Радиус описанной окружности около треугольника формула. Окружность, описанная около треугольника. Полные уроки — Гипермаркет знаний

Начальный уровень

Описанная окружность. Визуальный гид (2019)

Первый вопрос, который может возникнуть: описанная - вокруг чего?

Ну, вообще-то иногда бывает и вокруг чего угодно, а мы будем рассуждать об окружности, описанной вокруг (иногда ещё говорят «около») треугольника. Что же это такое?

И вот, представь себе, имеет место удивительный факт:

Почему этот факт удивительный?

Но ведь треугольники - то бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины , то есть описанная окружность.

Доказательство этого удивительного факта можешь найти в следующих уровнях теории, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины. Вот, скажем, параллелограмм - отличный четырехугольник, а окружности, проходящей через все его четыре вершины - нет!

А есть только для прямоугольника:

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Знаешь ли ты, что такое серединный перпендикуляр ?

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок - все три серединных перпендикуляра пересекаются в одной точке.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе - вовсе не всегда!

А вот если остроугольный, то - внутри:

Что же делать с прямоугольным треугольником?

Да ещё с дополнительным бонусом:

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая .

А именно:

Ну и, конечно,

1. Существование и центр описанной окружности

Тут возникает вопрос: а для всякого ли треугольника существует такая окружность? Вот оказывается, что да, для всякого. И более того, мы сейчас сформулируем теорему, которая ещё и отвечает на вопрос, где же находится центр описанной окружности.

Смотри, вот так:

Давай наберёмся мужества и докажем эту теорему. Если ты читал уже тему « » разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал - не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Ну вот, например, является ли множество мячей - «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы. А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют. В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Тут множество - это серединный перпендикуляр, а свойство « » - это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  1. Всякая точка, которая равноудалена от концов отрезка - находится на серединном перпендикуляре к ему.

Соединим с и с.Тогда линия является медианой и высотой в. Значит, - равнобедренный, - убедились, что любая точка, лежащая на серединном перпендикуляре, одинаково удалена от точек и.

Возьмём - середину и соединим и. Получилась медиана. Но - равнобедренный по условию не только медиана, но и высота, то есть - серединный перпендикуляр. Значит, точка - точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Рассмотрим треугольник. Проведём два серединных перпендикуляра и, скажем, к отрезкам и. Они пересекутся в какой-то точке, которую мы назовем.

А теперь, внимание!

Точка лежит на серединном перпендикуляре;
точка лежит на серединном перпендикуляре.
И значит, и.

Отсюда следует сразу несколько вещей:

Во - первых , точка обязана лежать на третьем серединном перпендикуляре, к отрезку.

То есть серединный перпендикуляр тоже обязан пройти через точку, и все три серединных перпендикуляра пересеклись в одной точке.

Во - вторых : если мы проведём окружность с центром в точке и радиусом, то эта окружность также пройдёт и через точку, и через точку, то есть будет описанной окружностью. Значит, уже есть, что пересечение трёх серединных перпендикуляров - центр описанной окружности для любого треугольника.

И последнее: о единственности. Ясно (почти), что точку можно получить единственным образом, поэтому и окружность - единственная. Ну, а «почти» - оставим на твоё размышление. Вот и доказали теорему. Можно кричать «Ура!».

А если в задаче стоит вопрос «найдите радиус описанной окружности»? Или наоборот, радиус дан, а требуется найти что - то другое? Есть ли формула, связывающая радиус описанной окружность с другими элементами треугольника?

Обрати внимание: теорема синусов сообщает, что для того чтобы найти радиус описанной окружности, тебе нужна одна сторона (любая!) и противолежащий ей угол . И всё!

3. Центр окружности - внутри или снаружи

А теперь вопрос: может ли центр описанной окружности лежать снаружи треугольника.
Ответ: ещё как может. Более того, так всегда бывает в тупоугольном треугольнике.

И вообще:

ОПИСАННАЯ ОКРУЖНОСТЬ. КОРОТКО О ГЛАВНОМ

1. Окружность, описанная около треугольника

Это окружность, которая проходит через все три вершины этого треугольника.

2. Существование и центр описанной окружности

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

Вконтакте

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра . Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла , после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя ?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке . Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым , скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника :

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

Окружность – геометрическая фигура, знакомство с которой происходит еще в дошкольном возрасте. Позднее вы узнаете ее свойства и характерные особенности. Если вершины произвольного многоугольника лежат на окружности, а сама фигура располагается внутри нее, то перед вами геометрическая фигура, вписанная в окружность.

Понятие радиус характеризует расстояние от любой точки окружности до ее центра. Последний располагается в месте пересечения перпендикуляров к каждой из сторон многоугольника. Определившись с терминологией, рассмотрим выражения, которые помогут найти радиус для любого вида многоугольника.

