Ветряная турбина. Инновационная вертикально-осевая турбина. Не только ветрогенератор! Ветрогенератор вертикального турбинные

Энергия ветра – бесплатная, возобновляемая, безопасная энергия. Установкой, преобразующей энергию воздушных потоков в электрическую

или тепловую называют ветрогенератор. Большинство современных ветряных установок имеют сравнительно низкий КПД (до 30%) и высокую стоимость производства.

Проект турбинны ветрогенератора

Главными задачами всех ученых, занимающихся проблемами ветроэнергетики, являются снижение стоимости производства ветряков, повышение их КПД и мощности.

Классификация

Ветрогенераторы подразделяются по расположению оси вращения на конструкции с:

  • вертикальной осью (перпендикулярной земле);
  • горизонтальной осью (параллельной земле).

По материалам, из которых производят лопасти, ветряки классифицируются на:

  • жестколопастные;
  • парусные.

По числу лопастей подразделяется на:

  • генераторы с 2-мя лопастями;
  • генераторы с 3-мя лопастями;
  • многолопастные генераторы, с числом лопастей от 50-ти.

Ветрогенераторы турбинного типа относятся к категории нового поколения, их устанавливаю на крыше в виде вентиляторов и они не беспокоят соседей шумом

По типу винтового шага различают генераторы с:

  • постоянным шагом;
  • переменным шагом.

По типу конструкции:

  • лопастные;
  • турбинные.

По назначению:

  • бытовые;
  • коммерческие;
  • промышленные.

Промышленные ветряки строят, преимущественно, с горизонтальной осью вращения и жесткими лопастями.

Ветровая турбина Liam F1 Urban вырабатывает КПД 80%

Парусные ветряки и генераторы с вертикальными осями вращения часто устанавливают для снабжения энергией частных домов и малых строений.

Ветротурбинная установка – ветрогенератор, турбина которого, имеет цилиндрическую форму с установленными внутри нее лопастями. По сути, это ветряк с горизонтальной осью вращения, края лопастей которого защищены цилиндром. Отличается простой, надежной конструкцией, большим, по сравнению с лопастными ветряками, КПД.

Принципиальное отличие

Ветровая турбина представляет собой цилиндрический контур. Внутри контура располагаются вращающие лопасти. Состоит конструкция из:

  • турбины;
  • внешнего или внутреннего обтекателя;
  • обтекателя узла генератора турбины;
  • гондолы;
  • генератора;
  • инвертора;
  • аккумулирующего модуля;
  • блока управления;
  • динамического узла крепления.

Ветряки данного типа характеризуются отсутствием незащищенных лопастей вращения, а также системы, предназначенной для их регулирования и ориентирования на направление ветра. Это повышает надежность, безопасность конструкции. Цилиндрическая форма обтекателя самостоятельно разворачивается, улавливая ветер, а обтекатель, работающий как сопло, повышает мощность установки.

В зависимости от требуемой мощности и назначения, конструкция может иметь множество модификаций. Например, при изготовлении турбины могут использоваться различные материалы. Варьироваться могут геометрические размеры, способ размещения (на опору, ферму и пр.). Возможно дополнительное оснащение модулями солнечных батарей.

Прототип ветрогенератора турбинного типа для бизнеса

Ветротурбинные агрегаты выпускают бытового и промышленного назначения.

Принцип работы установки

Для нормальной работы ветровой установки турбинного типа необходим ветер, дующий со скоростью от 2 м/с до 60 м/с. Принцип работы установки такой. Агрегат самостоятельно улавливает направление ветра, поворачивается в нужную сторону. Поток воздуха попадает на лопасти, вращает их. Воздушные массы сообщают кинетическую энергию движения лопастям, где она преобразуется в энергию механическую, вращающую ротор.

Турбина ветрогенератора Российской разработки проходит испытания

Вращение ротора продуцирует трехфазный ток, поступающий на генератор. Оттуда ток идет в контроллер, где происходит его выпрямление, далее он протекает через аккумуляторы, заряжает их, затем поступает на инвертор. Инвертор выпускает однофазный переменный ток, частота его колебаний 50 Герц для сетей напряжением 220 В, либо трехфазный ток напряжением 380 В, необходимый промышленным предприятиям, а также для питания нагрузки.

Достоинства турбинной ветроустановки

Ветрогенератор турбинной конструкции имеет существенные преимущества над ветряками иных конструкций.

  1. Высокая чувствительность к ветру. Минимальная скорость ветра для приведения лопастей в движение от 2 м/с; ветрякам иного типа нужна скорость ветра от 4 м/с.
  2. Генератор способен работать при ураганных скоростях ветра (до 60 м/с). Большинство других ветряков работает до 25-30 м/с.
  3. Коэффициент полезного действия ветряного турбогенератора почти вдвое превышает КПД ветряка, имеющего незащищенные лопасти. За счет сопельной конструкции обтекателя, турбинный ветряк значительно мощнее агрегатов иных конструкций.
  4. Турбоустановка безопасна для птиц и летучих мышей. Ветряки с открытыми лопастями часто становятся причиной гибели летающих животных, которые не способны определить границы опасной зоны. Ветроустановку турбинной конструкции летучие мыши и птицы идентифицируют как единое препятствие и успешно ее огибают.
  5. Ветряки большинства конструкций производят много шума, при определенных скоростях ветра генерируют инфразвук, поэтому их нельзя ставить вблизи жилых домов, ферм, лесных хозяйств. Турбинные установки не продуцируют инфразвук, губительный для людей и животных. Их можно устанавливать рядом с жилым домом. Турбинные ветряки не провоцируют искусственную миграцию животных.
  6. Меньшая, по сравнению с лопастными, стоимость производства. Изготовление свободных лопастей – сложный, дорогостоящий процесс. Их отсутствие заметно удешевляет и упрощает производство установки.
  7. Легкость и быстрота монтажа. Комплектующие турбогенератора производят на заводе; там же осуществляется сборка основных блоков. Установка включает лишь компоновку, соединение блоков, крепление ее к опоре. Монтаж происходит при помощи стандартных подъемников.
  8. Легкость обслуживания. Сервисное обслуживание турбинных ветряков значительно проще и дешевле, чем лопастных. При правильной эксплуатации установки, периодическом грамотном сервисном обслуживании, срок эксплуатации достигает 50 лет.
  9. Ветросиловая установка турбинного типа, в отличие от классических ветряков, не мешает летчикам и диспетчерам летных служб, не обнаруживается радарами ПВО, не создает угрозы национальной безопасности.

Область применения

Максимального КПД ветротурбинный генератор достигает вблизи природных водоемов из-за почти круглогодичного движения воздуха и высокой чувствительности к ветру. И также его устанавливают в городах, поселках. Конструкция установки позволяет пользоваться генератором для автономного или комбинированного освещения частных домов и дач.

Полезен ветрогенератор в населенных пунктах, расположенных вдали от городов, райцентров, где часто случаются перебои с электричеством. Ветротурбинную установку можно использовать вблизи аэродромов, военных полигонов. Оставаясь невидимой для радаров, она не несет опасности для пилотов и систем национальной безопасности.

