Как решать разностные уравнения. Разностные уравнения по математике. Дискретное преобразование лапласа

РАЗНОСТНЫЕ УРАВНЕНИЯ - уравнения, содержащие конечные разности искомой функции. (Конечная разность определяется как соотношение, связывающее дискретный набор значений функции y = f(x), соответствующих дискретной последовательности аргументов x1, x2, ..., xn.) В экономических исследованиях значения величин часто берутся в определенные дискретные моменты времени.

Напр., о выполнении плана судят по показателям на конец планируемого периода. Поэтому вместо скорости изменения какой-либо величины df/dt приходится брать среднюю скорость за определенный конечный интервал времени Δf/Δt. Если выбрать масштаб времени так, что длина рассматриваемого периода равна 1, то скорость изменения величины можно представить как разность

y = y(t+1) – y(t),

которую часто называют первой разностью. При этом различают правую и левую разности, в частности

y = y(t) – y(t–1)

Левая, а приведенная выше - правая. Можно определить вторую разность:

Δ(Δy) = Δy(t + 1) – Δy(t) = y(t + 2) –

– 2y(t + 1) + y(t)

и разности высших порядков Δn.

Теперь можно определить Р. у. как уравнение, связывающее между собой конечные разности в выбранной точке:

f = 0.

Р. у. всегда можно рассматривать как соотношение, связывающее значения функции в ряде соседних точек

y(t), y(t+1), ..., y(t+n).

При этом разность между последним и первым моментами времени называется порядком уравнения.

При численном решении дифференциальных уравнений их часто заменяют разностными. Это возможно, если решение Р. у. стремится к решению соответствующего дифференциального уравнения, когда интервал Δt стремится к нулю.

При исследовании функций многих переменных по аналогии с частными производными (см. Производная) вводятся также частные разности.

Линейные разностные уравнения первого порядка

y(x + 1) − ay(x) = 0. Линейное однородное разностное уравнение первого порядка с постоянными коэффициентами.

y(x + 1) − ay(x) = f(x). Линейное неоднородное разностное уравнение первого порядка с постоянными коэффициентами.

y(x + 1) − xy(x) = 0.

y(x + 1) − a(x − b)(x − c)y(x) = 0.

y(x + 1) − R(x)y(x) = 0, где R(x) -- рациональная функция.

y(x + 1) − f(x)y(x) = 0.

y(x + a) − by(x) = 0.

y(x + a) − by(x) = f(x).

y(x + a) − bxy(x) = 0.

y(x + a) − f(x)y(x) = 0.

Линейные разностные уравнения второго порядка, yn = y(n)

yn+2 + ayn+1 + byn = 0. Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.

yn+2 + ayn+1 + byn = fn. Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + ay(x + 1) + by(x) = 0. Линейное однородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + ay(x + 1) + by(x) = f(x). Линейное неоднородное разностное уравнение второго порядка с постоянными коэффициентами.

y(x + 2) + a(x + 1)y(x + 1) + bx(x + 1)y(x) = 0.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Разностное уравнение представляет собой уравнение, связывающее значение некоторой неизвестной функции в любой точке с её значением в одной или нескольких точках, отстоящих от данной на определенный интервал. Пример:

\[Г (z+1) = zГ(z)\]

Для разностных уравнений с постоянными коэффициентами существуют детально разработанные методы нахождения решения в замкнутой форме. Неоднородное и однородное разностные уравнения n-го порядка задаются соответственно уравнениями, где \ постоянные коэффициенты.

Однородные разностные уравнения.

Рассмотрим уравнение n-го порядка

\[(a_nE^n +a{n-1}E^n1 + \cdots +a_1Е + a_1)y(k) = 0 \]

Предлагаемое решение следует искать в виде:

где \ - подлежащая определению постоянная величина. Вид предполагаемого решения, задаваемый уравнением, не является наиболее распространенным. Допустимые значения \ служат корнями многочлена от \[ е^r.\] При\[ \beta = е^r \]предполагаемое решение становится таким:

где \[\beta\] - подлежащая определению постоянная величина. Подставляя уравнение и учитывая \, получим следующее характеристическое уравнение:

Неоднородные разностные уравнения. Метод неопределенных коэффициентов. Рассмотрим разностное уравнение n-го порядка

\[ (a_nЕn +а_{n-1}Еn^-1+\cdots+ а_1Е +a_1)y(k) =F(k) \]

Ответ имеет следующий вид:

Где можно решить разностное уравнение онлайн?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Контрольные вопросы:

1. Какая функция называется сеточной?

