Солнечные панели моно и поли. Поликристаллические или монокристаллические солнечные батареи, что выбрать? Эффективные решения для вашего дома

С появлением новейших разработок в области науки и техники, ассортимент солнечных модулей постепенно расширяется. Но неизменную популярность среди пользователей, как и прежде, занимают солнечные батареи из монокристаллического и поликристаллического кремния.

Монокристаллические солнечные батареи

Изготовление солнечных батарей на базе монокристаллического кремния позволяет получать наиболее высокие показатели эффективности фотоэлектрического преобразования среди модулей коммерческого применения за счёт максимально возможной чистоты исходного материала (монокристаллического кремния). КПД монокристаллических солнечных элементов (из которых производятся такие модули) достигает показателей до 19-22%; КПД монокристаллических солнечных батарей, соответственно, – 16-18%.

За счёт более качественного исходного материала, монокристаллические солнечные батареи имеют лучшие показатели по работе при низких уровнях освещённости (в условиях облачности). Что очень важно для электрогенерации в осенне-зимний период, особенно при применении солнечных батарей в Украине. Помимо этого, монокристаллические элементы более эффективно работают в морозную погоду, поэтому использовать монокристаллические солнечные батареи в зимний период более практично.

В случае, если целью является получение максимальной генерации с единицы площади, следует использовать только монокристаллические модули.

Поликристаллические солнечные батареи

Основное преимущество поликристаллических солнечных батарей – они дешевле, так как себестоимость исходного материала (мультикристаллических пластин) ниже, но и эффективность работы таких модулей ниже. Их использование целесообразно если нет задачи получения максимальной выработки электроэнергии с единицы установленной мощности. Если в вашей местности нету значительных перепадов уровней освещенности в течении длительного периода.

Внешний вид

Сырьем для производства монокристаллических элементов солнечных батарей является монокристалл кремния, полученный путем выращивания в специальных ростовых вакуумных печах. Чистота такого изделия равна 99,999%, от сюда и значительно высший КПД по сравнению с поликристаллическими элементами. Кристалл кремния в печи растет в форме цилиндра, если его порезать на пластины – мы получим круги).


Растущий в печи кристалл кремния имеет цилиндрическую форму

Если далее из таких круглых пластин сделать солнечные элементы и собрав их в готовую солнечную панель, у нас будет очень много неэффективной площади панели. Но если же из круглой пластины вырезать квадрат, получится много отходов производства. Поэтому принята стандартная форма монокристаллических солнечных элементов, так называемый псевдоквадрат . Это лучшее решение по оптимизации полезной площади монокристаллической солнечной панели и уменьшении производственных отходов.


Монокристаллический солнечный элемент формы псевдоквадрат

Производство элементов (ячеек) для поликристаллических солнечных батарей технологически на много проще, в следствии сами элементы значительно дешевле. Чаще всего, емкость – тигель с расплавленным кремнием, чистота которого намного ниже чем при производстве монокристаллических элементов, плавно охлаждают до полного остывания. Полученный слиток кроят на пластины нужной формы. Внешне элемент для поликристаллической солнечной панели легко отличить от монокристаллического благодаря визуально неоднородной структуре.


Эффект старения

С каждым годом эксплуатации любых солнечных батарей их производительность немного уменьшается, можно сказать что происходит “старение”. И для монокристаллических солнечных батарей этот эффект значительно ниже, это связано с их равномерной структурой. К примеру, если монокристаллические элементы стареют за 25 лет на 17 – 20%, то для монокристаллических элементов этот показатель может превысить все 30%.

Сравнение по эффективности работы

Начиная с «бума» массового производства солнечных панелей в начале 2000-х годов, ведутся споры, какой из вариантов, моно- или мультикремний является более предпочтительным, с точки зрения эффективности использования.

В данной статье мы не будем проводить глубокий теоретический анализ физических процессов, а обратим внимание только на имеющиеся статистические данные.

Наиболее объективной информацией о эффективности работы фотоэлектрических модулей, являются данные об натурных испытаниях, проводимых под эгидой журнала Photon International (модули различных производителей устанавливаются в одинаковых условиях, на каждую группу устанавливается отдельный счётчик вырабатываемой энергии). Место проведения испытаний – Аахен, Германия.

В качестве результирующего параметра для сравнения взят параметр «коэффициент выработки», определяемый как соотношение выработанной энергии к расчётной, которая должна быть полученной исходя из номинальной мощности модуля, реальных условий окружающей среды (освещённость, температура и т.д.). По результатам 2013 и 2014 года, были получены следующие значения по лидерам:

Компания

Материал подложки

Место 2013 год

Процент 2013

ET Solar Industry

Seraphim Solar System

ET Solar Industry

Hareon Solar Technology

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 60%.