Ветроэнергетика активно развивается по всему миру, и ни для кого давно не секрет, что это одно из перспективнейших направлений альтернативной энергетики на данный момент. К середине 2014 года общая мощность всех установленных в мире ветрогенераторов составляла 336 гигаватт, а самый большой и мощный вертикальный трехлопастной ветрогенератор Vestas-164 был установлен и запущен в начале 2014 года в Дании. Его мощность достигает 8 мегаватт, а размах лопастей составляет 164 метра.

Несмотря на давно обкатанную технологию изготовления лопастных турбин и ветряков в целом, многие энтузиасты стремятся улучшить технологию, повысить ее эффективность и уменьшить негативные факторы.

Как известно, коэффициент использования энергии ветрового потока у в лучшем случае достигает 30%, они довольно шумны и нарушают естественный тепловой баланс близлежащих территорий, повышая температуру приземного слоя воздуха по ночам. Также они весьма опасны для птиц и занимают значительные площади.

Какие же альтернативы существуют? На самом деле, творчество современных изобретателей не знает границ, и различных альтернативных вариантов придумано множество.

Давайте рассмотрим 5 наиболее необычных из примечательных для отрасли альтернативных конструкций ветрогенераторов.

Начиная с 2010 года, американская компания Altaeros Energies, основанная в Массачусетском исследовательском институте, ведет разработку ветрогенераторов нового поколения. Новый тип ветрогенераторов предназначен для работы на высотах до 600 метров, докуда обычные ветрогенераторы просто не могут достать. Именно на таких больших высотах постоянно дуют самые сильные ветра, которые в 5-8 раз сильнее ветров вблизи поверхности земли.

Генератор представляет собой надувную конструкцию, похожую на накачанный гелием дирижабль, в который установлена трехлопастная турбина на горизонтальной оси. Такой ветряной генератор был запущен в 2014 году на Аляске на высоту около 300 метров для испытаний в течение 18 месяцев.

Разработчики уверяют, что данная технология позволит получать электроэнергию стоимостью 18 центов за киловатт-час, что в два раза дешевле обычной стоимости ветряной электроэнергии на Аляске. В будущем такие генераторы вполне смогут заменить дизельные электростанции, а также найти применение на проблемных территориях.

В перспективе это устройство будет не просто генератором электроэнергии, но и частью погодной станции и удобным средством обеспечения Интернета на далеких от соответствующей инфраструктуры территориях.

После установки такая система не требует присутствия персонала, не занимает большой площади, и почти бесшумна. Она может контролироваться дистанционно, и требует технического обслуживания только один раз в 1-1,5 года.

Еще одно интересное решение по созданию необычной конструкции ветряной электростанции реализуется в Объединенных Арабских Эмиратах. Недалеко от Абу-Даби строится город Мадсар, в котором планируют возвести довольно необычную ветряную электростанцию, названную разработчиками «Windstalk».

Основатель нью-йоркской дизайнерской компании Atelier DNA, разрабатывающей дизайн данного проекта, сказал, что главной идеей было найти в природе кинетическую модель, которая могла бы служить для генерации электроэнергии, и такая модель была найдена. 1203 стебля из углеродистого волокна, каждый около 55 метров высотой, с бетонными основаниями шириной по 20 метров, будут установлены на расстоянии 10 метров между собой.

Стебли будут армированы резиной, и иметь ширину около 30 см у основания, а кверху сужаются до 5 сантиметров. Каждый такой стебель будет содержать чередующиеся слои электродов и керамических дисков, изготовленных из пьезоэлектрического материала, который генерирует электрический ток, когда подвергается давлению.

Когда стебли будут качаться на ветру, диски будут сжиматься, генерируя электрический ток. Никакого шума лопастей ветряных турбин, никаких жертв среди птиц, ничего кроме ветра.

Идея возникла благодаря наблюдению за качающимися на болоте камышами.

Проект Windstalk компании Atelier DNA занял второе место в конкурсе Land Art Generator, спонсируемом Мадсаром для выбора лучшего, из числа международных заявок, произведения искусства, которое сможет генерировать энергию благодаря возобновляемым источникам.

Площадь, занимаемая этой необычной ветряной станцией, охватит 2,6 гектара, а по мощности будет соответствовать обычному ветрогенератору, занимающему аналогичную площадь. Система эффективна из-за отсутствия потерь на трение, свойственных традиционным механическим системам.

В основании каждого стебля будет установлен генератор, преобразующий крутящий момент от стебля с помощью системы амортизаторов и цилиндров, аналогично системе Levant Power, разработанной в Кембридже, штат Массачусетс.

Поскольку ветер не постоянен, будет применена система аккумулирования энергии, чтобы накопленная энергия могла расходоваться и тогда, когда нет ветра, поясняют сотрудники, работающие над проектом.

На вершине каждого стебля будет установлено по светодиодному фонарю, яркость свечения которого будет напрямую зависеть от силы ветра и количества генерируемой в данный момент электроэнергии.

Windstalk будет работать на хаотичном покачивании, что позволяет расположить элементы горазда ближе друг к другу, чем это возможно с обычными лопастными ветрогенераторами.

Аналогичный проект Wavestalk прорабатывается для преобразования энергии океанских течений и волн, где похожая система будет находиться в перевернутом виде под водой.

Проект, разработанный фирмой Saphon Energy из Туниса, также как и Windstalk, представляет собой безлопастной ветряной генератор, но на этот раз устройство имеет конструкцию парусного типа.

Этот бесшумный генератор, по форме напоминающий спутниковую тарелку, получил название Saphonian. Он не имеет вращающихся частей и совершенно безопасен для птиц. Экран генератора совершает под действием ветра движения вперед-назад, создавая колебания в гидравлической системе.

Цель проекта - улучшить характеристики ветряных генераторов, относительно использования ветрового потока. Ветер буквально запрягается в парус, который совершает под его действием движения вперед-назад, при этом нет ни лопастей, ни ротора, ни передач. Такое взаимодействие позволяет преобразовать больше кинетической энергии в механическую с помощью поршней.

Энергию можно накапливать в гидравлических аккумуляторах, либо преобразовывать в электрическую посредствам генератора, или же приводить с ее помощью во вращение какой-нибудь механизм. Если обычные ветрогенераторы обладают КПД 30%, то данный генератор парусного типа дает все 80%. Его эффективность превосходит ветряки лопастного типа в 2,3 раза.

В силу отсутствия дорогостоящих компонентов, как это имеет место в ветряной турбине (лопасти, ступицы, коробки передач), в случае с Saphonian, расходы на оборудование снижаются до 45%.

Аэродинамическая форма Saphonian имеет то преимущество, что турбулентные ветряные потоки незначительно влияют на тело паруса, и аэродинамическая сила лишь увеличивается. Именно из-за турбулентности ветряные турбины и не используются в городских районах, а Saphonian можно и там использовать. Кроме того, вредные акустические и вибрационные факторы сведены к минимуму. Компания Saphon Energy получила премию от KPMG за усилия в развитии инноваций.

Еще один весьма революционный подход к использованию ветряной энергии был реализован еще в 2008 году изобретателем - энтузиастом из Калифорнии. Крупные ветряные генераторы для малых городов имеют размеры с 30 этажный дом, а их лопасти достигают размеров крыльев Боинга 747.

