Регрессионная зависимость. Регрессионный анализ в Microsoft Excel

А) Графический анализ простой линейной регрессии.

Простое линейное уравнение регрессии y=a+bx. Если между случайными величинами У и X существует корреляционная связь, то значение у = ý + ,

где ý – теоретическое значение у, полученное из уравнения ý = f(x),

 – погрешность отклонения теоретического уравнения ý от фактических (экспериментальных) данных.

Уравнение зависимости средней величины ý от х, то есть ý = f(x) называют уравнением регрессии. Регрессионный анализ состоит из четырёх зтапов:

1) постановка задачи и установление причин связи.

2) ограничение объекта исследований, сбор статастической информации.

3) выбор уравнения связи на основе анализа и характера собранных данных.

4) расчёт числовых значений, характеристик корреляционной связи.

Если две переменные связаны таким образом, что изменение одной переменной соответствует систематическому изменению другой переменной, то для оценки и выбора уравнения связи между ними применяют регрессионный анализ в том случае, если эти переменные известны. В отличие от регрессионного анализа, корреляционный анализ применяют для анализа тесноты связи между X и У.

Рассмотрим нахождение прямой при регрессионном анализе:

Теоретическое уравнение регрессии.

Термин «простая регрессия» указывает на то, что величина одной переменной оценивается на основе знаний о другой переменной. В отличие от простой многофакторная регрессия применяется для оценки переменной на основе знания двух, трёх и более переменных. Рассмотрим графический анализ простой линейной регрессии.

Предположим, имеются результаты отборочных испытании по предварительному найму на работу и производительности труда.

Результаты отбора (100 баллов), x

Производительность (20 баллов), y

Нанеся точки на график, получим диаграмму (поле) рассеяния. Используем её для анализа результатов отборочных испытаний и производительности труда.

По диаграмме рассеяния проанализируем линию регрессии. В регрессионном анализе всегда указываются хотя бы две переменные. Систематическое изменение одной переменной связано с изменением другой. Основная цель регрессионного анализа заключается в оценке величины одной переменной, если величина другой переменной известна. Для полной задачи важна оценка производительности труда.

Независимой переменной в регрессионном анализе называется величина, которая используется в качестве основы для анализа другой переменной. В данном случае – это результаты отборочных испытаний (по оси X).

Зависимой переменной называется оцениваемая величина (по оси У). В регрессионном анализе может быть только одна зависимая переменная и несколько независимых переменных.

Для простого регрессионного анализа зависимость можно представить в двухкоординатной системе (х и у), по оси X – независимая переменная, по оси У – зависимая. Наносим точки пересечения таким образом, чтобы на графике была представлена пара величин. График называют диаграммой рассеяния . Ее построение – это второй этап регрессионного анализа, поскольку первый – это выбор анализируемых величин и сбор данных выборки. Таким образом, регрессионный анализ применяется для статистического анализа. Связь между выборочными данными диаграммы линейная.

Для оценки величины переменной у на основе переменной х необходимо определить положение линии, которая наилучшим образом представляет связь между х и у на основе расположения точек диаграммы рассеяния. В нашем примере это анализ производительности. Линия, проведенная через точки рассеяния – линия регрессии . Одним из способов построения линии регрессии, основанном на визуальном опыте, является способ построения от руки. По нашей линии регрессии можно определить производительность труда. При нахождении уравнения линии регрессии

часто применяют критерий наименьших квадратов. Наиболее подходящей является та линия, где сумма квадратов отклонений минимальна

Математическое уравнение линии роста представляет закон роста в арифметической прогрессии:

у = а b х .

Y = а + b х – приведённое уравнение с одним параметром является простейшим видом уравнения связи. Оно приемлемо для средних величин. Чтобы точнее выразить связь между х и у , вводится дополнительный коэффициент пропорциональности b , который указывает наклон линии регрессии.

Б) Построение теоретической линии регрессии.

