Российские ученые. Термоядерный реактор Lockheed Martin блеф. Чертежи и описание…. Кто строит термоядерный реактор

«Lockheed Martin начала разработку компактного термоядерного реактора… На сайте фирмы говорится о постройке первого опытного образца уже через год. Если это окажется правдой, через год мы будем жить в совершенно ином мире», - это начало одной из «Чердака». Со времени ее публикации прошло три года, и мир с тех пор не так уж сильно изменился.

Сегодня в реакторах атомных электростанций энергия вырабатывается за счет распада тяжелых ядер. В термоядерных же реакторах энергия получается в ходе процесса слияния ядер, при котором образуются ядра меньшей массы, чем сумма исходных, а «остаток» уходит в виде энергии. Отходы ядерных реакторов радиоактивны, их безопасное захоронение - это большая головная боль. Термоядерные реакторы такого недостатка лишены, а также используют широко доступное топливо, такое как водород.

У них есть только одна большая проблема - промышленных образцов еще не существует. Задача непростая: для термоядерных реакций нужно сжать топливо и нагреть до сотен миллионов градусов - горячее, чем на поверхности Солнца (где термоядерные реакции происходят естественным путем). Достичь такой высокой температуры сложно, но можно, только вот потребляет такой реактор энергии больше, чем вырабатывает.

Однако потенциальных достоинств у них все равно так много, что разработкой занимается, конечно же, не только Lockheed Martin.

ITER

ITER - cамый крупный проект в этой области. В нем участвуют Евросоюз, Индия, Китай, Корея, Россия, США и Япония, а сам реактор строится на территории Франции с 2007 года, хотя его история уходит намного глубже в прошлое: о его создании договаривались еще Рейган с Горбачевым в 1985-м. Реактор представляет собой тороидальную камеру, «бублик», в которой плазму удерживают магнитные поля, потому и называется токамак - то роидальная ка мера с ма гнитными к атушками. Энергию реактор будет вырабатывать за счет слияния изотопов водорода - дейтерия и трития.

Планируется, что ITER будет получать энергии в 10 раз больше, чем потреблять, однако будет это не скоро. Изначально планировалось, что в экспериментальном режиме реактор начнет работать в 2020 году, однако затем этот срок перенесли на 2025-й. При этом промышленное производство энергии начнется не раньше 2060 года, а уж ждать распространения этой технологии можно только где-то в конце XXI века.

Wendelstein 7-X

Wendelstein 7-X - крупнейший термоядерный реактор типа стелларатор. Стелларатор решает проблему, которая преследует токамаки, - «расползание» плазмы из центра тора к его стенкам. То, с чем токамак пытается справиться за счет мощи магнитного поля, стелларатор решает за счет своей сложной формы: удерживающее плазму магнитное поле изгибается, чтобы пресечь поползновения заряженных частиц.

Wendelstein 7-X, как надеются его создатели, в 21-м году сможет проработать полчаса, что даст «билет в жизнь» идее термоядерных станций подобной конструкции.

National Ignition Facility

Еще один тип реакторов использует для сжатия и разогрева топлива мощные лазеры. Увы, крупнейшая лазерная установка для получения термоядерной энергии, американская NIF, не смогла выдать энергии больше, чем потребляет.

Какие из всех этих проектов действительно «взлетят», а кого постигнет участь NIF, предсказать сложно. Остается ждать, надеяться и следить за новостями: 2020-е обещают стать интересным временем для ядерной энергетики.

«Ядерные технологии » - один из профилей Олимпиады НТИ для школьников.

Испанские инженеры разработали прототип экологически чистого термоядерного реактора с инерционным удержанием плазмы, в основе работы которого используется ядерный синтез вместо ядерного деления. Утверждается, что изобретение позволит сущест­венно экономить на топливе и избежать загрязнения окружающей среды.

Профессор Политехнического университета Мадрида Хосе Гонсалес Диез запатентовал реактор, использующий в качестве топлива изотоп водорода, который можно выделить из воды, что позволяет существенно экономить при производстве электроэнергии. Синтез в реакторе происходит посредством лазерного излучения в 1000 МВт.

На протяжении многих лет ядерный синтез изучался на предмет создания альтернативы ядерному делению с точки зрения безопасности и финансовых преимуществ. Тем не менее сегодня не существует ни одного термоядерного реактора для производства непрерывной электрической энергии высокого напряжения. Примером естественного термоядерного реактора может служить Солнце, внутри которого нагретая до огромных температур плазма удерживается в состоянии с высокой плотностью.