Компания

Материал подложки

Место 2014 год

Процент 2014

Huanghe Photovoltaic Technology

ET Solar Industry

Seraphim Solar System

Hareon Solar Technology

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 70%.

Таким образом, образцы, где в качестве базового материала использован монокремний, при проведении данных испытаний продемонстрировали более высокую эффективность по выработке электроэнергии. Покольку результатов по другим объективным сравнительным испытаниям не приводится, мы рекомендуем использование монокристаллических солнечных панелей.

Наше предприятие “Пролог Семикор” производит солнечные модули только из монокристаллических солнечных элементов. Если вы заинтересованны купить солнечные батареи полностью украинского производства, посетите наш магазин, нажав в меню сайта “Наш магазин”. Так же мы можем предоставить консультацию по внедрению “Зеленого Тарифа” с 10% надбавкой за использования украинских комплектующих.

Поликристаллические и монокристаллические солнечные батареи позволяют установить независимый источник энергообеспечения в домах, а также на предприятиях. На сегодняшний день благодаря солнечным батареям можно:

    Обеспечивать автономное и резервное электроснабжение частных домов, офисных зданий, заправочных комплексов, тепличных и фермерских хозяйств, киосков.

    Обеспечивать освещение парков, садов, улиц и шоссейных дорог;

    Обеспечивать электроэнергией удалённые объекты телекоммуникаций.

    Усовершенствовать работу газопроводов и нефтепроводов;

    Обеспечить электропитанием системы подачи воды, а также ее опреснения.

    Заряжать разнообразные гаджеты (актуально в походах и поездках за город).

Сравнение монокристаллических и

Итак, какая солнечная батарея лучше - монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?

На фото ниже представлены два основных типа:

Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.

В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.

Второе и наверное главное отличие - это эффективность преобразования солнечной энергии. Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность - до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).

Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.

Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.

Третье отличие - это цена солнечной батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.

Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:

Как видно из этого перечня, для солнечной электростанции не имеет ни какого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры - напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.

В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:

1. поликристаллические - 52,9%

2. монокристаллические - 33,2%

3. аморфные и пр. - 13,9%

Т. е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.

Для освещения дома, сада, беседки или для зарядки электрических приборов можно использовать солнечную энергию. Солнечные батареи широко используются в бытовых и промышленных целях. Для более серьезных целей сооружают солнечные станции, они способны обеспечить энергией крупные объекты. Данная разработка используется на земле, на воде и даже в космосе.

Устройство солнечных пластин несложное и состоит из корпуса, фотоэлемента и проводов. Фотоэлемент чаще всего изготавливают из кремния. Под воздействием солнечного света электроды движутся, и выделяемая энергия через подключенные с обеих сторон провода поступает к подсоединенному прибору или аккумулятору. Кремний используется как в монокристаллических, так и в поликристаллических пластинах.

Внешний вид монокристаллической пластины напоминает квадрат, но имеет округленные углы.

Такая форма получается при выращивании монокристаллов. Поверхность батареи однородная и имеет насыщенный синий цвет. За счет однородности пластины достигается очень высокий КПД, так как солнечная энергия не рассеивается, а лучи равномерно освещают всю поверхность. Попадая на поверхность батарей, они проходят через переход в полупроводниковых пластинах на большой площади.

Монокристаллические батареи лучше поликристаллических, так как намного эффективнее и имеют ряд положительных моментов:

  1. Монобатареи можно крепить на неровную поверхность, они гибкие и при волновом размещении не портятся и не теряют своих свойств.
  2. Гибкие солнечные батареи превзошли поликристаллические и по эффективности работы в непогоду, монокристаллические модели могут работать и в тени.
  3. Для зимы также лучше подойдут монокристаллические панели, они могут выдержать минусовую температуру.


К минусу с монокристаллами можно отнести цену, она будет примерно на 10% выше цены батареи на поликристаллах.

Главное при покупке – тщательно осмотреть панель. Она не должна иметь повреждений, царапин или сколов.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Читайте также: Изготовляем солнечную панель из светодиодов

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД. Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно

Вы уже приняли для себя решение о покупке солнечной электростанции, но не уверены что лучше моно или поликристалл? В этой статье мы разберем все плюсы и минусы технологий.