Процесс её нахождения заключается в выборе и обосновании типа кривой и расчётов параметров а , b , с и т.д. Процесс построения называют выравниванием, и запас кривых, предлагаемых мат. анализом, разнообразен. Чаще всего в экономических задачах используют семейство кривых, уравнения которые выражаются многочленами целых положительных степеней.

1)
– уравнение прямой,

2)
– уравнение гиперболы,

3)
– уравнение параболы,

где ý – ординаты теоретической линии регрессии.

Выбрав тип уравнения, необходимо найти параметры, от которых зависит это уравнение. Например, характер расположения точек в поле рассеяния показал, что теоретическая линия регрессии является прямой.

Диаграмма рассеяния позволяет представить производительность труда с помощью регрессионного анализа. В экономике с помощью регрессионного анализа предсказываются многие характеристики, влияющие на конечный продукт (с учётом ценообразования).

В) Критерий наименьших кадратов для нахождения прямой линии.

Один из критериев, которые мы могли бы применить для подходящей линии регрессии на диаграмме рассеяния, основан на выборе линии, для которой сумма квадратов погрешностей будет минимальна.

Близость точек рассеяния к прямой измеряется ординатами отрезков. Отклонения этих точек могут быть положительными и отрицательными, но сумма квадратов отклонений теоретической прямой от экспериментальной всегда положительна и должна быть минимальна. Факт несовпадения всех точек рассеяния с положением линии регрессии указывает на существование расхождения между экспериментальными и теоретическими данными. Таким образом, можно сказать, что никакая другая линия регрессии, кроме той, которую нашли, не может дать меньшую сумму отклонений между экспериментальными и опытными данными. Следовательно, найдя теоретическое уравнение ý и линию регрессии, мы удовлетворяем требованию наименьших квадратов.

Это делается с помощью уравнения связи
, используя формулы для нахождения параметров а и b . Взяв теоретическое значение
и обозначив левую часть уравнения черезf , получим функцию
от неизвестных параметрова и b . Значения а и b будут удовлетворять минимуму функции f и находятся из уравнений частных производных
и
. Этонеобходимое условие , однако для положительной квадратической функции это является и достаточным условием для нахождения а и b .

Выведем из уравнений частных производных формулы параметров а и b :



получим систему уравнений:

где
– среднеарифметические погрешности.

Подставив числовые значения, найдем параметры а и b .

Существует понятие
. Это коэффициент аппроксимации.

Если е < 33%, то модель приемлема для дальнейшего анализа;

Если е > 33%, то берём гиперболу, параболу и т.д. Это даёт право для анализа в различных ситуациях.

Вывод: по критерию коэффициента аппроксимации наиболее подходящей является та линия, для которых

, и никакая другая линия регрессии для нашей задачи не даёт минимум отклонений.

Г) Квадратическая ошибка оценки, проверка их типичности.

Применительно к совокупности, у которой число параметров исследования меньше 30 (n < 30), для проверки типичности параметров уравнения регрессии используется t -критерий Стьюдента. При этом вычисляется фактическое значение t -критерия:

Отсюда

где – остаточная среднеквадратическая погрешность. Полученныеt a и t b сравнивают с критическим t k из таблицы Стьюдента с учётом принятого уровня значимости ( = 0,01 = 99% или  = 0,05 = 95%). P = f = k 1 = m – число параметров исследуемого уравнения (степень свободы). Например, если y = a + bx ; m = 2, k 2 = f 2 = p 2 = n – (m + 1), где n – количество исследуемых признаков.

t a < t k < t b .

Вывод : по проверенным на типичность параметрам уравнения регрессии производится построение математической модели связи
. При этом параметры примененной в анализе математической функции (линейная, гипербола, парабола) получают соответствующие количественные значения. Смысловое содержание полученных таким образом моделей состоит в том, что они характеризуют среднюю величину результативного признака
от факторного признака X .

Д) Криволинейная регрессия.