2. Какое уравнение называется разностным?

3. Какие уравнения называются разностными уравнениями 1-го порядка?

4. Как находится общее решение неоднородного разностного уравнения 1-го порядка?

5. Какое решение разностного уравнения называется фундаментальным?

6. Почему общее решение однородного уравнения с постоянными коэффициентами имеет вид геометрической прогрессии?

Задания.

1. Написать процедуру решения разностного уравнения первого порядка с начальным условием .

2. Для заданного уравнения найти общее и частное решение аналитически.

3. Сравнить результаты вычислений по рекуррентной формуле с аналитическим решением.

4. Выяснить, как влияет на результат возмущение начального условия, коэффициентов уравнения, правой части.

Указания

Найдем общее решение разностного уравнения 1-го порядка

. (1)

Частное решение однородного уравнения при получим, используя рекуррентную формулу: . Поскольку значение Y в каждом следующем узле сетки удваивается, получается геометрическая прогрессия со знаменателем q=2:

Частное решение неоднородного уравнения найдем в виде:, где А - неопределенный коэффициент. Тогда , , и, приравняв полученное значение к заданной правой части, найдем неопределенный коэффициент A=. Окончательно, общее решение: .

Используя начальное условие , находим константу: . Окончательно, частное решение при заданном начальном условии:

.

Для исследования устойчивости решения к возмущению самого решения и начального условия рассмотрим следующее уравнение:

с возмущенным начальным условием

(здесь - величина возмущения). Вычитая исходное уравнение (1), получим разностное уравнение для возмущения:

с начальным условием . Решение этого уравнения имеет вид: , т.е. даже малое возмущение в каком-либо узле экспоненциально растет с увеличением номера узла.

Студенту необходимо проиллюстрировать сказанное выше: исследовать влияние возмущений начального условия, правых частей и коэффициентов уравнения, изменив рекуррентную формулу.

Вариант, в соответствии с номером студента по списку в журнале, необходимо решить на языке программирования C++ (допускается использование среды Builder) или Pascal (допускается использование среды Delphi).

  1. Рекуррентная формула для получения численного решения.
  2. Аналитическое решение разностного уравнения. Общее решение и частное решение, удовлетворяющее заданным начальным условиям.
  3. Исследовать устойчивость решения к возмущению начального условия и решения аналитически.

б) при возмущении коэффициентов уравнения;

в) при возмущении правой части.


Тема:Разностные уравнения 2 порядка

Контрольные вопросы:

1. Какие уравнения называются разностными уравнениями 2-го порядка?

2. Что такое характеристическое уравнение?

3. Как выглядит частное решение однородного разностного уравнения 2-го порядка с действительными корнями характеристического уравнения?

4. Как выглядит частное решение однородного разностного уравнения 2-го порядка с комплексными корнями характеристического уравнения?

5. Как находится общее решение неоднородного разностного уравнения 2-го порядка?

6. Что такое численное и аналитическое решение разностного уравнения 2-го порядка?

7. Какие задачи называются хорошо обусловленными?

Задания

1. Написать процедуру решения разностной краевой задачи для уравнения второго порядка с граничными условиями , .

2. Для заданного уравнения найти общее и частное решение аналитически и проверить критерий обусловленности.

3. Сравнить результаты вычислений по рекуррентной формуле с аналитическим решением.

4. Выяснить, как влияет на результат возмущение граничных условий и правой части.

Найдем общее решение разностного уравнения 2-го порядка можно найти выбором произвольных постоянных .

Наряду с задачами Коши, для уравнений 2-го порядка рассматриваются также двухточечные краевые задачи, в которых заданы значения сеточной функции в двух узлах, расположенных не подряд, а на концах некоторого конечного отрезка: (граничные условия ). Аналитическое решение такой задачи можно получить подходящим выбором произвольных постоянных в общем решении. Однако, в отличие от задачи с начальными условиями, краевая задача не обязательно будет однозначно разрешимой. Поэтому большое значение имеет выяснение класса краевых задач, которые обладают однозначной разрешимостью и слабой чувствительностью к возмущению (вследствие ошибок округления) правых частей и граничных условий. Такие задачи будем называть хорошо обусловленными

Рассмотрим пример плохо обусловленной краевой задачи

  1. Постановка задачи. Исходное разностное уравнение и граничные условия.
  2. Процедура для получения численного решения.
  3. Аналитическое решение разностной краевой задачи. Общее решение и частное решение, удовлетворяющее заданным граничным условиям. Проверка критерия обусловленности.
  4. Графики численного решения и аналитического решения (в одних осях).
  5. График разности численного и аналитического решения.
  6. Графики возмущенных численных решений и разности возмущенного и невозмущенного решений:

а) при возмущении начального условия;

б) при возмущении правой части.

