится, “имплантируется” в объем мишени). Однако, мы по традиции термином “ионная имплантация” называем здесь более узкий диапазон энергий - от 5-10 кэВ до 50-100 кэВ. Движущиеся частицы в результате многократных столкновений постепенно теряют энергию, рассеиваются и в конечном итоги либо отражаются назад, либо останавливаются, распределяясь по глубине. Энергетические потери обусловлены как взаимодействием с электронами мишени (неупругие столкновения), так и парными ядерными (упругими) столкновениями, при которых энергия передаётся атомам мишени в целом и резко изменяется направление движения частицы. При высоких энергиях и малых прицельных параметрах ядра сталкивающихся частиц сближаются на расстояния, меньшие радиусов электронных орбит, и их взаимодействие описывается кулоновским потенциалом. При низких энергиях существенно экранирование ядер электронами. Обычно раздельно рассматривают взаимодействие движущегося иона с электронами (свободными и на внешних оболочках атомов) и взаимодействие между ядрами иона и атома мишени, считая оба механизма потерь аддитивными, а среду однородной и изотропной (теория Линдхарда-Шарфа-IIIиотта, ЛШШ). Теория предсказывает, что удельные потери энергии с ростом энергии иона в зоне упругих столкновений проходят через максимум а затем убывают. Удельные потери в неупругих столкновениях с ростом энергии возрастают по коренному закону. При очень больших скоростях энергиях ион движется в мишени как голое ядро и удельные потери энергии убывают с дальнейшим её ростом. Траектория иона представляет собой сложную ломаную линию, состоящую из отрезков пути между элементарными актами рассеяния на большие углы. Функция распределения стабилизированных ионов по глубине образца имеет максимум (расстояние точки максимума от поверхности определяется величиной среднего пробега ионов данной энергии.

Важными характеристиками процесса ионной имплантации являются т. н. проективный пробег иона Rпр -- проекция траекторного пробега на направление первонач. движения частицы, а также распределение имплантированных атомов по Rпр, т. е. но глубине х (при бомбардировке по нормали к поверхности мишени). Распределение по x частиц, имплантированных в аморфную мишень, характеризуется ср. пробегом Rср среднеквадратичным разбросом пробегов?R и параметром Sk, определяющим асимметрию распределения Пирсона. Эти величины зависят от М1 М2 и е0. При Sк = 0 распределение Пирсона переходит в гауссовское. При ионной имплантации в монокристаллы распределение внедрённых частиц по глубине может видоизменяться из-за каналирования заряженных частиц. Изменяя в процессе ионной имплантации энергию ионов, можно получить распределение внедрённой примеси по глубине желаемой формы. Полное число атомов примеси N, которое может быть имплантировано в твердотельную мишень через единицу поверхности, ограничивается распылением, если коэффициент распыления S (число атомов мишени, выбиваемых одним ионом) больше доли внедряющихся частиц б=1-k (k -- коэффициент отражения). В пренебрежении диффузией

где nS=бn0/S -- концентрация примеси у поверхности в установившемся режиме. Если S >б концентрация имплантированных атомов будет монотонно расти с увеличением дозы ионов. Наиболее широко ионная имплантация применяется для легирования полупроводников с целью создания р-n-переходов, гетеропереходов, низкоомных контактов. Ионная имплантация позволяет вводить примеси при низкой температуре, в том числе примеси с малым коэффициентом диффузии, создавать пересыщенные твёрдые растворы. Ионная имплантация обеспечивает точную дозировку вводимой примеси, высокую чистоту (сепарация пучка ионов по массам), локальность, а также возможность управления процессом с помощью электрических и магнитных полей. Для устранения образующихся при ионной имплантации радиационных дефектов и перевода внедрённых атомов в регулярные положения используют высокотемпературный прогрев. Ионную имплантацию в металлы применяют с целью повышения их твёрдости, износоустойчивости, коррозионной стойкости, создания катализаторов, изменения коэффициента трения и т. п. При больших дозах, когда концентрация внедрённой примеси сравнима с n0, возможно образование новых соединений. Ионная бомбардировка позволяет вводить примесь не только из пучка, но и из плёнки, предварительно нанесённой на поверхность мишени (имплантация атомов отдачи и ионное перемешивание). Бомбардировка ионами может сопровождаться наращиванием имплантируемого материала. Плёнки, полученные ионным осаждением, имеют высокую плотность и хорошую адгезию к подложке.