Довольно часто встречается криволинейная зависимость, когда между переменными устанавливается меняющееся соотношение. Интенсивность возрастания (убывания) зависит от уровня нахождения X. Криволинейная зависимость бывает разных видов. Например, рассмотрим зависимость между урожаем и осадками. С увеличением осадков при равных природных условиях интенсивное увеличение урожая, но до определенного предела. После критической точки осадки оказываются излишними, и урожайность катастрофически падает. Из примера видно, что вначале связь была положительной, а потом отрицательной. Критическая точка - оптимальный уровень признака X, которому соответствует максимальное или минимальное значение признака У.

В экономике такая связь наблюдается между ценой и потреблением, производительностью и стажем.

Параболическая зависимость.

Если данные показывают, что увеличение факторного признака приводит к росту результативного признака, то в качестве уравнения регрессии берется уравнение второго порядка (парабола).

. Коэффициенты a,b,c находятся из уравнений частных производных:

Получаем систему уравнений:

Виды криволинейных уравнений:

,

,

Вправе предполагать, что между производительностью труда и баллами отборочных испытаний существует криволинейная зависимость. Это означает, что с ростом бальной системы производительность начнёт на каком-то уровне уменьшаться, поэтому прямая модель может оказаться криволинейной.

Третьей моделью будет гипербола, и во всех уравнениях вместо переменной х будет стоять выражение .

В своих работах, датированных ещё 1908 годом. Он описал его на примере работы агента, осуществляющего продажу недвижимости. В своих записях специалист по торговле домами вёл учёт широкого спектра исходных данных каждого конкретного строения. По результатам торгов определялось, какой фактор имел наибольшее влияние на цену сделки.

Анализ большого количества сделок дал интересные результаты. На конечную стоимость оказывали влияние множество факторов, иногда приводя к парадоксальным выводам и даже к явным «выбросам», когда дом с высоким изначальным потенциалом продавался по заниженному ценовому показателю.

Вторым примером применения подобного анализа приведена работа которому было доверено определение вознаграждения сотрудникам. Сложность задачи заключалась в том, что требовалась не раздача фиксированной суммы каждому, а строгое соответствие её величины конкретно выполненной работе. Появление множества задач, имеющих практически сходный вариант решения, потребовало более детального их изучения на математическом уровне.

В существенное место было отведено под раздел «регрессионный анализ», в нём объединились практические методы, используемые для исследования зависимостей, подпадающих под понятие регрессионных. Эти взаимосвязи наблюдаются между данными, полученными в ходе статистических исследований.

Среди множества решаемых задач основными ставит перед собой три цели: определение для уравнения регрессии общего вида; построение оценок параметров, являющихся неизвестными, которые входят в состав уравнения регрессии; проверка статистических регрессионных гипотез. В ходе изучения связи, возникающей между парой величин, полученных в результате экспериментальных наблюдений и составляющих ряд (множество) типа (x1, y1), ..., (xn, yn), опираются на положения теории регрессии и предполагают, что для одной величины Y наблюдается определённое вероятностное распределение, при том, что другое X остаётся фиксированным.

Результат Y зависит от значения переменной X, зависимость эта может определяться различными закономерностями, при этом на точность полученных результатов оказывает влияние характер наблюдений и цель анализа. Экспериментальная модель основывается на определённых допущениях, которые являются упрощёнными, но правдоподобными. Основным условием является то, что параметр X является величиной контролируемой. Его значения задаются до начала эксперимента.

Если в ходе эксперимента используется пара неконтролируемых величин XY, то регрессионный анализ осуществляется одним и тем же способом, но для интерпретации результатов, в ходе которой изучается связь исследуемых случайных величин, применяются методы Методы математической статистики не являются отвлеченной темой. Они находят себе применение в жизни в самых различных сферах деятельности человека.

В научной литературе для определения выше указанного метода нашёл широкое использование термин линейный регрессионный анализ. Для переменной X применяют термин регрессор или предиктор, а зависимые Y-переменные ещё называют критериальными. В данной терминологии отражается лишь математическая зависимость переменных, но никак не следственно-причинные отношения.

