Интервальный вариационный ряд. Построение интервального ряда распределения

2. Понятие рядов распределения. Дискретные и интервальные ряды распределения

Рядами распределения называются группировки особого вида, при которых по каждому признаку, группе признаков или классу признаков известны численность единиц в группе либо удельный вес этой численности в общем итоге. Т.е. ряд распределения – упорядоченная совокупность значений признака, расположенных в порядке возрастания или убывания с соответствующими им весами. Ряды распределения могут быть построены или по количественному, или по атрибутивному признаку.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Они бывают дискретные и интервальные . Ряд распределения может быть построен по не прерывно варьирующему признаку (когда признак может принимать любые значения в рамках какого-либо интервала) и по дискретно варьирующему признаку (принимает строго определенные целочисленные значения).

Дискретным вариационным рядом распределения называется ранжированная совокупность вариантов с соответствующими им частотами или частностями. Варианты дискретного ряда – это дискретно прерывно изменяющиеся значения признак, обычно это результат подсчета.

Дискретные

вариационные ряды строят обычно в том случае, если значения изучаемого признака могут отличаться друг от друга не менее чем на некоторую конечную величину. В дискретных рядах задаются точечные значения признака. Пример : Распределение мужских костюмов, реализованных магазинами за месяц по размерам.

Интервальным

вариационным рядомназывается упорядоченная совокупность интервалов варьирования значений случайной величины с соответствующими частотами или частостями попаданий в каждый из них значений величины. Интервальные ряды предназначены для анализа распределения непрерывно изменяющегося признака, значение которого чаще всего регистрируется путем измерения или взвешивания. Варианты такого ряда – это группировка.

Пример : Распределение покупок в продуктовом магазине по сумме.

Если в дискретных вариационных рядах частотная характеристика относится непосредственно к варианту ряда, то в интервальных к группе вариантов.

Ряды распределения удобно анализировать при помощи их графического изображения, позволяющего судить и о форме распределения, о закономерностях. Дискретный ряд изображается на графике в виде ломаной линии – полигона распределения . Для его построения в прямоугольной системе координат по оси абсцисс в одинаковом масштабе откладываются ранжированные (упорядоченные) значения варьирующего признака, а по оси ординат наносится шкала для выражения частот.

Интервальные ряды изображаются в виде гистограмм распределения (то есть столбиков диаграмм).

При построении гистограммы на оси абсцисс откладываются величины интервалов, а частоты изображаются прямоугольниками, построенными на соответствующих интервалах. Высота столбиков в случае равных интервалов должна быть пропорциональна частотам.

Любая гистограмма может быть преобразована в полигон распределений, для этого необходимо соединить между собой отрезками прямой вершины ее прямоугольников.

2. Индексный метод анализа влияния средней выработки и среднесписочной численности на изменения объема продукции

Индексный метод применяется для анализа динамики и сравнения обобщающих показателей, а так же факторов, влияющих на изменение уровней этих показателей. С помощью индексов можно выявить влияние средней выработки и среднесписочной численности на изменения объема продукции. Эта задача решается путем построения системы аналитических индексов.

Индекс объема продукции с индексом среднесписочной численности работающих и индексом средней выработки связан таким же образом, как объем производства (Q) связан с выработкой (w) и численностью (r) .

Можно заключить, что объем продукции будет равняться произведению средней выработки и среднесписочной численности:

Q = w·r, где Q – объем продукции,

w - средняя выработка,

r – среднесписочная численность.

Как видно, речь идет о взаимосвязи явлений в статике: произведение двух факторов дает общий объем результативного явления. Очевидно также, что эта связь функциональная, следовательно, динамика этой связи изучается с помощью индексов. Для приведенного примера это следующая система:

J w × J r = J wr .