Эти гигантские генераторы, безусловно, производят много энергии, однако производство, транспортировка и установка таких систем сложны и дороги. Несмотря на это промышленность растет более чем на 40 процентов каждый год. Именно так размышлял Даг Селсам из Калифорнии, прежде чем задаться своей амбициозной целью. Он решил, что вполне реально получить больше энергии, используя для этого меньшее количество материалов.

Установив десяток или несколько десятков маленьких роторов на одном валу, связанном с одним генератором, Даг, в конце концов, добился поставленной цели. Один конец длинного вала он соединил с генератором, а второй конец запустил в высь на воздушных шарах с гелием. Система заработала, как и предполагалось.

В учебниках Даг читал, что одновинтовой турбины вполне достаточно для получения максимума, однако у Дага возникли сомнения. Он считал иначе: чем больше роторов, тем больше энергии ветра доступно для использования.

Если каждый ротор будет расположен под нужным углом, то каждый ротор получит свой собственный ветер, и это повысит эффективность генерации.

Конечно, это усложняет физику, ведь теперь нужно было убедиться, что каждый ротор ловит свой собственный поток, а не только поток от расположенного рядом ротора. Требовалось выяснить оптимальный угол для вала по отношению к ветру и идеальное расстояние между роторами. И, в конце концов, выигрыш был получен с применением меньшего количества материала.

В 2003 году изобретатель получил грант в размере 75 000 долларов от Калифорнийской энергетической комиссии на разработку 3000-ваттный турбины на семь роторов. Задача была успешно решена, и Даг Селсам уже продал более 20 своих 2000-ваттных турбин с двойным ротором нескольким домовладельцам. Он построил эти устройства в своем загородном гараже.

Идея Дага явилась одной из немногих идей, которые на самом деле имеют все шансы на то, чтобы добиться больших успехов в коммерческом мире. Селсам говорит, что два ротора - это только начало. Вероятно, когда-нибудь он увидит свои мультироторные турбины протяженностью в милю по небу.

Компания Archimedes, офис которой расположен в Роттердаме, Нидерланды, придумала свою концепцию необычных ветряных турбин, которые можно устанавливать прямо на крышах жилых домов.

По замыслу авторов проекта, эффективная малошумная конструкция может вполне обеспечить небольшой дом электроэнергией, а комплекс таких генераторов, работающий в совокупности со , способен и вовсе свести к нулю зависимость большого здания от внешних источников электроэнергии. Новые ветровые турбины получили название Liam F1.

Небольшая турбина, диаметром 1,5 метра, и весом около 100 килограмм, может быть установлена на любой стене или крыше жилого дома. Обычно, высота террасных крыш - 10 метров, а ветер в стране почти всегда Юго-Западный. Этих условий достаточно, чтобы правильно разместить турбину на крыше, и эффективно использовать энергию ветра.

Две проблемы обычных ветрогенераторов решены здесь: шум обычных лопастных турбин и дороговизна установки громоздкого оборудования. В обычных ветряных генераторах затраты на установку часто не окупаются. Уровень шума турбины Liam около 45дБ, а это даже тише шума дождя (шум дождя в лесу - 50дБ).

По форме напоминающая панцирь улитки, турбина подобно флюгеру разворачивается по ветру, захватывая воздушный поток, снижая его скорость, и меняя направление. Директор компании Маринус Миремета утверждает, что эффективность новаторской турбины достигает 80% от максимально доступной теоретически в ветровой энергетике эффективности. И этого уже вполне достаточно.

В Нидерландах средняя семья потребляет 3300 кВт-часов электрической энергии за год. По данным разработчиков, половину этой энергии может обеспечить одна турбина Liam F1 при скорости ветра не менее 4,5 м/с.

Можно разместить три такие турбины в вершинах треугольника на крыше дома, тогда каждая из турбин будет обеспечена ветром и они не будут друг другу мешать, а напротив станут помогать друг другу.

Если речь идет об установке в городе, где имеют место турбулентные потоки, то производитель предлагает немного приподнимать ветрогенераторы, устанавливаемые на городских крышах, крепя их на шесты, чтобы стены соседних домов не мешали ветряным потокам.

Предполагаемая стоимость новой турбины вместе с установкой составляет 3999 евро. Поскольку устройство имеет размер больше одного метра, то может потребоваться особая лицензия на его использование, поэтому, на самый крайний случай, фирмой производятся и турбины mini-Liam, диаметр которых 0,75 метра.

Производители планируют применять свои турбины не только для электроснабжения жилых и промышленных зданий, но и для электроснабжения морских судов.

Как видим, интересных альтернатив у производителей ветрогенераторов предостаточно.

Развитые страны давно сделали ставку на возобновляемые источники энергии, в том числе на ветроэнергетику. В результате суммарная мощность всех работающих в мире атомных электростанций составляет немногим более 400 тыс. МВт, а суммарная мощность ветряных станций превысил 500 тыс. МВт! Впрочем, в странах, где уделяется внимание ветроэнергетике нет ни Газпрома, ни РАО ЕЭС. Как и подсаживания на нефтяную иглу… Но не будем о наболевшем.

Итак, в свободных от всевластия монополий и клановой системы странах преобладают ветрогенераторы пропеллерного типа, с горизонтальной осью вращения. Такие генераторы требуют мощных опорных башен с дорогостоящими фундаментами, что увеличивает сроки окупаемости. К тому же, такие агрегаты являются мощными низкочастотными источниками шума. Вращается пропеллерный «ветряк» со скоростью всего 15-30 оборотов в минуту, а после редуктора обороты увеличивается до 1500, в результате с такой же скоростью вращается и вал генератора, который вырабатывает электроэнергию. Эта классическая схема имеет существенные недостатки: редуктор – сложный и дорогой механизм (до 20% от стоимости всего ветрогенератора), требует сезонной замены и очень быстро изнашивается (см. ).

Актуальность разработки ветряной турбины

Эти обстоятельства ограничивают круг покупателей и заставляет искать альтернативу традиционным ветряным электрогенераторам. Вертикально–осевые ветряные турбины стали современным трендом. Они бесшумны и не требуют больших капитальных затрат, проще и дешевле в обслуживании, нежели горизонтально - осевые турбины. Ветряные генераторы с горизонтальной осью переводятся в защитный режим (авторотации) при предельной скорости ветра, превышение которой чревато разрушением конструкции. В таком режиме пропеллер отсоединён от мультипликатора и генератора, электроэнергия не вырабатывается. А роторы с вертикальной осью испытывают значительно меньшие механические напряжения при равной скорости ветра, нежели роторы с горизонтальной осью. К тому же последние требуют дорогостоящих систем ориентации по направлению ветра.

До самого последнего времени считалось, что для VAWT невозможно получить коэффициент быстроходности (отношение максимальной линейной скорости лопастей к скорости ветра) больше единицы. Эта чрезмерно широко трактуемая предпосылка, верная только для роторов отдельных типов, привела к ложным выводам о том, что предельный коэффициент использования энергии ветра у вертикально-осевых ВЭУ ниже, чем у горизонтально-осевых пропеллерных, из-за чего этот тип ВЭУ почти 40 лет вообще не разрабатывался. И только в 60-х–70-х годах сначала канадскими, а затем американскими и английскими специалистами было экспериментально доказано, что эти выводы неприменимы к роторам Дарье, использующим подъемную силу лопастей. Для этих роторов указанное максимальное отношение линейной скорости рабочих органов к скорости ветра достигает 6:1 и выше, а коэффициент использования энергии ветра не ниже, чем у горизонтально-осевых (пропеллерного типа). Немаловажную роль играет и то обстоятельство, что объем теоретических исследований аэродинамики вертикально–осевых роторов и опыт разработки и эксплуатации ветрогенераторов на их основе гораздо меньше, чем для горизонтально-осевых роторов.