Как найти радиус описанной окружности – правильный многоугольник

Данная фигура может иметь любое количество вершин, но все ее стороны равны между собой. Для нахождения радиуса окружности, в которую поместили правильный многоугольник, достаточно знать число сторон фигуры и их длину.
R = b/2sin(180°/n),
b – длина стороны,
n – число вершин (или сторон) фигуры.
Приведенное соотношение для случая шестиугольника будет иметь следующий вид:
R = b/2sin(180°/6) = b/2sin30°,
R = b.

Как найти радиус описанной окружности – прямоугольник

Когда в окружности располагается четырехугольник, имеющий 2 пары параллельно проходящих сторон и внутренние углы 90°, точка пересечения диагоналей многоугольника и будет ее центром. Воспользовавшись соотношением Пифагора, а также свойствами прямоугольника, получаем необходимые для нахождения радиуса выражения:
R = (√m 2 + l 2)/2,
R = d/2,
m, l – стороны прямоугольника,
d – его диагональ.

Как найти радиус описанной окружности – квадрат

Помещаем в окружность квадрат. Последний является правильным многоугольником, имеющим 4 стороны. Т.к. квадрат является частным случаем прямоугольника, то его диагонали также в точке своего пересечения делятся пополам.
R = (√m 2 + l 2)/2 = (√m 2 + m 2)/2 = m√2/2 = m/√2,
R = d/2,
m – сторона квадрата,
d – его диагональ.

Как найти радиус описанной окружности – равнобокая трапеция

Если в окружность поместили трапецию, то для определения радиуса потребуется знание длин ее сторон и диагонали.
R = m*l*d/4√p(p – m)*(p – l)*(p – d),
p = (m + l + d)/2,
m, l – стороны трапеции,
d – ее диагональ.


Как найти радиус описанной окружности – треугольник

Произвольный треугольник

  • Чтобы определить радиус окружности, описывающей треугольник, достаточно знать величину его сторон.
    R = m*l*k/4√p(p – m)*(p – l)*(p – k),
    p = (m + l + k)/2,
    m, l, k – стороны треугольника.
  • Если известна длина стороны и градусная мера угла ей противолежащего, то радиус определяется следующим образом:
    Для треугольника MLK
    R = m/2sinM = l/2sinL = k/2sinK,

    M, L, K – его углы (вершины).
  • При наличии площади фигуры также можно вычислить радиус окружности, в которую она помещена:
    R = m*l*k/4S,
    m, l, k – стороны треугольника,
    S – его площадь.

Равнобедренный треугольник

Если треугольник равнобедренный, то 2 его стороны равны между собой. При описывании такой фигуры радиус можно найти по такому соотношению:
R = m*l*k/4√p(p – m)*(p – l)*(p – k), но m = l
R = m 2 /√(4m 2 – k 2),
m, k – стороны треугольника.

Прямоугольный треугольник

Если один из углов треугольника прямой, а около фигуры описана окружность, то для определения длины радиуса последней потребуется наличие известных сторон треугольника.
R = (√m 2 + l 2)/2 = k/2,
m, l – катеты,
k – гипотенуза.


Как найти радиус окружности? Этот вопрос всегда актуален для школьников, изучающих планиметрию. Ниже мы рассмотрим несколько примеров того, как можно справиться с поставленной задачей.

В зависимости от условия задачи радиус окружности вы можете найти так.

Формула 1: R = Л / 2π, где Л - это а π - константа, равная 3,141…

Формула 2: R = √(S / π), где S - это величина площади круга.

Формула 1: R = В/2, где В - гипотенуза.

Формула 2: R = М*В, где В - гипотенуза, а М - медиана, проведенная к ней.

Как найти радиус окружности, если она описана вокруг правильного многоугольника

Формула: R = А / (2 * sin (360/(2*n))), где А - длина одной из сторон фигуры, а n - количество сторон в данной геометрической фигуре.

Как найти радиус вписанной окружности

Вписанной окружность называется тогда, когда она касается всех сторон многоугольника. Рассмотрим несколько примеров.

Формула 1: R = S / (Р/2), где - S и Р - площадь и периметр фигуры соответственно.

Формула 2: R = (Р/2 - А) * tg (а/2), где Р - периметр, А - длина одной из сторон, а - противолежащий этой стороне угол.

Как найти радиус окружности, если она вписана в прямоугольный треугольник

Формула 1:

Радиус окружности, которая вписана в ромб

Окружность можно вписать в любой ромб, как равносторонний, так и неравносторонний.

Формула 1: R = 2 * Н, где Н - это высота геометрической фигуры.

Формула 2: R = S / (А*2), где S - это а А - длина его стороны.

Формула 3: R = √((S * sin А)/4), где S - это площадь ромба, а sin А - синус острого угла данной геометрической фигуры.

Формула 4: R = В*Г/(√(В² + Г²), где В и Г - это длины диагоналей геометрической фигуры.