Например, индекс объема продукции Jwr, как индекс результативного явления, можно разложить на два индекса-фактора: индекс средней выработки (Jw), и индекс среднесписочной численности (Jr):

Индекс Индекс Индекс

объема средней среднесписочной

продукции выработки численности

где J w - индекс производительности труда, рассчитываемый по формуле Ласпейреса;

J r - индекс численности работающих, рассчитываемый по формуле Пааше.

Индексные системы используются для определения влияния отдельных факторов на формирование уровня результативного показателя, позволяют по 2-м известным значениям индексов определить значение неизвестного.

На базе приведенной системы индексов можно найти и абсолютный прирост объема продукции, разложенный на влияние факторов.

1. Общий прирост объема продукции:

∆wr = ∑w 1 r 1 - ∑w 0 r 0 .

2. Прирост за счет действия показателя средней выработки:

∆wr/w = ∑w 1 r 1 - ∑w 0 r 1 .

3. Прирост за счет действия показателя среднесписочной численности:

∆wr/r = ∑w 0 r 1 - ∑w 0 r 0

∆wr = ∆wr/w + ∆wr/r.

Пример. Известны следующие данные

Мы можем определить, как изменился объем продукции в относительном и абсолютном выражении и как отдельные факторы повлияли на это изменение.

Объем продукции составил:

в базисном периоде

w 0 * r 0 = 2000 * 90 = 180000,

а в отчетном

w 1 * r 1 = 2100 * 100 = 210000.

Следовательно, объем продукции увеличился на 30000 или на 1,16%.

∆wr=∑w 1 r 1 -∑w 0 r 0= (210000-180000)=30000

или (210000:180000)*100%=1,16%.

Данное изменение объема продукции было обусловлено:

1) увеличением среднесписочной численности на 10 человек или на 111,1%

r 1 /r 0 = 100 / 90 = 1,11 или 111,1%.

В абсолютном выражении за счет этого фактора объем продукции увеличился на 20000:

w 0 r 1 – w 0 r 0 = w 0 (r 1 -r 0) = 2000 (100-90) = 20000.

2) увеличением средней выработки на 105% или на 10000:

w 1 r 1 /w 0 r 1 = 2100*100/2000*100 = 1,05 или 105%.

В абсолютном выражении прирост составляет:

w 1 r 1 – w 0 r 1 = (w 1 -w 0)r 1 = (2100-2000)*100 = 10000.

Отсюда, совместное влияние факторов составило:

1. В абсолютном выражении

10000 + 20000 = 30000

2. В относительном выражении

1,11 * 1,05 = 1,16 (116%)

Следовательно, прирост составляет 1,16%. Оба результата были получены ранее.

Слово «index» в переводе означает указатель, показатель. В статистике индекс трактуется как относительный показатель, характеризующий изменение явления во времени, пространстве или по сравнению с планом. Поскольку индекс относительная величина, наименования индексов созвучны с наименованием относительных величин.

В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава – это индекс, который характеризует динамику средней величины при одной и той же фиксированной структуре совокупности.

Принцип построения индекса постоянного состава – элиминировать влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами.

Индекс постоянного состава по своей форме тождественен агрегатному индексу. Агрегатная форма является наиболее распространенной.

Индекс постоянного состава исчисляется с весами, зафиксированными на уровне одного какого-либо периода, и показывает изменение только индексируемой величины. Индекс постоянного состава элиминирует влияние изменений в структуре весов на индексируемую величину путем расчета средневзвешенного уровня индексируемого показателя с одними и теми же весами. В индексах постоянного состава сопоставляются показатели, рассчитанные на базе неизменной структуры явлений.

Лабораторная работа №1. Первичная обработка статистических данных

Построение рядов распределения

Упорядоченное распределение единиц совокупности на группы по какому-либо одному признаку называется рядом распределения . При этом признак может быть как количественным, тогда ряд называется вариационным , так и качественным, тогда ряд называют атрибутивным . Так, например, население города может быть распределено по возрастным группам в вариационный ряд, или по профессиональной принадлежности в атрибутивный ряд (конечно, можно предложить еще множество качественных и количественных признаков для построения рядов распределения, выбор признака определяется задачей статистического исследования).