Создана отличная от остальных ветряная турбина вертикально–осевого типа (международное обозначение VAWT), коэффициент использования энергии ветра которой не уступает лучшим мировым ветрогенераторам с горизонтальной осью вращения. Инновационный многоплановый подход к конструкции вертикальных ветрогенераторов основан среди прочего и на использовании низко расположенного прочного ротора, на периферии которого закреплено множество парусов–крыльев.

Ротор снабжён опорными стойками колёсных шасси, что позволяет ему вращаться вокруг неподвижной оси с устойчивой порой на фундамент за счёт колёс шасси. Множество парусов–крыльев создают за счёт аэродинамических сил большой вращательный момент. Что делает данную конструкцию рекордной по удельной мощности. Диаметр ротора может составлять 10 метров. При этом на таком роторе возможна установка крыльев площадью более 200 квадратных метров, что позволит генерировать до ста киловатт электроэнергии.

Размеры и вес агрегатов

При этом вес таких агрегатов настолько мал, что его возможно устанавливать на крышах зданий и обеспечивать их за счёт этого автономным электроснабжением. Или же возможно обеспечить электроэнергией объект в горах, куда не проложена линия электропередачи. Увеличение мощности до сколь угодно большой величины достижимо тиражированием таких агрегатов. То есть, ставя много однотипных установок, достигаем нужной мощности.

Техническая эффективность

Что касается технической эффективности. Наш прототип при высоте лопастей 800мм и поперечном габарите 800 мм при скорости ветра 11 м/с развил механическую мощность 225 Вт (при 75 оборотах в минуту). При этом он отстоял от поверхности земли на высоте менее метра. По данным ресурса http://www.rktp-trade.ru сопоставимую мощность (300 Вт) развивает пятилопастной вертикальный ветряк, установленный на шестиметровой мачте, причём он имеет пять 1200 мм лопастей, установленных на габаритном диаметре 2 000 мм. То есть, если принять ометаемые ветром площади сравниваемых ветряков равными, то получится, что прототип энергоэффективнее известного ветряка в 2,5…3 раза, с учётом того, что у земли ветер слабее из-за близости к граничной поверхности и имеет выраженный турбулентный характер.

Исходя из этого, зная, что описанный аналог имеет коэффициент использования энергии ветра (КИЭВ) равный 0,2, можно оценить КИЭВ прототипа как 0,48, что намного выше, чем у VAWT типа «Савониус» и «Дарье» и соответствует лучшим мировым образцам горизонтально–осевых ветрогенераторов. При этом материалоёмкость и себестоимость у прототипа намного ниже, чем у пропеллерных мачтовых ветряков, имеющих механизмы ориентации на ветер и высоко расположенную гондолу с дорогим повышающим редуктором планетарного типа.

Сравнительная оценка эффективности роторов ветровых турбин различных типов — Таблица 1.

Тип ротора Расположение оси вращения Коэффициент использования энергии ветра (КИЭВ) Источник Примеч ания
Ротор Савониуса Вертикальное 0,17 Разработан около восьмидесяти лет назад, схема — рис. 7 (д) на стр.17 упомянутого источника
Ротор Н-Дарье с широко разнесёнными лопастями Вертикальное 0,38 ТР.А. Янсон. Ветроустановки. Под редакцией М.Ж. Осипова. М.: Издательство МГТУ им. Н.Э. Баумана, 2007г., стр.23, рис.13 Разработан около века назад, схема — рис. 7 (а) на стр.17 упомянутого источника
Многолопастные сопротивления Вертикальное 0,2 Там же, а также конкретный коммерческий продукт на сайте http://www.rktp-trade.ru К этому типу относится и ротор Болотова
Двухлопостные пропеллерные Горизонтальное 0,42 Р.А. Янсон. Ветроустановки. Под редакцией М.Ж. Осипова. М.: Издательство МГТУ им. Н.Э. Баумана, 2007г., стр.23, рис.13 Самый распространённый в мире тип ветродвигателей на сегодня
Ротор нашей турбины (формально Н-Дарье, но с плотно сомкнутыми лопастями, на которых установлены наклонные антикрылья и горизонтальная крыльчатка) Вертикальное 0,48…0,5 Натурные замеры скорости ветра анемометром, крутящего момента ротора динамометром, оборотов ротора тахометром

Преимущества вертикально-осевой ветряной турбины VAWT

  • Аппарат вращается в одну и ту же сторону при любом направлении ветра. В то время как гондолы горизонтальных ветрогенераторов требуется ориентировать по ветру, что удорожает конструкцию и снижает ресурс подвижных частей механизма поворота.
  • Генерация электроэнергии в VAWT начинается при скорости ветра от 5 м/с.
  • Турбина имеет высокое аэродинамическое качество лопастей и инновационную архитектуру, позволяющую достичь коэффициента использования энергии ветра не менее 47%.
  • Турбина не нуждается в обслуживании генератора (кольцевой плоский линейный без щеток и подшипников).
  • Наращивание мощности достигается путем установки дополнительных модулей.
  • VAWT не имеет ограничений при установке вблизи жилья, не создаёт недопустимого электромагнитного и акустического излучения. Это позволяет устанавливать турбины в пределах населённых пунктов, в том числе на крышах многоэтажных зданий без ущерба ландшафтным видам.
  • VAWT абсолютно безвредна, может устанавливаться на пути миграции перелетных птиц.
  • Турбина устойчива к сильному ветру, способна выдержать даже ураганный ветер. Это достигается механизмом автоматического изменения углов атаки вертикальных лопастей турбины (рисунки приведены выше).
  • VAWT имеет легкие и простые составные части, удобные при транспортировке и монтаже.
  • Турбина защищена от воздействия молний.

На сегодня выполнена полноразмерная 3-d модель механической части турбины (с высотой вертикальных лопастей 8м), а также выполнены рабочие чертежи деталей и узлов ротора и узла его вращения. Чертежи на электрогенератор и лопасти прорабатываются с учётом максимального соответствия критерию «цена – качество».

Проект предусматривает конструирование, изготовление и испытание полноразмерного образца VAWT (высота вертикальных лопастей 8м). После чего планируется организовать промышленное производство таких установок после отладки пилотного образца, с оснащением такими установками не электрифицированных районов в сельской местности и зданий в городах.

Области применения инновационного ветрогенератора, в принципе, то же, что и у аналогов. То есть это выработка электроэнергии в местах отсутствия стационарных ее источников, а также там, где использование других способов получения электроэнергии экономически нерентабельно. В частности, это объекты спецназначения, требующие автономного энергообеспечения, например, маяки и радиомаяки, пограничные заставы и пограничные посты, автоматизированные метеорологические и аэронавигационные посты.

Ветряные турбины в качестве источника электроэнергии используются уже не одно десятилетие. Впервые подобные конструкции человек начал эксплуатировать, когда обуздал силу природы и стал возводить мельницы. Сегодня для производства электроэнергии используются ветрогенераторы турбинного типа уже третьего поколения. Причем сами конструкции приобретают в последнее время все более необычные формы.