Поликристаллические солнечные панели. Мифы и заблуждения

Конечно, каждый продавец и производитель заинтересован продать именно свой товар, а поэтому относительно некоторых технологий на рынке сформировались устойчивые заблуждения. Технология поликристаллического кремния не исключение и имеет характерные отличия от монокристаллического, чистого кремния. Отсюда многие особенности поли – батарей чаще интерпретируются как преимущества. Но так ли это? Вот некоторые утверждения продавцов, продающих солнечные панели :

  • «Поликристаллический кремний лучше работает в пасмурную погоду!»
  • «Ресурс работы поли - модулей такой же как у монокристалла.»
  • «Поликристаллические солнечные батареи дешевле, а значит доступней»

Стоит заметить, что первое утверждение само по себе говорит о том, что Вы общаетесь не с профессионалом. Кремниевые солнечные батареи в пасмурную погоду имеют практически одинаковые показатели, не зависящие от технологии. Таким качеством, как «эффективная работа при низкой инсоляции» могут гордиться «не кремниевые», аморфные солнечные батареи, суммарная эффективность которых колеблется около 6-9%.

Poli - элементы действительно немного дешевле, так как процесс производства их не трудоемок и быстр. Но учитывая тот факт, что эффективность их на 15-25% ниже, для достижения выработки сравнимой с MONO - технологией площадь изделий должна быть больше. А значит выше расходы на изделие (стекло, коробка, корпус) и транспортные расходы. Выше становятся и расходы по монтажу изделий, затраты на крепежные элементы и коммутацию. Что будет дешевле для Вас - считайте сами, но первоначальная цена изделий это еще не солнечная электростанция.

Ресурс работы их тоже преувеличен. Поли – кристаллы солнечных элементов снижают эффективность значительно в более короткий период, по сравнению с «чистым кремнием».

Разберем теперь заблуждения, касающиеся mono - кристаллических солнечных элементов.

Солнечные батареи для дома – самой высокой эффективности!

Неоспоримы преимущества монокристаллических солнечных батарей. Но незначительные колебания в цене воспринимаются конечным покупателем не всегда правильно. Солнечные батареи для дома , типа mono, действительно немного дороже и встречается не у всех производителей и продавцов.

Панели из монокристаллического кремния имеют ряд преимуществ:

  • Более компактные габаритные размеры на Ватт вырабатываемой мощности;
  • Продолжительный ресурс эксплуатации с минимальной потерей эффективности кристалла (не более 20%, за 25 лет);
  • Наивысшую эффективность преобразования энергии (из солнечной в электрическую).

Разве этого недостаточно, что бы сделать выбор в сторону более совершенной и эффективной технологии?

Здравствуйте. Предлагаю обзор 20 ваттной поликристаллической солнечной панели.
В обзоре немного теории, советы по установке, снятие основных характеристик при разных уровнях освещённости.
Если коротко: панель работает и выдаёт заявленную мощность.
В общем прошу…

Немного теории:

Солнечная панель (Солнечная батарея) - несколько объединённых фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.
В настоящее время из всех типов солнечных батарей, наибольшее распространение получили солнечные панели: монокристаллические и поликристаллические , последние из которых часто также называют «мультикристаллическими солнечными панелями».
Материалом для изготовления монокристаллических солнечных панелей , является сверх чистый кремний, использующийся также для производства полупроводниковых приборов в радиоэлектронике, и хорошо освоенный современной промышленностью. Стержни кремниевого монокристалла, медленно растут» и вытягиваются из кремниевого расплава, а далее разрезаются на части, с их толщиной 0,2-0,4 мм и уже используются после их последующей обработки, для изготовления фотоэлектрических элементов, входящих в состав солнечных панелей.
Когда происходит медленное охлаждение кремниевого расплава, то из него получается поликристаллический кремний, использующийся для изготовления поликристаллических солнечных панелей . В этом случае операция вытягивания кристаллов кремния из расплава полностью опускается, а сам процесс менее трудоемок, нежели при изготовлении монокристаллического кремния, а соответственно и такие солнечные батареи дешевле.
Основные отличия «моно» и «поли» кристаллических типов солнечных батарей:
- Эффективность преобразования солнечной энергии в электрическую. Монокристаллические панели при их серийном производстве – имеют эффективность максимум до 22%, а используемые в космических технологиях – даже до 38%. У серийно выпускаемых поликристаллических панелей – эффективность составляет по максимуму – 18%.
- Внешний вид . У монокристаллических элементов солнечных панелей – углы скруглены. Округленность их форм связана здесь с тем, что монокристаллический кремний, при его производстве получают в цилиндрических заготовках. Поликристаллические элементы солнечных модулей имеют квадратную форму, поскольку их заготовки при производстве – также квадратной формы.
- Цена . В пересчёте на единицу мощности, монокристаллические солнечные панели незначительно дороже (примерно на 10%), чем солнечные панели из поликристаллического кремния.
В итоге можно сказать, что выгоднее использовать поликристаллические солнечные модули – которые при той же мощности, будут немного больше по площади, нежели модули монокристаллические, но зато немного их дешевле.
Думаю теории достаточно, можно переходить к обзору.