Любой ряд распределения характеризуется двумя элементами:

- варианта (х i ) – это отдельные значения признака единиц выборочной совокупности. Для вариационного ряда варианта принимает числовые значения, для атрибутивного – качественные (например, х=«государственный служащий»);

- частота (n i ) – число, показывающее, сколько раз встречается то или иное значение признака. Если частота выражена относительным числом (т.е. долей элементов совокупности, соответствующих данному значению варианты, в общем объеме совокупности), то она называется относительной частотой или частостью .

Вариационный ряд может быть:

- дискретным , когда изучаемый признак характеризуется определенным числом (как правило целым).

- интервальным , когда определены границы «от» и «до» для непрерывно варьируемого признака. Интервальный ряд также строят если множество значений дискретно варьируемого признака велико.

Интервальный ряд может строиться как с интервалами равной длины (равноинтервальный ряд) так и с неодинаковыми интервалами, если это диктуется условиями статистического исследования. Например, может рассматриваться ряд распределения доходов населения со следующими интервалами: <5тыс р., 5-10 тыс р., 10-20 тыс.р., 20-50 тыс р., и т.д. Если цель исследования не определяет способ построения интервального ряда, то строится равноинтервальный ряд, число интервалов в котором определяется по формуле Стерджесса:



где k – число интервалов, n – объем выборки. (Конечно, формула обычно дает число дробное, а в качестве числа интервалов выбирается ближайшее целое к полученному число.) Длина интервала в таком случае определяется по формуле

.

Графически вариационные ряды могут быть представлены в виде гистограммы (над каждым интервалом интервального ряда выстраивается «столбик» высоты, соответствующей частоте в этом интервале), полигона распределения (ломаная линия, соединяющая точки (х i ;n i ) либо кумуляты (строится по накопленным частотам, т.е. для каждого значения признака берется частота появления в совокупности объектов со значением признака меньшим данного).

При работе в Excel для построения вариационных рядов могут быть использованы следующие функции:

СЧЁТ(массив данных ) – для определения объема выборки. Аргументом является диапазон ячеек, в котором находятся выборочные данные.

СЧЁТЕСЛИ(диапазон; критерий ) – может быть использована для построения атрибутивного или вариационного ряда. Аргументами являются диапазон массива выборочных значений признака и критерий – числовое или текстовое значение признака или номер ячейки, в которой оно находится. Результатом является частота появления этого значения в выборке.

ЧАСТОТА(массив данных; массив интервалов ) – для построение вариационного ряда. Аргументами являются диапазон массива выборочных данных и столбец интервалов. Если требуется построить дискретный ряд, то здесь указываются значения варианты, если интервальный – то верхние границы интервалов (их еще называют «карманами»). Поскольку результатом является столбец частот, введение функции следует завершить нажатием сочетания клавиш CTRL+SHIFT+ENTER. Заметим, что задавая массив интервалов при введении функции, последнее значение в нем можно и не указывать – в соответствующий «карман» будут помещены все значения, не попавшие в предыдущие «карманы». Иногда это помогает избежать ошибки, состоящей в том, что наибольшее выборочное значение не помещается автоматически в последний «карман»

Кроме того, для сложных группировок (по нескольким признакам) используют инструмент «сводные таблицы». Для построения атрибутивных и вариационных рядов их тоже можно использовать, но это излишне усложняет задачу. Также для построения вариационного ряда и гистограммы существует процедура «гистограмма» из надстройки «Пакет анализа» (чтобы использовать надстройки в Excel, их нужно сначала загрузить, по умолчанию они не устанавливаются)

Проиллюстрируем процесс первичной обработки данных на следующих примерах.

Пример 1.1 . имеются данные о количественном составе 60 семей.

Построить вариационный ряд и полигон распределения

Решение .