Современная ветряная турбина состоит из следующих элементов:

  1. Анемометр. Он отвечает за измерение скорости ветра и передает соответствующую информацию контроллеру турбинного ветрогенератора.
  2. Лопасти. Ветер, попадая на эти элементы, заставляет их вращаться. В результате в действие приводится турбина, которая вырабатывает электроэнергию.
  3. Тормоз. Он дополняется механическим, гидравлическим и иными приводами. Тормозная система в ветровой турбине необходима для остановки ротора при возникновении критических ситуаций.
  4. Контроллер. Отвечает за управление всей установки. Он в автоматическом режиме запускает ветряные турбины и останавливает их ход.
  5. Индукционный генератор. Устройство генерирует электроэнергию. Оно дополняется высокоскоростным валом.
  6. Гондола. Она располагается в верхней части ветряной турбины. В корпусе гондолы скрывается большинство элементов конструкции установки, включая тормоз и контроллер.

В зависимости от типа конструкции ветряная турбина может дополняться другими элементами. В частности, современные установки оснащаются обтекателем, который улавливает ветер и усиливает мощность последнего.

Достоинства турбин

Ветряная турбина современного типа обладает следующими преимуществами в сравнении со своими предшественниками:

  1. Способна работать при высокой скорости ветра. Турбины современного типа функционируют, когда ветровые потоки движутся с превышением критических показателей (25–60 м/сек).
  2. Не создает инфразвуковых волн. Этим недостатком обладали ветротурбины предыдущих поколений.
  3. Простой монтаж. Основу конструкции создают еще на производстве. На месте устанавливаются отдельные элементы и монтируется гондола на мачту.
  4. Применение инновационных материалов. Они не только увеличивают срок эксплуатации установки, но и обеспечивают легкость монтажа.

Ветровые установки в основном монтируются вдоль морского и океанского побережья либо непосредственно на воде. Такой подход позволяет добиться практически круглогодичной работы турбины.

Современные разработки

К числу недостатков, которыми обладают лопастные установки, относят следующее:

  • они нарушают естественный тепловой баланс;
  • относительно низкий КПД, не превышающий 30%;
  • занимают большую площадь;
  • представляют опасность для птиц.

Указанные недостатки заставляют разработчиков по всему миру искать новые технологические решения, позволяющие получать ветровую энергию. Среди последних достижений можно выделить:

1. Парящую турбину.

Конструктивно она напоминает воздушный шар, наполненный гелием. Внутри на горизонтальной оси установлена турбина с тремя лопастями. Такая система сегодня эксплуатируется на Аляске. Парящая турбина располагается на высоте, недоступной для современных ветровых установок. Такая система способна функционировать практически в автономном режиме (участие персонала сведено к минимуму).

2. Вертикальные турбины.

Их лопасти повторяют расположение плавников у рыб. За счет такой конструкции турбины способны вырабатывать достаточное количество электроэнергии, находясь при этом на близком расстоянии друг от друга. Длина вертикальных установок составляет 9 м. Для эффективной работы системы необходим монтаж как минимум двух близкорасположенных турбин. Согласно предварительным исследованиям, новый тип установок в сравнении с лопастными аналогами вырабатывает в 10 раз больше электроэнергии, занимая равную площадь.

3. Углеродистые «стебли».

В ОАЭ реализуется новый проект по генерации чистой электроэнергии. Он предусматривает монтаж 1203 углеродистых «стеблей» на 20-метровом основании. Высота данной конструкции составляет 55 м. Каждый отдельный элемент системы находится на расстоянии 10 м друг от друга.

Толщина отдельного стебля в основании равна 30 м. Внутри их располагаются слои, состоящие из чередующихся между собой электродов и пьезоэлектрического материала. Под давлением последний генерирует электричество. Энергия возникает в момент, когда стебли качаются на ветру. Данная система обеспечивает выработку того же количества электроэнергии, что и другие ветряные установки, занимающие равную площадь.

Нечто похожее создали тунисские ученые. Их система отличается от углеродистых «стеблей», используемых в ОАЭ, тем, что в ее верхней части располагается бесшумный генератор, напоминающий спутниковую тарелку.

В Голландии предложили устанавливать на каждый дом небольшую конструкцию, способную под действием силы ветра генерировать электричество. Этот ветрогенератор имеет турбину, повторяющую форму панциря улитки. Она, захватывая поток ветра, разворачивается и меняет направление его движения. Производительность такого ветрогенератора достигает 80% от теоретических показателей, которые потенциально могут демонстрировать подобные установки.

В последние годы появились разработки, предназначенные для монтажа на плавательных судах. В целом, количество систем, способных заменить собой лопастные ветрогенераторы, постоянно увеличивается. Возможно, в будущем они смогут решить все задачи, стоящие перед ветряной энергетикой.

Данный способ получения энергии не оказывает негативного влияния на окружающую среду, а также в процессе не можвет возникнуть техногенной аварии. Кинетические свойства ветра доступны в любом уголке земного шара, поэтому оборудование можно устанавливать повсюду. К 2005 году мощность совокупной энергией ветра составил 59 тыс. мегаватт. И за весь год вырос на 24 %. Ветрогенератор, если говорить научным путём перерабатывает кинетическую энергию в механическую.


На понятном языке, с помощью этого агрегата энергия воздушного потока перерабатывается в электричество, которое можно использовать в населенных и промышленных пунктах, отдалённых от центральной энергосети. Он имеет достаточно простой механизм работы: ветер крутит ротор, который вырабатывает ток и, в свою очередь, передаётся через контроллер на аккумуляторы. Инвертор преобразовывает напряжение на контактах аккумулятора в пригодное для использования.

Конструкция и технические характеристики ветроэнергетической установки

Технические исследования доказали, что атмосферные циклоны намного мощнее наземные, поэтому необходимо выше устанавливать генерирующее устройство. Чтобы получить энергию высотных ветров необходимо определенная технология.

Её можно получить с помощью совокупности турбин и воздушных змеев. Электростанции, находящиеся на поверхности земли или морском шельфе получают поверхностный поток. Изучая технологический процесс производства двух типов станций, эксперты пришли к колоссальной разнице в эффективности. Наземные турбины смогут произвести более 400 ТВт, а высотные – 1800 ТВт.


В общем, ветрогенераторы разделяют на домашние и промышленные. Последние устанавливаться на больших корпоративных объектах, так как имеют большую мощность, иногда их даже объединяют в сеть, что в результате составляет целую электростанцию. Особенностью таких способов выработки электричества является полное отсутствие как самого сырья для переработки, так и отходов. Все что нужно для активного функционирования электростанции - мощные порывы ветра.
Карта ветров по регионам и среднегодовая скорость.

Мощность можете достигать 7,5 мегаватт.

Роторные следует монтировать в местах где скорость ветра больше 4 м/с. Расстояние от мачты до ближайших построек или высоких деревьев, должно составлять не меньше 15 метров, а расстояние от нижнего края ветроколеса до ближайших веток деревьев и строений, должно быть, не меньше 2 метров. Требуется отметить, что конструкцию и высоту мачты каждый рассчитывает индивидуально, в зависимости от местных природных условий, наличия препятствий и скорости воздушного потока.