Герой обзора:

Панель пришла в обычном сером пакете (фотографировать не стал), внутри пакета сама панель завёрнутая в несколько слоёв вспененного полиэтилена. Но естественно этого оказалось недостаточно и углы панели слегка пострадали. Но к моей радости сама панель не оказалась повреждённой.



Размер панели: 47х35х2 см. Вес около 2 кг.
Конструктивно сама панель вставлена в рамку из алюминиевого профиля и проклеена белым силиконовым герметиком. На тыльной стороне расположена монтажная коробка, в которой к панели припаян 3-х метровый кабель. Также в этой коробке установлен диод Шоттки. Он необходим при объединении нескольких панелей в батарею для предотвращения обратного тока при неравномерной засветке. На другом конце кабеля смонтированы зажимы типа «крокодил». Основные параметры панели находятся на наклейке чуть ниже монтажной коробки.
Распаковав панель я решил сразу проверить её, для чего подключил к «крокодилам» 12-ти вольтовое светодиодное кольцо. Оно засветилось. При чём даже в полумраке при задёрнутых занавесках и шторах (освещённость 42,5 люкса):

Установка (монтаж) солнечной панели:

Солнечные батареи следует размещать в наиболее освещенном месте, таким образом, чтобы деревья и здания не затеняли их. Самым оптимальным местом является крыша здания или специальная опора, чуть хуже - стена.
При установке панелей, необходимо соблюдать угол наклона и азимут. Для жителей северного полушария оптимальный азимут - 180 градусов (строго на юг). Для южного полушария, естественно, наоборот. Долгота места установки не имеет значения. От широты зависит угол наклона, т.е. чем ближе к экватору, тем угол наклона меньше относительно горизонта, ну а чем ближе к полюсам, тем угол больше. Проще всего этот угол посчитать с помощью . Для моего места жительства этот угол равен 44 градусам. Установить я решил обозреваемую панель на внешний блок кондиционера, смонтированный на юго-западной стене многоквартирного дома. Место, конечно, не идеальное, но лучшего я не нашёл.

Тестирование:

Характеристики панели я снимал в 3 временных промежутках: утро, когда панель находится в тени дома, пасмурный день и солнечный день - идеальные условия. В качестве нагрузки я использовал советский проволочный переменный резистор на 100 Ом и дополнительно постоянные резисторы от 50 Ом до 300 Ом. В последнем тесте на максимальной мощности с переменного резистора шёл дым:)
Утро:



Пасмурный день:



Солнечный день:


Практическое применение:

Для практического использования, самой солнечной панели чаще всего недостаточно, т.к. выходной ток очень сильно зависит от освещённости. В тёмное время суток солнечная панель практически не вырабатывает электроэнергию. Поэтому солнечную панель необходимо дополнить аккумулятором. В самом простом варианте можно обозреваемую панель подключить непосредственно к автомобильному 12 вольтовому аккумулятору, и к этому же аккумулятору подключить и 12 вольтовую нагрузку. Но в этом случае необходимо вручную контролировать напряжение на аккумуляторной батарее, чтобы не допустить её перезаряд, либо глубокий разряд. Также желательно обеспечивать нагрузку солнечной панели в точке максимальной мощности. Для автоматизации этого процесса применяются специальные контроллеры солнечных батарей. Контроллеры бывают 2 видов: MPPT или PWM. Что это такое и каковы их отличия, описывать здесь, думаю, не стоит. Мне уже идут по почте 2 контроллера, вот как придут, сделаю обзор, и расскажу обо всём в подробностях. Это и будет продолжением данного обзора.

Итог:

Обозреваемая солнечная панель вполне работоспособна и выдаёт заявленную мощность с учётом неидеальных условий установки.

Надеюсь мой обзор будет полезен, спасибо, что дочитали:)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +33 Добавить в избранное Обзор понравился +48 +79

Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.