  1. Вывод об обусловленности краевой задачи.

Системы, у которых входная и выходная последовательности и связаны линейным разностным уравнением с постоянными коэффициентами, образуют подмножество класса линейных систем с постоянными параметрами. Описание ЛПП-систем разностными уравнениями очень важно, так как оно часто позволяет найти эффективные способы построения таких систем. Более того, по разностному уравнению можно определить многие характеристики рассматриваемой системы, включая собственные частоты и их кратность, порядок системы, частоты, соответствующие нулевому коэффициенту передачи, и т. д.

В самом общем случае линейное разностное уравнение -го порядка с постоянными коэффициентами, относящееся к физически реализуемой системе, имеет вид

(2.18)

где коэффициенты и описывают конкретную систему, причем . Каким именно образом порядок системы характеризует математические свойства разностного уравнения, будет показано ниже. Уравнение (2.18) записано в виде, удобном для решения методом прямой подстановки. Имея набор начальных условий [например, , для ] и входную последовательность , по формуле (2.18) можно непосредственно вычислить выходную последовательность для . Например, разностное уравнение

(2.19)

с начальным условием и можно решить подстановкой, что дает

Хотя решение разностных уравнений прямой подстановкой и целесообразно в некоторых случаях, значительно полезнее получить решение уравнения в явном виде. Методы нахождения таких решений подробно освещены в литературе по разностным Уравнениям, и здесь будет дан лишь краткий обзор. Основная идея сводится к получению двух решений разностного уравнения: однородного и частного. Однородное решение получается путем подстановки нулей вместо всех членов, содержащих элементы входной последовательности , и определения отклика при нулевой входной последовательности. Именно этот класс решений описывает основные свойства заданной системы. Частное решение получают, подбирая вид последовательности на выходе при заданной входной последовательности . Для определения произвольных постоянных однородного решения используются начальные условия. В качестве примера решим этим методом уравнение (2.19). Однородное уравнение имеет вид

(2.20)

Известно, что характеристическими решениями однородных уравнений, соответствующих линейным разностным уравнениям с постоянными коэффициентами, являются решения вида .Поэтому, подставив в уравнение (2.20) вместо , получим

(2.21)

Частное решение, соответствующее входной последовательности , попробуем найти в виде

(2.22)

Из уравнения (2.19) получаем

Поскольку коэффициенты при равных степенях должны совпадать, B,СиDдолжны быть равны

(2.24)

Таким образом, общее решение имеет вид

(2.25)

Коэффициент определяется из начального условия , откуда и

(2.26)

Выборочная проверка решения (2.26) при показывает полное его совпадение с приведенным выше прямым решением. Очевидное преимущество решения (2.26) состоит в том, что оно позволяет весьма просто определить для любого конкретного .

Фиг. 2.7. Схема реализации простого разностного уравнения первого порядка.

Важное значение разностных уравнений состоит в том, что они непосредственно определяют способ построения цифровой системы. Так, разностное уравнение первого порядка самого общего вида

можно реализовать с помощью схемы, изображенной на фиг. 2.7. Блок «задержка» осуществляет задержку на один отсчет. Рассмотренная форма построения системы, в которой для входной и выходной последовательностей используются раздельные элементы задержки, называется прямой формой 1. Ниже мы обсудим различные методы построения этой и других цифровых систем.

Разностное уравнение второго порядка самого общего вида


Фиг. 2.8. Схема реализации разностного уравнения второго порядка.

может быть реализовано с помощью схемы, приведенной на фиг. 2.8. В этой схеме для входной и выходной последовательностей также используются раздельные элементы задержки.

Из последующего изложения материалов этой главы станет ясно, что системы первого и второго порядка могут быть использованы при реализации систем более высокого порядка, так как последние могут быть представлены в виде последовательно или параллельно соединенных систем первого и второго порядка.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.