Установка и горизонтальных, и вертикальных ветрогенераторов производиться на фундамент. Мачту крепят на анкерные болты. Перед установкой мачты фундамент выдерживают месяц, это нужно, чтобы бетон уселся и набрал прочность. В обязательном порядке комплектуются системой грозовой защиты, поэтому могут надёжно обеспечить ваш дом электричеством, даже в дождливую погоду.

Новейшие технологии разработчиков компании NASA, направлены на генерирующие устройства воздушного змея. Это повысит коэффициент полезного действия до 90%. Так как, на земле будет расположен генератор, а в воздухе прибор, улавливающий атмосферные порывы. Сейчас тестируется система полета воздушного прибора, максимальная дальность 610 метров, а размах крыла приблизительно 3 метра. Вращательная фаза шара будет потреблять меньше ресурсов, а турбинные лопасти станут быстрее двигаться. Конструкторы предполагают, что такую инженерию можно внедрять в космосе, например на Марсе.

Змеи -- электрогенераторы

Как видим, будущая перспектива достаточно оптимистична, осталось только дождаться, когда это все воплотится в жизнь. Не только космическое агентство предлагает инновационные методы, но уже множество компаний имеет планы на размещение таких конструкций на нужных географических участках Земли. Некоторые из них добились потрясающего прогресса и их детища уже эксплуатируются.

Чего только стоят башни – близнецы в Бахрейне, где два гигантских здания как одна электростанция. Высота достигает 240 метров. За год такой проект вырабатывает 1130 МВт. Примеров можно приводить очень много, суть в том, что с каждым годом растет количество заинтересованных компаний для участия в развитии индустрии.


Схема распределения энергии: 1 - ветрогенератор; 2 - контроллер заряда; 3 - аккумулятор; 4 - инвертор; 5 - распределительная система; 6 - сеть; 7 - потребитель.

Альтернативная ветроэнергетика СНГ

Естественно, ветроэнергетика стран СНГ отстает от передовых государств. Это объясняется многими причинами, в первую очередь экономическими. Правительственные ведомства разрабатывают программы, вводятся «зеленые тарифы», способствующие развивать отрасль.

Для этого есть огромный потенциал, но препятствий к реализации достаточно много. Например, Беларусь совсем недавно начала развиваться в этом направлении, но главной проблемой республики, является отсутствие собственного производства, приходиться заказывать оборудование в странах – партнерах. Говоря о России, данное производство находится в «замороженном» состоянии, поскольку базовыми источниками являются: вода, уголь и атом. Как следствие, 64 место в рейтинге производства электричества. Для Казахстана благоприятное географическое расположение должно способствовать, однако техническая база очень устарела и требует капитальной модернизации.

Развитие ветровой энергии в северной Европе

Норвегия расположена на Скандинавском полуострове, большая часть территории омывается морем, где дуют сильные северные ветра. Возможности получения электричества безграничны. В 2014 году был введен в эксплуатацию парк проектной мощностью 200 мегаватт. Такой комплекс обеспечит 40 тысяч жилых домов. Не стоит забывать, что Норвегия и Дания тесно сотрудничают на энергетическом рынке. Дания -- это мировой лидер в области офшорной энергетики.

Большинство электростанций расположено в море, более 35% электроэнергии вырабатывается такими комплексами. Не имея атомных станций, Дания легко обеспечивает себя и Европу электричеством. Грамотное использование альтернативных источников позволило добиться такого прогресса.


Комплектация ветряков

Вертикальный, как правило, состоит из таких деталей:

  • турбина
  • хвост
  • ориентирующий против потока ротор
  • мачта с растяжками
  • генератор
  • аккумуляторы
  • инвертор
  • контроллер заряда аккумулятора

Лопасти ветрогенератора


Отдельно хотелось бы затронуть тему лопастей, от их количества и материала, из которого они сделаны, напрямую зависит эффективность работы установки. Исходя из их количества, они бывают одно- двух-трёх и многолопастные. Последние характеризуются числом лопастей больше пяти, они обладают большой инерцией и КПД, за счёт чего могут использоваться для работы водяных насосов. На сегодняшний день уже разработан довольно эффективный в работе, способный ловить потоки воздуха без лопастей. Он работает по принципу парусника, он ловит порывы воздуха, из-за чего двигаются поршни, что размещаются в верхней части, сразу за тарелкой.

По материалам, из которых сделаны лопасти в установках, различают жёсткие и парусные конструкции. Парусные являются более дешёвым вариантом из стеклопластика, или из металла, но во время активной работы они очень часто ломаются.

Дополнительные элементы ветряка

Некоторые из современных моделей обладают модулем подключения источника постоянного тока для работы солнечных батарей. Порой конструкция вертикального ветряка дополняется необычными элементами, к примеру, магнитами. Очень большой популярностью пользуется из ферритовых магнитов. Эти элементы способны ускорить обороты ротора, а соответственно повысить мощность генератора и КПД.

Именно таким образом добываются повышения эксплуатационных характеристик на собственноручной сборке, к примеру, из старого автомобильного автогенератора. Требуется отметить принцип ветроэлектростанции из ферритовых магнитов - он позволяет обойтись без редуктора, а это минимизирует шум и в несколько раз увеличивает надёжность._

Вертикально осевой Ротор Дарье. Особенности ротора



В новых конструкциях вертикальных ветряков используют Ротор Дарье, он имеет в два раза выше коэффициент переработки ветрового потока, чем все известные до сих пор установки подобного типа. Вертикально осевые с ротором Дарье целесообразно устанавливать для оборудования насосных станций, где нужен мощный момент на оси вращения при добыче воды с колодцев и скважин в условиях степи.

Ротор Савониуса новинка вертикальных генераторов



Русские учёные изобрели вертикальный генератор нового поколения, который работает на роторе Ворониных-Савониуса. Он являет собой, два полуцилиндра на вертикальной оси вращения. На любом направлении и шквалах, “ветряная мельница” на основе ротора Савониуса, будет полноценно вращаться вокруг своей оси и вырабатывать энергию.

Главным минусом его является низкое использование ветровой силы, так как лопасти-полуцилиндры функционируют только в четверть оборота, а остальную часть своей окружности вращения он тормозит своим движением. О того, какой ротор вы выберете, будет также зависеть долгосрочность эксплуатации объекта. К примеру, ветряки с геликоидным, могут равномерно вращаться благодаря закрутке лопастей. Этот момент уменьшает нагрузку на подшипник и увеличивает длительность службы.

Ветрогенератор с разной мощностью

Устройство “мельницы” требуется выбрать в зависимости от того, какая мощность должна быть у него на выходе. Мощность до 300 Вт является одним из самых простых типов оборудования. Такие модели легко помещаются в багажнике автомобиля, и могут быть установлены одним работником за считаные минуты. Он очень быстро ловит попутный поток воздуха и обеспечивают зарядку мобильных устройств, освещение и возможность просмотра телевизора.

5 квт является оптимальным вариантом для небольшого загородного дома. Мощностью в 5-10 квт он может полноценно функционировать на небольших скоростях ветра, поэтому имеют более широкую географию для своей установки.