Достоинства ионной имплантации:

  • 1. Возможность вводить (имплантировать) любую примесь, любой элемент Периодической Таблицы.
  • 2. Возможность легировать любой материал.
  • 3. Возможность вводить примесь в любой концентрации независимо от ее растворимости в материале подложки.
  • 4. Возможность вводить примесь при любой температуре подложки, от гелиевых температур до температуры плавления включительно.
  • 5. Возможность работать с легирующими веществами технической чистоты и даже с их химическими соединениями (тоже любой чистоты).
  • 6. Изотопная чистота легирующего ионного пучка (т.е. возможность легировать не только исключительно данным элементом, но и исключительно данным изотопом этого элемента).
  • 7. Легкость локального легирования (с помощью хотя бы элементарного механического маскирования).
  • 8. Малая толщина легированного слоя (менее микрона).
  • 9. Большие градиенты концентрации примеси по глубине слоя, недостижимые при традиционных методах с неизбежным диффузионным размыванием границы.
  • 10. Легкость контроля и полной автоматизации технологического процесса.
  • 11. Совместимость с планарной технологией микроэлектроники.

Ограничения, лимитирующие возможности ионной имплантации:

  • 1. Возможность вводить любую примесь иногда ограничена свойствами рабочего вещества ионного источника: а) слишком высокая рабочая температура б) химическая или температурная нестойкость, в) чрезмерная токсичность, г) коррозионная активность.
  • 2. Возможность легировать любой материал в действительности означает только возможность ввести, внедрить атомы легирующего вещества внутрь объема мишени. Если понятие “легирование” означает еще и вполне определенное положение в кристаллической решетке мишени, то здесь возможности ионной имплантации во многих случаях не намного больше, чем, например, диффузии. Другое ограничение - радиационная стойкость материала мишени. Условия облучения таковы, что декомпозиция сложных материалов имеет место при имплантации почти всегда (из-за испарения или распыления какой-либо компоненты химического соединения).
  • 3. Возможность вводить примесь в любой концентрации ограничена сверху коэффициентом распыления слоя. Кроме того, примесь, введенная сверх предела растворимости, при отжиге дефектов, как правило, выделяется в виде преципитатов другой фазы.
  • 4. Низкие температуры легирования характерны только для таких систем, где состояние кристаллической решетки несущественно. Если же нарушенную решетку нужно восстановить после имплантации, то выигрыш в температуре по сравнению, например, с диффузионным легированием становится существенно скромнее.
  • 5. Преимущество технической чистоты легирующих веществ изредка омрачается необходимостью осушки вещества либо устранения из него легкоионизующихся посторонних примесей
  • 6. Изотопная чистота ионного пучка отнюдь не означает изотопной же чистоты легирования. Перераспыление деталей имплантационной установки быстрыми ионами и неконтролируемое вбивание этого распыленного вещества в легированный слой может существенно испортить свойства слоя, поэтому требуются ухищрения, для исключения попадания на легируемую поверхность посторонних веществ.
  • 7. Локальность легирования при имплантации обеспечивается механическим маскированием либо накладными трафаретами-масками. Здесь неприятность связана с вбиванием материала маски в легированный слой.
  • 8. Малая толщина легированного слоя хороша в микроэлектронике, но отнюдь не является достоинством в металлургических применениях.
  • 9. Большие градиенты концентрации примеси по глубине. Расчетные градиенты (по распределению пробегов ионов) реально никогда не получаются из-за размытия профиля, обусловленного радиационным стимулированием диффузии примеси.
  • 10. Легкость контроля и автоматизации процесса во многих установках используется, но до идеала - полностью автоматизированной технологической линии - еще далеко.