Регрессионный анализ служит наиболее распространённым методом, который используется в ходе обработки результатов самых различных наблюдений. Физические и биологические зависимости изучаются по средствам данного метода, он реализован и в экономике, и в технике. Масса других областей используют модели регрессионного анализа. Дисперсионный анализ, статистический анализ многомерный тесно сотрудничают с данным способом изучения.

Понятия корреляции и регрессии непосредственно связаны меж­ду собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причин­но-следственных соотношений между явлениями и процессами. Одна­ко, если корреляционный анализ позволяет оценить силу и направ­ление стохастической связи, то регрессионный анализ - еще и фор­му зависимости.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

Простой (регрессия между двумя переменными);

Множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

Линейной (отображается линейной функцией, а между изучае­мыми переменными существуют линейные соотношения);

Нелинейной (отображается нелинейной функцией, между изу­чаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение пе­ременными:

Положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот);

Отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается);

г) по типу:

Непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая перемен­ные связаны непосредственно друг с другом);

Косвенной (объясняющая переменная оказывает опосредован­ное действие через третью или ряд других переменных на зависимую переменную);

Ложной (нонсенс регрессия) - может возникнуть при поверх­ностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют ма­тематическое уравнение того или иного типа, позволяющее, во-пер­вых, установить общую тенденцию изменения зависимой перемен­ной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной. Полу­ченная математическая зависимость (уравнение регрессии) позволя­ет определять значение зависимой переменной как в пределах ин­тервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений со­циально-экономических процессов и явлений (при условии сохране­ния существующих тенденций и взаимосвязей). Обычно длина вре­менного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором прове­дены наблюдения исходных показателей. Можно осуществить как пас­сивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя раз­личные значения в одну или несколько объясняющих переменных рег­рессии.



Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов . Этот метод име­ет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения.

При выборе модели регрессии одним из существенных требова­ний к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций):

где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - слу­чайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N ­число наблюдений, причем должно соблюдаться условие (N . n+1).

Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-эконо­мических системах, подчас затруднительно применение линейных мо­делей из-за больших ошибок аппроксимации. Поэтому нередко ис­пользуются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производст­венная функция (степенная функция Кобба-Дугласа), нашедшая при­менение в различных социально-экономических исследованиях. Она имеет вид:

где b 0 - нормировочный множитель, b 1 ...b j - неизвестные коэффи­циенты, e i - случайное отклонение.

Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму:

Полученная модель позволяет использовать стандартные проце­дуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппрокси­мации.

Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА) .

О правильности подобранной модели можно судить по результа­там исследования остатков, являющихся разностями между наблю­даемыми величинами y i и соответствующими прогнозируемыми с по­мощью регрессионного уравнения величинами y i . В этом случае для проверки адекватности модели рассчитывается средняя ошибка ап­проксимации:

Модель считается адекватной, если e находится в пределах не более 15%.

Особо подчеркнем, что применительно к социально-экономичес­ким системам далеко не всегда выполняются основные условия адек­ватности классической регрессионной модели.

Не останавливаясь на всех причинах возникающей неадекват­ности, назовем лишь мультиколлинеарность - самую сложную пробле­му эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменны­ми.

Это явление:

а) искажает смысл коэффициентов регрессии при их содержа­тельной интерпретации;

б) снижает точность оценивания (возрастает дисперсия оце­нок);

в) усиливает чувствительность оценок коэффициентов к выбо­рочным данным (увеличение объема выборки может сильно повлиять на значения оценок).

Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, рав­ное по абсолютной величине 0,8. Какую из переменных оставить ре­шают, исходя из содержательных соображений. Затем вновь прово­дится расчет коэффициентов регрессии.

Использование алгоритма пошаговой регрессии позволяет пос­ледовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколли­неарность переменных. Окончательно в исследуемой зависимости ос­таются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мульти­коллинеарности.

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.


Теперь, когда мы перейдем во вкладку «Данные» , на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных» .

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.


Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат . В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты» . Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.