Плюсы и преимущества использования

Если рассматривать плюсы, тогда в первую очередь хотелось бы отметить, что он даёт условно бесплатную электроэнергию, которая в наше время стоит не дешево. Чтобы обеспечить небольшой дом электричеством, приходиться платить огромные счета. Важно одно-современные ветряки хорошо совместимы с альтернативными источниками. К примеру, они могут функционировать в комплексе с дизельными генераторами, создавая единый замкнутый цикл.

  • Эффективность напрямую зависит от выбора пространства, где она будет размещена
  • Низкие энергопотери в момент транспортировки, потому как потребитель может находиться на близком расстоянии от источника
  • Экологически чистое производство
  • Легкое управление, нет необходимости постоянно обучать персонал
  • Долгое использование комплектующих, не требуется частой замены

Оптимальным скоростным потоком считается уровень 5 – 7 м/с. Мест для достижения такого показателя очень много. Очень часто ветряную ферму используют в открытом море на расстоянии 15 км. от берега. Каждый год уровень добычи энергии повышается на 20 %. Если рассматривать дальнейшие перспективы, в этом ключе природный ресурс бесконечный, чего не скажешь о нефти, газе, угле и т. д. Также, не стоит сбрасывать со счетов безопасность такой промышленности. Техногенные катастрофы, связанные с атомом вызывают страх перед всем человечеством.


Перед глазами стоит ужасная картина, взорвавшегося атомного реактора на Чернобыльской АЭС в 1986 году. А аварию на Фукусиме охарактеризовали, как дежавю Чернобыля. Деструктивные последствия для всего живого после таких ситуаций, вынуждают многие страны отказываться от расщепления атома и искать альтернативные методы производства кВт.

Однажды заплатив определённую сумму, можно несколько лет пользоваться бесплатным электричеством. Неоспоримый плюс также в том, что есть возможность покупать уже бывшие в употреблении, а это позволяет сэкономить ещё больше.

Минусы и недостатки

Несмотря на все позитивные качества ВЭС, также имеют места быть негативные стороны. В большинстве случаев, недостатки похожи на пропаганду и носят противоречивый характер. Рассмотрим наиболее тиражируемые во всех ТВ передачах, газетных статьях и интернет ресурсах:

  • Первым из недостатков является то, что человек не научился контролировать природные явления, поэтому предугадать, как будет работать генератор в тот или иной день, невозможно
  • Ещё одним минусом ветряков есть их аккумуляторы. Они обладают относительной долговечностью и в следствии их обязательно менять через каждые 15 лет
  • Финансовые инвестиции требуют больших затрат. На самом деле, новые технологии имеют тенденцию к снижению
  • Зависимость от силы горизонтального воздушного потока. Данный минус более адекватный, ведь нельзя повлиять на силу вихря
  • Отрицательное воздействие на среду шумовым эффектом. Как показали последние изучения по этому вопросу-нет основательных причин так утверждать
  • Уничтожение птиц, которые попадают в лопасти. Согласно статистическому анализу вероятность столкновения равносильна с ЛЭП
  • Искажение приема сигнала. По оценкам очень маловероятна, тем более множество станций находится вблизи аэропортов
  • Они искажают ландшафт(неподтверждено)

Это лишь малая часть мифов – страшилок, которыми пытаются напугать людей. Это повод и не более, ведь на практике работа ВЭС мощностью 1 МВт, позволяет сэкономить за 20 лет, примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти. Ведущие страны рекордными темпами осваивают альтернативный источник, отказываясь от атомного комплекса. Германия, США, Канада, Китай, Испания активно устанавливают оборудование на своих местностях.


Также требуется напомнить о том, что некоторые типы установок создают сильные шумы. Чем больше мощность установки, тем сильнее будет от него исходить шум. Монтировать необходимо на расстоянии, где уровень шума от станции не превысит 40 децибел. В противном случае, у вас постоянно будет болеть голова. Также они создают помехи в работе телевизора и радиовещания.

Вертикальные и солнечные ветрогенераторы, конструкция и КПД, гибриды нового поколения


Вертикальный нового поколения, как уже выше упоминалось, может отличаться по типу своих лопастей. Ярким примером, является гиперболоидный ветрогенератор, в котором турбина имеет гиперболоидную форму и существенно превосходит крыльчатый ветряк с вертикальной осью вращения. К примеру, функциональная его зона 7…8% площади, а гиперболоидный имеет рабочую зону в 65…70%. На базе таких турбин в США соединили два альтернативных источника ветер и солнце. Компания WindStream Technologies выпустила на рынок накрышную гибридную энергосистему SolarMill («Солнечная Мельница») мощностью 1, 2 кВт.

Ветрогенератор Болотова и его независимость от погодных условий


В последнее время очень большое внимание начало уделяться малым установкам. Одним из самых удачных есть вариант ветряка Болотова. Он являет собой электростанцию с вертикально размещённым валом генератора.

Особенностью оборудование -его необязательно приспосабливать к разным погодным условиям. Генератор Болотова способен принимать поток со всех сторон без соответствующих опций и необходимости разворота установки в другом направлении. Роторный способен форсировать поступающий поток, благодаря чему может полноценно функционировать при ветре любой мощности, включая штормовой.

Ещё одним достоинством этого вида, является удобное расположение в них генератора, электрической схемы и аккумуляторов. Они находятся на земле, в следствии техническое обслуживание оборудования очень удобно.

Однолопастной на мачте

Инновационной разработкой, принято считать однолопастной, главным его достоинством является высокая частота и скорость оборотов. Именно в них вместо оптимального количества лопастей встроен противовес, который мало влияет на сопротивляемость движению воздуха.


Ветряк Онипко

Продолжая обговаривать необычные варианты винтов, невозможно не упомянуть ветряк Онипко, который отличается конусообразными лопастями. Главным плюсом этих установок, является способность получения и преобразование в кВт при скорости потока 0,1 м/с. Лопастные, в отличии, начинают обороты на скорости 3 м/с. Онипко бесшумный и полностью безопасен для внешней среды. Он не нашёл массового распространения, но как говорят результаты исследований, он станет отличным вариантом для больших производственных объектов, что ищут альтернативные источники, так как обладает большой мощностью.

В виде панциря улитки.
Инновационным прорывом считают изобретение компании Archimedes, которая находиться в Нидерландах. Она предложила вниманию общественности конструкцию бесшумного типа, который можно устанавливать прямо на крыше многоэтажного здания. Согласно исследованиям, агрегат может работать в комплексе с солнечными батареями и свести к нулю зависимость здания от внешней энергосети. Новые генераторы носят название Liam F1. Оборудование имеет вид небольшой турбины диаметр которой 1,5 метра, и вес 100 килограмм.


По своей форме установка напоминает панцирь улитки. Турбина разворачивается по направлению захватывая воздушный поток. Агустин Отегу изобретатель всемирно известной спиралевидной турбины Nano Skin, видит будущее человечества не в громадных солнечных батареях и турбинах с большим размахом винтов. Он рекомендует монтировать их в наружных частях зданий. Турбины начнут вращаться ветром и создадут энергию, которая будет передаваться непосредственно в электросеть здания.

Парусный самый быстрый «ловец» потока

Альтернативой лопастного, является парусный. Попутный ветер в лопасти улавливает очень быстро и мгновенно под него подстраивается в результате тот может работать на всех скоростях от самых малых до буревых. Этот тип оборудования вовсе не создаёт шумов и радиопомех, он прост в эксплуатации и транспортировке и это является немаловажным фактором.