Откроем таблицы Excel. Введем массив данных в диапазон А1:L5. Если Вы изучаете документ в электронной форме (в формате Word, например), для этого достаточно выделить таблицу с данными и скопировать ее в буфер, затем выделить ячейку А1 и вставить данные – они автоматически займут подходящий диапазон. Подсчитаем объем выборки n – число выборочных данных, для этого в ячейку В7 введем формулу =СЧЁТ(А1:L5). Заметим, что для того, чтобы в формулу ввести нужный диапазон, необязательно вводить его обозначение с клавиатуры, достаточно его выделить. Определим минимальное и максимальное значение в выборке, введя в ячейку В8 формулу =МИН(А1:L5), и в ячейку В9: =МАКС(А1:L5).

Рис.1.1 Пример 1. Первичная обработка статистических данных в таблицах Excel

Далее, подготовим таблицу для построения вариационного ряда, введя названия для столбца интервалов (значений варианты) и столбца частот. В столбец интервалов введем значения признака от минимального (1) до максимального (6), заняв диапазон В12:В17. Выделим столбец частот, введем формулу =ЧАСТОТА(А1:L5;В12:В17) и нажмем сочетание клавиш CTRL+SHIFT+ENTER

Рис.1.2 Пример 1. Построение вариационного ряда

Для контроля вычислим сумму частот при помощи функции СУММ (значок функции S в группе «Редактирование» на вкладке «Главная»), вычисленная сумма должна совпасть с ранее вычисленным объемом выборки в ячейке В7.

Теперь построим полигон: выделив полученный диапазон частот, выберем команду «График» на вкладке «Вставка». По умолчанию значениями на горизонтальной оси будут порядковые числа - в нашем случае от 1 до 6, что совпадает со значениями варианты (номерами тарифных разрядов).

Название ряда диаграммы «ряд 1» можно либо изменить, воспользовавшись той же опцией «выбрать данные» вкладки «Конструктор», либо просто удалить.

Рис.1.3. Пример 1. Построение полигона частот

Пример 1.2 . Имеются данные о выбросах загрязняющих веществ из 50 источников:

10,4 18,6 10,3 26,0 45,0 18,2 17,3 19,2 25,8 18,7
28,2 25,2 18,4 17,5 41,8 14,6 10,0 37,8 10,5 16,0
18,1 16,8 38,5 37,7 17,9 29,0 10,1 28,0 12,0 14,0
14,2 20,8 13,5 42,4 15,5 17,9 19, 10,8 12,1 12,4
12,9 12,6 16,8 19,7 18,3 36,8 15,0 37,0 13,0 19,5

Составить равноинтервальный ряд, построить гистограмму

Решение

Внесем массив данных в лист Excel, он займет диапазон А1:J5 Как и в предыдущей задаче, определим объем выборки n, минимальное и максимальное значения в выборке. Поскольку теперь требуется не дискретный, а интервальный ряд, и число интервалов в задаче не задано, вычислим число интервалов k по формуле Стерджесса. Для этого в ячейку В10 введем формулу =1+3,322*LOG10(B7).

Рис.1.4. Пример 2. Построение равноинтервального ряда

Полученное значение не является целым, оно равно примерно 6,64. Поскольку при k=7 длина интервалов будет выражаться целым числом (в отличие от случая k=6) выберем k=7, введя это значение в ячейку С10. Длину интервала d вычислим в ячейке В11, введя формулу =(В9-В8)/С10.

Зададим массив интервалов, указывая для каждого из 7 интервалов верхнюю границу. Для этого в ячейке Е8 вычислим верхнюю границу первого интервала, введя формулу =B8+B11; в ячейке Е9 верхнюю границу второго интервала, введя формулу =E8+B11. Для вычисления оставшихся значений верхних границ интервалов зафиксируем номер ячейки В11 в введенной формуле при помощи знака $, так что формула в ячейке Е9 примет вид =E8+B$11, и скопируем содержимое ячейки Е9 в ячейки Е10-Е14. Последнее полученное значение равно вычисленному ранее в ячейке В9 максимальному значению в выборке.