Важно также помнить, что в настоящее время ионная имплантация одна из самых дорогостоящих. Ионная имплантация с сепарацией по массам - уникальный по своим возможностям метод исследования и модификации поверхностных слоев. Уникальный и по спектру легирующих примесей, и по спектру обрабатываемых материалов, и по диапазону концентраций примеси в легированном слое. Однако эта уникальность хороша только для исследовательских, поисковых целей. Как только выявляются перспективы практического использования найденных примесей, концентраций и толщин легированного слоя, так сразу же надо искать, опробовать и отрабатывать альтернативные технологии, обеспечивающие те же или близкие результаты.

прогрессивный метод локального поверхностного упрочнения, многократно повышающий надежность и долговечность изделий

СУЩНОСТЬ ПЗ состоит в высокоскоростном нагреве потоком плазмы поверхностного слоя металла и быстром его охлаждении в результате передачи тепла в глубинные слои материала детали.

ЦЕЛЬ ПЗ - изготовление деталей и инструмента с упрочненным поверхностным слоем толщиной до нескольких миллиметров при неизменном общем химическом составе материала и сохранении во внутренних слоях первоначальных свойств исходного металла.

МАТЕРИАЛЫ, ПОДВЕРГАЕМЫЕ ПЗ - инструментальные стали, чугуны, твердые сплавы, цементированные и нитроцементированные стали, цветные сплавы и другие материалы.

ЭФФЕКТ ОТ ПЗ определяется повышением эксплуатационных свойств детали, благодаря изменению физико-механических характеристик поверхностного слоя, вследствие образования специфической структуры и фазового состава металла с высокой твердостью и дисперсностью, а также получения на поверхности сжимающих остаточных напряжений.

ОБОРУДОВАНИЕ ДЛЯ ПЗ состоит из источника питания дуги, малогабаритного плазмотрона и механизма для перемещения плазмотрона или детали. В качестве источника питания используются установки плазменной сварки и наплавки УПНС-304, плазменной обработки УПО-302, УПВ-301, плазменной резки УПРП-201, сварочные выпрямители ВД-201, ВД-306, ВДУ-506 и другие. Плазмотрон изготавливается по оригинальным конструкторским разработкам. Механизмом для перемещения может служить серийное механическое, сварочное или наплавочное оборудование.

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ПЗ состоит из предварительной очистки (любым известным методом) и непосредственно ПЗ обрабатываемой поверхности путем перемещения изделия относительно плазмотрона или наоборот. Возможны следующие технологические варианты ПЗ - без оплавления и с оплавлением поверхности детали, с промежутками между упрочненными зонами или без них. Параметры процесса ПЗ - ток плазменной дуги (струи), расход плазмообразующего газа, расстояние между плазмотроном и изделием, скорость перемещения определяются алгоритмом, обеспечивающим получение оптимальных свойств в поверхностном слое упрочняемой детали. Интегральная температура нагрева в процессе ПЗ не превышает 150..200° С. В качестве плазмообразующего газа используются, как правило, аргон или его смеси с азотом, а также воздух. Средняя ширина закаленной зоны 6..13 мм.

КОНТРОЛЬ КАЧЕСТВА ПЗ обработанной поверхности осуществляется визуально по наличию и сравнению цветовой окраски с эталоном, а также по увеличению твердости образца-свидетеля после ПЗ.

ОСНОВНЫЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ПЗ определяются применением сварочных источников нагрева и требуют использования вытяжной вентиляционной системы и защиты органов зрения от излучения.

ПРИМЕРЫ ПРИМЕНЕНИЯ ПЗ: режущий и мерительный инструмент, штампы, напильники; контуры резьбы ходовых винтов, шестерен, зубчатых колес, реек; рабочие профили кулачков, копиров, а также разнообразных пазов, канавок, отверстий; направляющие, шпиндели, валы, оси, штоки; детали фотоаппаратов, текстильных машин, ножи для обработки дерева, бумаги, синтетических материалов; рамные и дисковые пилы, иглы, лезвия бритв, прокатные валки, коленчатые и распределительные валы, детали газораспределительных механизмов двигателей и т.д.

ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ ПЗ. По сравнению с аналогами - способами поверхностного упрочнения токами высокой частоты, газовым пламенем, химико-термической обработки, лазерным и электронно-лучевым упрочнением, данный процесс имеет ПРЕИМУЩЕСТВА:

низкие интегральные температуры нагрева деталей;

большая глубина упрочненного слоя по сравнению, например, с лазерной закалкой;

высокий эффективный КПД нагрева плазменной дугой до (85%), для сравнения, при лазерном

упрочнении - 5%;

отсутствие применения специальных дополнительных химических препаратов или веществ;

возможность ведения процесса без применения охлаждающих сред, вакуума, специальных

покрытий для повышения поглощательной способности упрочняемых поверхностей;

в отличие от лазерного оборудования, отсутствие специальных хладоагентов для охлаждения;

простота, низкая стоимость, маневренность, малые габариты технологического оборудования;

возможность автоматизации и роботизации технологического процесса.

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПЗ определяется:

повышением работоспособности и износостойкости деталей и инструмента;

сокращением затрат на изготовление запасных деталей и дополнительного количества инструмента для выполнения заданной производственной программы;

уменьшения объема заточных операций, времени и средств, связанных с настройкой прессов и металлообрабатывающих станков для инструмента, подвергнутого ПЗ;

высвобождением работников, занятых на изготовлении запасных деталей и дополнительного количества инструмента;

интенсификацией режимов работы инструмента;

увеличением выпуска продукции на существующем оборудовании, вследствие сокращения простоев для замены изношенных деталей и аварийных ремонтов оборудования.

PLASMA HARDENING HIGH-CHROMIUM CAST IRON

Kirill Vaskin

PhD, assistant professor of Togliatti State University,

Russia , Togliatti

Artur Blinov

undergraduate of Togliatti State University,

Russia, Togliatti

Andrey Blinov

head of "Technological Department of die tooling " PJSC AVTOVAZ,

Russia, Togliatti

АННОТАЦИЯ

В работе было исследовано влияние плазменной закалки на физико-механические свойства чугуна ХФ. Были определены значения микротвердости и глубины упрочненного слоя. В результате проведенных исследований было получено, что использование плазменного поверхностного термоупрочнения позволило повысить микротвердость поверхностного слоя образца более чем в 2 раза.

ABSTRACT

Effect of plasma hardening physical and mechanical properties of high-chromium cast iron in article are investigated. Values of hardness and depth of the hardened layer are determined. The use of highly concentrated energy sources makes it possible to increase the hardness of the surface layer more 2 times, as a result of our research.

Ключевые слова: плазменная закалка; термоупрочнение.

Keywords: plasma hardening; thermal hardening.

Кратковременное действие температурного фактора при закалке приводит к диспергированию структуры. Это характерно при плазменной и лазерной закалке . Однако, при лазерной закалке пятно контакта лазерного луча и обрабатываемого материала меньше пятна контакта плазменной дуги с обрабатываемой поверхностью. Поэтому при больших областях закалки более производительным является метод плазменной закалки. Таким образом, при закалке штамповой оснастки предпочтительным является способ плазменного термоупрочнения.

Исследования по изучению влияния плазменной закалки проводили на чугуне ХФ, который применяют при изготовлении пуансонов и матриц формообразующих штампов холодной штамповки на ПАО «АВТОВАЗ» .

Плазменная закалка образца (рис. 1) была проведена на установке УГДЗ-200 .

Рисунок 1. Геометрические размеры образца для плазменной закалки

Из-за того что образец имел небольшие размеры, а его способность к отведению тепла не столь велика, то некоторые участки упрочняемой поверхности оплавлялись. Чтобы устранить возникшие неровности, образец шлифовали, при этом глубина резания составила порядка 0,3…0,4 мм, а шероховатость Ra0,8. После этого на электроэрозионном станке был вырезан фрагмент поверхности для того чтобы провести дальнейшие металлографические исследования.