Формула 5: R = В*sin (А/2), где В - диагональ ромба, а А - это угол в вершинах, соединяющих диагональ.

Радиус окружности, которая вписана в треугольник

В том случае, если в условии задачи вам даны длины всех сторон фигуры, то сначала высчитайте (П), а затем полупериметр (п):

П = А+Б+В, где А, Б, В - длин сторон геометрической фигуры.

Формула 1: R = √((п-А)*(п-Б)*(п-В)/п).

А если, зная все те же три стороны, вам дана еще и то можете рассчитать искомый радиус следующим образом.

Формула 2: R = S * 2(А + Б + В)

Формула 3: R = S/п = S / (А+Б+В)/2), где - п - это полупериметр геометрической фигуры.

Формула 4: R = (п - А) * tg (А/2), где п - это полупериметр треугольника, А - одна из его сторон, а tg (А/2) - тангенс половины противолежащего этой стороне угла.

А ниже приведенная формула поможет отыскать радиус той окружности, которая вписана в

Формула 5: R =А * √3/6.

Радиус окружности, которая вписана в прямоугольный треугольник

Если в задаче даны длины катетов, а также гипотенуза, то радиус вписанной окружности узнается так.

Формула 1: R = (А+Б-С)/2, где А, Б - катеты, С - гипотенуза.

В том случае, если вам даны только два катета, самое время вспомнить теорему Пифагора, чтобы гипотенузу найти и воспользоваться вышеприведенной формулой.

С = √(А²+Б²).

Радиус окружности, которая вписана в квадрат

Окружность, которая вписана в квадрат, делит все его 4 стороны ровно пополам в точках касания.

Формула 1: R = А/2, где А - длина стороны квадрата.

Формула 2: R = S / (Р/2), где S и Р - площадь и периметр квадрата соответственно.

Видно, что каждая сторона треугольника , перпендикуляр, проведенный из ее середины и отрезки, соединяющие точку пересечения перпендикуляров с вершинами, образуют два равных прямоугольных треугольника . Отрезки MА, MВ, MС равны.

Вам дан треугольник. Найдите середину каждой стороны – возьмите линейку и измерьте его стороны. Полученные размеры разделите пополам. Отложите от вершин на каждой половину ее размера. Отметьте результаты точками.

Из каждой точки отложите перпендикуляр к стороне. Точка пересечения этих перпендикуляров будет центром описанной окружности. Для нахождения центра окружности достаточно двух перпендикуляров. Третий строится для самопроверки.

Обратите – в треугольнике, где все углы острые, пересечения внутри треугольника . В прямоугольном треугольнике – лежит на гипотенузе. В – находится за его пределами. Причем перпендикуляр к стороне напротив тупого угла не к центру треугольника , а наружу.

Обратите внимание

Существует теорема синусов, устанавливающая зависимость между сторонами треугольника, его углами и радиусами описанной окружности. Эта зависимость выражается формулой: a/sina = b/sinb = с/sinc = 2R, где a, b, c – стороны треугольника; sina, sinb, sinc – синусы углов, противолежащих этим сторонам; R – радиус окружности, которую можно описать вокруг треугольника.

Источники:

  • как описать окружность четырехугольника

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом совершенно неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция или что-то иное. Также не играет роли, правильный или неправильный это многоугольник. Необходимо лишь учитывать, что существуют многоугольники, вокруг которых окружность описать нельзя. Всегда можно описать окружность вокруг треугольника. Что касается четырехугольников, то окружность можно описать около квадрата или прямоугольника или равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические понятия и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

Постройте многоугольник с заданными параметрами и , можно ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Каждая из них должна равняться 180°.

Для того, чтобы описать окружность , нужно вычислить ее радиус. Вспомните, где лежит центр окружности в разных многоугольниках. В треугольнике он в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для любого другого выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Разделив диаметр на 2, получаете радиус.

Вычислите радиус описанной окружности для треугольника. Поскольку параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Вместо этой стороны можно взять сторону и противолежащий ей угол.

Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - известные по условиям основания трапеции, h - высота, d - диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту можно вычислить по теореме синусов или косинусов, длины сторон трапеции и углы заданы в условиях . Зная высоту и учитывая подобия треугольников, вычислите диагональ. После этого останется вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет

Чтобы вычислить радиус окружности, описанной вокруг другого многоугольника, выполните ряд дополнительных построений. Получите более простые фигуры, параметры которых вам известны.

Совет 3: Как начертить прямоугольный треугольник по острому углу и гипотенузе

Прямоугольным называют треугольник, угол в одной из вершин которого равен 90°. Сторону, лежащую напротив этого угла, называют гипотенузой, а стороны, противолежащие двум острым углам треугольника, называются катетами. Если известна длина гипотенузы и величина одного из острых углов, то этих данных достаточно, чтоб построить треугольник, как минимум, двумя способами.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.