Рис.1.5. Пример 2. Построение равноинтервального ряда


Теперь заполним массив «карманов» при помощи функции ЧАСТОТА, как это было сделано в примере 1.

Рис.1.6. Пример 2. Построение равноинтервального ряда

По полученному вариационном ряду построим гистограмму: выделим столбец частот и выберем на вкладке «Вставка» «Гистограмма». Получив гистограмму, изменим в ней подписи горизонтальной оси на значения в диапазоне интервалов, для этого выберем опцию «Выбрать данные» вкладки «Конструктор». В появившемся окне выберем команду «Изменить» для раздела «Подписи горизонтальной оси» и введем диапазон значений варианты, выделив его «мышью».

Рис.1.7. Пример 2. Построение гистограммы

Рис.1.8. Пример 2. Построение гистограммы

Число групп (интервалов) приближенно определяется по формуле Стерджесса:

m = 1 + 3,322 × lg(n)

где n - общее число единиц наблюдения (общее количество элементов в совокупности и т.д.), lg(n) – десятичный логарифм от n.

Полученную по формуле Стерджесса величину округляют обычно до целого большего числа, поскольку количество групп не может быть дробным числом.

Если ряд интервальный ряд с таким количеством групп по каким-то критериям не устраивает, то можно построить другой интервальный ряд, округлив m до целого меньшего числа и выбрать из двух рядов более подходящий.

Число групп не должно быть больше 15.

Также можно пользоваться следующей таблицей, если совсем нет возможности вычислить десятичный логарифм.

    Определяем ширину интервала

Ширина интервала для интервального вариационного ряда с равными интервалами определяется по формуле:

где X макс - максимальное из значений x i , X мин - минимальное из значений x i ; m - число групп (интервалов).

Величину интервала (i ) обычно округляют до целого числа, исключение составляют лишь случаи, когда изучаются малейшие колебания признака (например, при группировке деталей по величине размера отклонений от номинала, измеряемого в долях миллиметра).

Часто применяется следующее правило:

Количество знаков до запятой

Количество знаков после запятой

Пример ширины интервала по формуле

До какого знака округляем

Пример округленной ширины интервала

    Определяем границы интервалов

Нижнюю границу первого интервала принимают равной минимальному значению признака (чаще всего его предварительно округляют до целого меньшего числа с таким же разрядом как ширина интервала). Например, х мин = 15, i=130, х н первого интервала = 10.

х н1 ≈ х мин

Верхняя граница первого интервала соответствует значению (Хmin + i ).

Нижняя граница второго интервала всегда равно верхней границе первого интервала. Для последующих групп границы определяются аналогично, т е. последовательно прибавляется величина интервала.

x в i = x н i + i

x н i = x в i-1

    Определяем частоты интервалов.

Считаем, сколько значений попало в каждый интервал. При этом помним, что если единица обладает значением признака, равным величине верхней границы интервала, то ее следует относить к следующему интервалу.

    Строим интервальный ряд в виде таблицы.

    Определяем середины интервалов.

Для дальнейшего анализа интервального ряда понадобится выбрать значение признака для каждого интервала. Это значение признака будет общим для всех единиц наблюдения, попавшим в этот интервал. Т.е. отдельные элементы «теряют» свои индивидуальные значения признака и им присваивается одно общее значение признака. Таким общим значением является середина интервала , которая обозначается x" i .

Рассмотрим на примере с ростом детей, как построить интервальный ряд с равными интервалами.

Имеются первоначальные данные.