В рамках проекта Fusion Power Гонсалес Диез создал прототип термоядерного реактора с инерциальным удержанием плазмы. Синтезирующая камера реактора может адаптироваться к типу используемого топлива. Теоретически возможными реакциями могут стать реакции дейтерий-тритий, дейтерий-дейтерий или водород-водород.

Размеры камеры, а также ее форма могут быть адаптированы в зависимости от типа топлива. Кроме того, можно будет менять форму внешнего и внутреннего оборудования, тип охлаждающей жидкости и т.д.

По словам кандидата физико-математических наук Бориса Бояршинова, проекты по созданию термоядерного реактора реализуются на протяжении сорока лет.

«С 70-х годов остро стоит проблема управляемого термоядерного синтеза, но пока многочисленные попытки создать термоядерный реактор были неудачными. Работы по его изобретению до сих пор ведутся и, скорее всего, вскоре увенчаются успехом», - отметил г-н Бояршинов.

Руководитель энергетической программы «Гринпис России» Владимир Чупров скептически относится к идее использования термоядерного синтеза.

«Это далеко не безопасный процесс. Если разместить рядом с термоядерным реактором «бланкет» из урана-238, то все нейтроны будут поглощаться этой оболочкой и уран-238 будет превращаться в плутоний-239 и 240. С точки зрения экономики даже если термоядерный синтез удастся реализовать и ввести в коммерческую эксплуатацию, его стоимость такова, что позволить его себе сможет далеко не каждая страна, хотя бы потому, что для обслуживания этого процесса нужны очень компетентные кадры», - говорит эколог.

По его словам, сложность и дороговизна этих технологий представляет собой тот камень преткновения, о который запнется любой проект, даже если он состоится на техническом уровне. «Но даже в случае успеха максимальная установленная мощность термоядерных станций к концу столетия составит 100 ГВт, что составляет около 2% от того, что потребуется человечеству. В итоге термоядерный синтез не решает глобальной проблемы», - уверен г-н Чупров.

Ученые Института ядерной физики Сибирского отделения Российской академии наук (ИЯФ СО РАН) намерены создать в своем институте рабочую модель термоядерного реактора. Об этом изданию «Сиб.фм» сообщил руководитель проекта, доктор физико-математических наук Александр Иванов.

Для разворачивания проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» ученые получили правительственный грант. Всего на создание реактора ученым потребуется около полумиллиарда рублей. Построить установку в Институте собираются за пять лет. Как сообщается, исследованиями, связанными с управляемым термоядерным синтезом, в частности физикой плазмы, в ИЯФ СО РАН занимаются давно.

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача - построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», - сообщил Иванов.

В отличие от обычной ядерной энергетики, в термоядерной предполагается использование энергии, высвобождаемой при образовании более тяжелых ядер из легких. В качестве топлива предусматривается применение изотопов водорода - дейтерия и трития, однако в ИЯФ СО РАН собираются работать только с дейтерием.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем - только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», - подчеркнул заместитель директора Института по научной работе Юрий Тихонов.

Реакции с участием дейтерия относительно недороги и имеют высокий энергетический выход, но при их протекании образуется опасное нейтронное излучение.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы сможем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», - пояснил другой заместитель директора ИЯФ СО РАН по научной работе Александр Бондарь.

Ученые Института ядерной физики Сибирского отделения Российской академии наук (ИЯФ СО РАН) намерены создать в своем институте рабочую модель термоядерного реактора. Об этом изданию «Сиб.фм» сообщил руководитель проекта, доктор физико-математических наук Александр Иванов.

Для разворачивания проекта «Развитие фундаментальных основ и технологий термоядерной энергетики будущего» ученые получили правительственный грант. Всего на создание реактора ученым потребуется около полумиллиарда рублей. Построить установку в Институте собираются за пять лет. Как сообщается, исследованиями, связанными с управляемым термоядерным синтезом, в частности физикой плазмы, в ИЯФ СО РАН занимаются давно.

«До сих пор мы занимались физическими опытами для создания класса ядерных реакторов, которые можно использовать в реакциях синтез-деления. Мы добились в этом прогресса, и перед нами встала задача - построить прототип термоядерной станции. К настоящему моменту мы накопили базу и технологии и полностью готовы к началу работ. Это будет полномасштабная модель реактора, которую можно использовать для проведения исследований или, к примеру, для переработки радиоактивных отходов. Технологий для создания такого комплекса много. Они новые и сложные, и требуется некоторое время, чтобы их освоить. Все задачи физики плазмы, которые мы будем решать, актуальны для мирового научного сообщества», - сообщил Иванов.