Замеры микротвердости были проведены с помощью микротвердомера Micromet-II, структура образца изучалась на микроскопе AxioObserver.

Плазменная закалка образцов из чугуна ХФ

Внешний вид упрочненного плазменной закалкой образца из чугуна ХФ приведен на рисунке 2. На данном образце была проведена операция шлифования упрочненной цилиндрической поверхности со съемом материала толщиной 0,4 мм, затем электроэрозионным способом вырезан фрагмент поверхности для проведения металлографических исследований.

Основные параметры процесса упрочнения:

  • рабочий ток дуги 150А;
  • рабочее давление аргона 0,3 МПа;
  • ширина закаленной зоны 10-12 мм;
  • длина дуги - 20 мм;
  • скорость прохода по поверхности - 0,5 м/мин.

Рисунок 2. Образец из чугуна ХФ после проведения плазменной закалки, шлифования, вырезки фрагмента упрочненной поверхности

Микроструктура упрочненной зоны образца из чугуна ХФ приведена на рисунке 3(а). Распределение микроструктуры от поверхности внутрь материала следующее: ледебурит, мартенсит, остаточный аустенит, троостомартенсит, цементит, графит пластинчатый по всему сечению упрочненного слоя.

а б

Рисунок 3. Микроструктура упрочненного слоя образца из чугуна ХФ. (а) - структура упрочненного слоя, (б) - структура сердцевины.

Микроструктура сердцевины образца из чугуна ХФ представлена на рисунке 3б: перлит пластинчатый, цементит, графит пластинчатый.

Параметры упрочненного методом плазменной закалки слоя чугуна ХФ:

глубина упрочненного слоя – 0,8…1,0 мм;

твердость упрочненного слоя – HRC 55…58;

структура упрочненного слоя – ледебурит, мартенсит, остаточный аустенит, троостомартенсит, цементит, графит пластинчатый;

твердость сердцевины – HRC 26;

структура сердцевины – перлит пластинчатый, цементит, графит пластинчатый.

Список литературы:

  1. Васькин К.Я., Блинов А.А., Блинов А.В. Плазменная закалка стали Х12МФ. Технические науки - от теории к практике: сб. ст. по матер. LXVIII междунар. науч.-практ. конф. № 3(63). – Новосибирск: СибАК, 2017. – С. 58-62.
  2. Зубанов И.Ю., Блинов А.В. Новая технология изготовления штампов ОАО «ВАЗ». Материалы региональной научной конференции. Т. 2. 2014 - С. 122.
  3. Коротков В.А. Опыт применения установки плазменной закалки УДГЗ-200 на предприятиях уральского региона. Автоматическая сварка. 2012. №5 (709). - С. 55-58.
  4. Коротков В.А. Свойства и промышленное применение ручной плазменной закалки. Металловедение и термическая обработка металлов. 2016. №8 (734). - С. 3-9.
  5. Огин П.А., Васькин К.Я. Повышение ресурса мелкоразмерного инструмента за счет модификации изнашиваемых поверхностей при помощи оптоволоконного лазера. IV Резниковские чтения: труды междунар. науч.-техн. конф. Ч. 1. Тольятти: ТГУ, 2015. - С. 143–145.
  6. Огин П.А., Мерсон Д.Л., Кондрашина Л.А., Васькин К.Я. Влияние режимов лазерной модификации на структуру, свойства и износостойкость мелкоразмерного инструмента из быстрорежущей стали Р6М5. Вектор науки Тольяттинского государственного университета. 2015. № 4 (34). - С. 83-88.
  7. Xiang Y., Yu D., Li Q., Peng H., Cao X., Yao J. Effects of thermal plasma jet heat flux characteristics on surface hardening. Journal of Materials. 2015. P. 238-246.


Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.