90, 91, 92, 93, 94, 95, 96, 97, 98, 99 , 92, 93, 94, 95, 96, 98 , , 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 , 100, 101, 102, 104 , 110, 112, 114, 116, 117, 120, 122, 123, 124, 129, 110, 111, 113, 115, 116, 117, 121, 125, 126, 127 , 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 , 111, 113, 116, 127 , 123, 122, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150 , 131, 133, 135, 136, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148

При обработке больших массивов информации, что особенно актуально при проведении современных научных разработок, перед исследователем стоит серьезная задача правильной группировки исходных данных. Если данные имеют дискретный характер, то проблем, как мы видели, не возникает – необходимо просто подсчитать частотукаждого признака. Если же исследуемый признак имеет непрерывный характер (что имеет большее распространение на практике), то выбор оптимального числа интервалов группировки признака является отнюдь не тривиальной задачей.

Для группировки непрерывных случайных величин весь вариационный размах признакаразбивают на некоторое количество интервалов к.

Сгруппированным интервальным (непрерывным ) вариационным рядом называют ранжированные по значению признака интервалы (), гдеуказанные вместе с соответствующими частотами () числа наблюдений, попавших в г"-й интервал, или относительными частотами ():

Интервалы значений признака

Частота mi

Гистограмма и кумулята {огива), уже подробно рассмотренные нами, являются прекрасным средством визуализации данных, позволяющим получить первичное представление о структуре данных. Такие графики (рис. 1.15) строятся для непрерывных данных так же, как и для дискретных, только с учетом того, что непрерывные данные сплошь заполняют область своих возможных значений, принимая любые значения.

Рис. 1.15.

Поэтому столбцы на гистограмме и кумуляте должны соприкасаться, не иметь участков, куда не попадают значения признака в пределах всех возможных (т.е. гистограмма и кумулята не должны иметь "дырок" по оси абсцисс, в которые не попадают значения изучаемой переменной, как на рис. 1.16). Высота столбика соответствует частоте– числу наблюдений, попавших в данный интервал, или относительной частоте– доле наблюдений. Интервалы не должны пересекаться и имеют, как правило, одинаковую ширину.

Рис. 1.16.

Гистограмма и полигон являются аппроксимациями кривой плотности вероятности (дифференциальной функции) f(x) теоретического распределения, рассматриваемой в курсе теории вероятностей . Поэтому их построение имеет такое важное значение при первичной статистической обработке количественных непрерывных данных – по их виду можно судить о гипотетическом законе распределения.

Кумулята – кривая накопленных частот (частостей) интервального вариационного ряда. С кумулятой сопоставляется график интегральной функции распределения F(x) , также рассматриваемой в курсе теории вероятностей.

В основном понятия гистограммы и кумуляты связывают именно с непрерывными данными и их интервальными вариационными рядами, так как их графики являются эмпирическими оценками функции плотности вероятности и функции распределения соответственно.

Построение интервального вариационного ряда начинают с определения числа интервалов k. И эта задача, пожалуй, является самой сложной, важной и неоднозначной в изучаемом вопросе.

Число интервалов не должно быть слишком малым, так как при этом гистограмма получается слишком сглаженной (oversmoothed), теряет все особенности изменчивости исходных данных – на рис. 1.17 можно увидеть, как те же данные, по которым построены графики рис. 1.15, использованы для построения гистограммы с меньшим числом интервалов (левый график).

В то же время число интервалов не должно быть слишком велико – иначе мы не сможем оценить плотность распределения изучаемых данных по числовой оси: гистограмма получится недосглажепная (undersmoothed), с незаполненными интервалами, неравномерная (см. рис. 1.17, правый график).

Рис. 1.17.

Как же определить наиболее предпочтительное число интервалов?

Еще в 1926 г. Герберт Стерджес (Herbert Sturges) предложил формулу для вычисления количества интервалов, на которые необходимо разбить исходное множество значений изучаемого признака . Эта формула поистине стала сверхпопулярной – большинство статистических учебников предлагают именно ее, по умолчанию ее используют и множество статистических пакетов. Насколько это оправдано и во всех ли случаях – является весьма серьезным вопросом.

Итак, на чем основана формула Стерджеса?

Рассмотрим биномиальное распределение }

Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.