В отличие от обычной ядерной энергетики, в термоядерной предполагается использование энергии, высвобождаемой при образовании более тяжелых ядер из легких. В качестве топлива предусматривается применение изотопов водорода - дейтерия и трития, однако в ИЯФ СО РАН собираются работать только с дейтерием.

«Мы будем проводить только моделирующие эксперименты с генерацией электронов, но все параметры реакций будут соответствовать реальным. Электроэнергию тоже вырабатывать не будем - только доказывать, что реакция может протекать, что параметры плазмы достигнуты. Прикладные технические задачи будут реализовываться в других реакторах», - подчеркнул заместитель директора Института по научной работе Юрий Тихонов.

Реакции с участием дейтерия относительно недороги и имеют высокий энергетический выход, но при их протекании образуется опасное нейтронное излучение.

«В существующих установках достигнута температура плазмы в 10 миллионов градусов. Это ключевой параметр, который определяет качество реактора. Надеемся повысить температуру плазмы во вновь созданном реакторе в два или в три раза. На таком уровне мы сможем использовать установку как нейтронный драйвер для энергетического реактора. На основе нашей модели могут создаваться безнейтронные реакторы на тритии-дейтерии. Другими словами, созданные нами установки позволят создавать безнейтронное топливо», - пояснил другой заместитель директора ИЯФ СО РАН по научной работе Александр Бондарь.

Испанские инженеры разработали прототип экологически чистого термоядерного реактора с инерционным удержанием плазмы, в основе работы которого используется ядерный синтез вместо ядерного деления. Утверждается, что изобретение позволит существенно экономить на топливе и избежать загрязнения окружающей среды.

Профессор Политехнического университета Мадрида Хосе Гонсалес Диез запатентовал реактор, использующий в качестве топлива изотоп водорода, который можно выделить из воды, что позволяет существенно экономить при производстве электроэнергии. Синтез в реакторе происходит посредством лазерного излучения в 1000 МВт.

На протяжении многих лет ядерный синтез изучался на предмет создания альтернативы ядерному делению с точки зрения безопасности и финансовых преимуществ. Тем не менее сегодня не существует ни одного термоядерного реактора для производства непрерывной электрической энергии высокого напряжения. Примером естественного термоядерного реактора может служить Солнце, внутри которого нагретая до огромных температур плазма удерживается в состоянии с высокой плотностью.

В рамках проекта Fusion Power Гонсалес Диез создал прототип термоядерного реактора с инерциальным удержанием плазмы. Синтезирующая камера реактора может адаптироваться к типу используемого топлива. Теоретически возможными реакциями могут стать реакции дейтерий-тритий, дейтерий-дейтерий или водород-водород.

Размеры камеры, а также ее форма могут быть адаптированы в зависимости от типа топлива. Кроме того, можно будет менять форму внешнего и внутреннего оборудования, тип охлаждающей жидкости и т.д.

По словам кандидата физико-математических наук Бориса Бояршинова, проекты по созданию термоядерного реактора реализуются на протяжении сорока лет.

«С 70-х годов остро стоит проблема управляемого термоядерного синтеза, но пока многочисленные попытки создать термоядерный реактор были неудачными. Работы по его изобретению до сих пор ведутся и, скорее всего, вскоре увенчаются успехом», - отметил г-н Бояршинов.

Руководитель энергетической программы «Гринпис России» Владимир Чупров скептически относится к идее использования термоядерного синтеза.

«Это далеко не безопасный процесс. Если разместить рядом с термоядерным реактором «бланкет» из урана-238, то все нейтроны будут поглощаться этой оболочкой и уран-238 будет превращаться в плутоний-239 и 240. С точки зрения экономики даже если термоядерный синтез удастся реализовать и ввести в коммерческую эксплуатацию, его стоимость такова, что позволить его себе сможет далеко не каждая страна, хотя бы потому, что для обслуживания этого процесса нужны очень компетентные кадры», - говорит эколог.

По его словам, сложность и дороговизна этих технологий представляет собой тот камень преткновения, о который запнется любой проект, даже если он состоится на техническом уровне. «Но даже в случае успеха максимальная установленная мощность термоядерных станций к концу столетия составит 100 ГВт, что составляет около 2% от того, что потребуется человечеству. В итоге термоядерный синтез не решает глобальной проблемы», - уверен г-н Чупров.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.