Необычные устройства, ветроэнегетика и её проекты

На стадии разработки находиться еще множество конструкций необычного типа. Среди них, особым интересом пользуются:

  • Sheerwind напоминает своим внешним видом музыкальный инструмент
  • ветрогенераторы от компании ТАК, напоминающие уличные фонари на само обеспечении
  • ветряки на мостах в виде пешеходного перехода
  • ветряные качели, которые принимают потоки воздуха со всех сторон
  • «ветряные линзы» диаметром 112 метров
  • плавучие ветряки от корпорации FLOATGEN
  • разработка компании Tyer Wind – ветрогенератор, имитирующий лопастями взмах крыльев колибри
  • в виде реального дома, в котором можно жить от компании TAMEER. Аналогом этой разработки является Anara Tower в Дубаи

Вскоре будут установлены первые в мире установки способные работать без ветра. Представит вниманию человечества их немецкая компания Max Bögl Wind AG. Они будут состоять из турбин высотой 178 метров. Будут также выполнять роль резервуаров с водой. Принцип работы системы достаточно простой, когда есть ветер оборудование будет работать по типу ветрогенератора, а когда погода не ветреная, в работу будет пускаться гидротурбины. Они вырабатывают энергию из воды, которая должна спускаться из резервуаров вниз по холму. Когда он снова появляется, вода начнет перекачиваться обратно в резервуары. Этим самым удастся обеспечить работу электростанции в непрерывном режиме.
Эпоха “мельниц”, с которыми сражался еще Дон Кихот в рассказе Сервантеса уходит в далекое прошлое. Сегодня промышленные объекты больше напоминают уникальные произведения искусства нежели промышленные установки.

Дирижабль от компании Altaeros Energies

С каждым днём появляются всё больше идей, касающихся выработки альтернативных источников и одной из самых новых, считается дирижабль генератор. Лопастные традиционные достаточно шумны, а коэффициент использовании ветрового потока достигает 30%. Именно эти недостатки решили исправить Altaeros Energies разработав дирижабль. Этот инновационный тип будет работать на высотах до 600 метров. Обычные лопастные ветроустановки до этого предела высот не достают, но именно здесь самые мощные ветра, которые могут обеспечить непрерывную работу генераторов. Оборудование являет собой надувную конструкцию, которая выглядит чем-то средним между мельницей и дирижаблем. На нём установлена трехлопастная турбина на горизонтальной оси.

Особенностью такой плавающей ветроэлектростанции-ее можно контролировать дистанционно, она не требует дополнительных затрат на техническое обслуживание и очень проста в эксплуатации. Как утверждают разработчики, в перспективах эти установки будут являться не только источниками электричества, но и смогут проводить интернет на отдаленные участки земного шара, что далеки от развития инфраструктуры. Согласно полученным данным, можно утверждать, что массовое производство этой энергетической вырабатывающей установки станет огромным прорывом в мире техники. И запас мощности у дирижабля хватит на «двоих».



Ветрогенератор «Летающий Голландец» и другие летающие установки.
Это устройство являет собой гибрид дирижабля и мельницы. Во время тестов дирижабль был поднят на высоту 107 метров, и находился там какое-то время. Результаты показали, что эти виды установок способны выработать в два раза больше мощности, чем обычные установки, которые устанавливают на высотных башнях.

Проект Wavestalk

Интересно узнать, что для преобразования силы волн и океанических течений в электричество был предложен альтернативный вариант проекту Windstalk – Wavestalk. Устройство являет собой безлопастный, парусного типа. По своей форме он напоминает большую спутниковую тарелку, которая под действием ветра делает наклоны вперед-назад, создавая этим самым колебания в гидравлической системе.

В данной конструкции ветер запрягается в парус, это позволяет преобразовать большие объёмы кинетической энергии.


Проект Windstalk

Мачта без лопастей уже давно рассматривается, как самый удачный из вариантов альтернативных источников для электричества. В Абудаби в городе Мансард решили построить электростанцию Windstalk. Она являет собой совокупность стеблей, армированных резиной, с шириной 30 см и до 5 см в верхней точке. Каждый такой стебель согласно проекту, содержит слои электродов и керамических дисков, которые способны вырабатывать электрический ток. Ветер качая эти стебли, будет сжимать диски, вследствие чего будет вырабатываться электрический ток. Никакого шума и опасности для окружающей среды, подобные ветроустановки не создают. Площадь, которую занимают стебли в проекте Windstalk охватывает 2,6 гектара, а по мощности намного превосходит идентичное количество лопастного типа, что могут расположиться на этой же территории. На создание подобной конструкции разработчиков натолкнули камыши на болте, которые равномерно раскачиваются на ветру.


Ветряк в виде дерева

Наблюдение за природой, как понятно с выше наведённого примера очень вдохновляет современных инженеров. Еще одним подтверждением этому, есть эта конструкция напоминающая форму дерева. Представила эту необычную концепцию, представители компании NewWind. Разработка получила название Arbre à Vent высота его составляет три метра, а оснащён аппарат 72-мя вертикальными мини-турбинами, что могут работать даже на ветру скорость которого сотавляет 7 км/ч или 2 м/с. Ветряк в виде дерева работает очень тихо, кроме этого выглядит, достаточно реалистично, не портя своим внешним видом, окружающий экстерьер города или загородного участка.


Самый большой ловец ветра

Самым большим в мире принято считать детище компании Enercon. Мощность энергоустановки составляет 7,58 МВт. Высота несущей башни может изменяться в зависимости от требований потребителя, в стандартном варианте высота составляет 135м, а размах лопастей- 126м. Общая масса данной конструкции составляет величину около 6000т.

Панцирные АКБ изготавливаются по уникальной технологии, считаются аккумуляторами нового поколения и отличаются улучшенными свойствами. Большой эксплуатационный срок от 800 до 2 тыс. циклов зарядов-разрядов. Аккумуляторы зависят от температуры окружающей среды. Понижение на 1ºС приводит к уменьшению ёмкости устройства на 1%. Этот параметр АКБ в мороз -25 ºС будет наполовину меньше его значений при +25 ºС.

На каком устройстве остановиться и что необходимо учитывать при выборе

Как видно, из вышеперечисленных моделей, в мире постоянно изобретаются новые электроустановки, что могут работать на природных ресурсах. Каждый из них вы успешно можете использовать в своём загородном участке. Хорошо ознакомившись с принципом действия ветровых установок, вы можете даже попробовать самостоятельно смастерить свою домашнюю станцию, которая станет отличным аналогом центральной электромагистрали и, возможно, даже осуществит прорыв в мире электроники.
Классическая схема электростанции с использованием в цепи контроллера, аккумуляторов и инвертора.

Правило подбора оборудования

  • Количество мощности в кВт что бы обеспечить ваш дом энергией. Мощность надо брать с запасом. Просчитать число аккумуляторов для аккумуляции на случай безветренной погоды.
  • Среднегодовая скорость воздушных потоков. Климатические особенности места проживания. Монтаж себя не оправдывает в полосе где стоят сильные морозы, а также постоянно идёт дождь и снег.
  • Лопасти, а точнее их количество. Меньше лопастей - больше КПД. Интенсивность шума при работе установки. Просмотреть обзоры производителей ветрогенераторов, отзывы о них, а также технические характеристики.


Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.