Пределы с корнями в числителе и знаменателе. Как решать пределы для чайников

\begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Пример №4

Найти $\lim_{x\to 4}\frac{\sqrt{5x-12}-\sqrt{x+4}}{16-x^2}$.

Так как $\lim_{x\to 4}\left(\sqrt{5x-12}-\sqrt{x+4}\right)=0$ и $\lim_{x\to 4}(16-x^2)=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Чтобы избавиться от иррациональности, вызвавшей эту неопределенность, нужно домножить числитель и знаменатель на выражение, сопряжённое к числителю. здесь уже не поможет, ибо домножение на $\sqrt{5x-12}+\sqrt{x+4}$ приведёт к такому результату:

$$ \left(\sqrt{5x-12}-\sqrt{x+4}\right)\left(\sqrt{5x-12}+\sqrt{x+4}\right)=\sqrt{(5x-12)^2}-\sqrt{(x+4)^2} $$

Как видите, такое домножение не избавит нас от разности корней, вызывающей неопределённость $\frac{0}{0}$. Нужно домножить на иное выражение. Это выражение должно быть таким, чтобы после домножения на него исчезла разность кубических корней. А кубический корень может "убрать" только третья степень, посему нужно использовать . Подставив в правую часть этой формулы $a=\sqrt{5x-12}$, $b=\sqrt{x+4}$, получим:

$$ \left(\sqrt{5x-12}- \sqrt{x+4}\right)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)=\\ =\sqrt{(5x-12)^3}-\sqrt{(x+4)^3}=5x-12-(x+4)=4x-16. $$

Итак, после домножения на $\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2}$ разность кубических корней исчезла. Именно выражение $\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2}$ будет сопряжённым к выражению $\sqrt{5x-12}-\sqrt{x+4}$. Вернемся к нашему пределу и осуществим умножение числителя и знаменателя на выражение, сопряжённое числителю $\sqrt{5x-12}-\sqrt{x+4}$:

$$ \lim_{x\to 4}\frac{\sqrt{5x-12}-\sqrt{x+4}}{16-x^2}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 4}\frac{\left(\sqrt{5x-12}- \sqrt{x+4}\right)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)}{(16-x^2)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)}=\\ =\lim_{x\to 4}\frac{4x-16}{(16-x^2)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)} $$

Задача практически решена. Осталось лишь учесть, что $16-x^2=-(x^2-16)=-(x-4)(x+4)$ (см. ). Кроме того $4x-16=4(x-4)$, поэтому последний предел перепишем в такой форме:

$$ \lim_{x\to 4}\frac{4x-16}{(16-x^2)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)}=\\ =\lim_{x\to 4}\frac{4(x-4)}{-(x-4)(x+4)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)}=\\ =-4\cdot\lim_{x\to 4}\frac{1}{(x+4)\left(\sqrt{(5x-12)^2}+\sqrt{5x-12}\cdot \sqrt{x+4}+\sqrt{(x+4)^2} \right)}=\\ =-4\cdot\frac{1}{(4+4)\left(\sqrt{(5\cdot4-12)^2}+\sqrt{5\cdot4-12}\cdot \sqrt{4+4}+\sqrt{(4+4)^2} \right)}=-\frac{1}{24}. $$

Ответ : $\lim_{x\to 4}\frac{\sqrt{5x-12}-\sqrt{x+4}}{16-x^2}=-\frac{1}{24}$.

Рассмотрим ещё один пример (пример №5) в данной части, где применим . Принципиально схема решения ничем не отличается от предыдущих примеров, - разве что сопряжённое выражение будет иметь иную структуру. Кстати, стоит отметить, что в типовых расчётах и контрольных работах часто встречаются задачи, когда, например, в числителе размещены выражения с кубическим корнем, а в знаменателе - с корнем квадратным. В этом случае приходится домножать и числитель и знаменатель на различные сопряжённые выражения. Например, для при вычислении предела $\lim_{x\to 8}\frac{\sqrt{x}-2}{\sqrt{x+1}-3}$, содержащего неопределённость вида $\frac{0}{0}$, домножение будет иметь вид:

$$ \lim_{x\to 8}\frac{\sqrt{x}-2}{\sqrt{x+1}-3}=\left|\frac{0}{0}\right|= \lim_{x\to 8}\frac{\left(\sqrt{x}-2\right)\cdot \left(\sqrt{x^2}+2\sqrt{x}+4\right)\cdot\left(\sqrt{x+1}+3\right)}{\left(\sqrt{x+1}-3\right)\cdot\left(\sqrt{x+1}+3\right)\cdot\left(\sqrt{x^2}+2\sqrt{x}+4\right)}=\\= \lim_{x\to 8}\frac{(x-8)\cdot\left(\sqrt{x+1}+3\right)}{\left(x-8\right)\cdot\left(\sqrt{x^2}+2\sqrt{x}+4\right)}= \lim_{x\to 8}\frac{\sqrt{x+1}+3}{\sqrt{x^2}+2\sqrt{x}+4}=\frac{3+3}{4+4+4}=\frac{1}{2}. $$

Все преобразования, применённые выше, уже были рассмотрены ранее, поэтому полагаю, особых неясностей здесь нет. Впрочем, если решение вашего аналогичного примера вызывает вопросы, прошу отписать об этом на форум .

Пример №5

Найти $\lim_{x\to 2}\frac{\sqrt{5x+6}-2}{x^3-8}$.

Так как $\lim_{x\to 2}(\sqrt{5x+6}-2)=0$ и $\lim_{x\to 2}(x^3-8)=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Для раскрытия оной неопределённости используем . Сопряжённое выражение к числителю имеет вид

$$\sqrt{(5x+6)^3}+\sqrt{(5x+6)^2}\cdot 2+\sqrt{5x+6}\cdot 2^2+2^3=\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8.$$

Домножая числитель и знаменатель дроби $\frac{\sqrt{5x+6}-2}{x^3-8}$ на указанное выше сопряжённое выражение будем иметь:

$$\lim_{x\to 2}\frac{\sqrt{5x+6}-2}{x^3-8}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 2}\frac{\left(\sqrt{5x+6}-2\right)\cdot \left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}{(x^3-8)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}=\\ =\lim_{x\to 2}\frac{5x+6-16}{(x^3-8)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}=\\ =\lim_{x\to 2}\frac{5x-10}{(x^3-8)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)} $$

Так как $5x-10=5\cdot(x-2)$ и $x^3-8=x^3-2^3=(x-2)(x^2+2x+4)$ (см. ), то:

$$ \lim_{x\to 2}\frac{5x-10}{(x^3-8)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}=\\ =\lim_{x\to 2}\frac{5(x-2)}{(x-2)(x^2+2x+4)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}=\\ \lim_{x\to 2}\frac{5}{(x^2+2x+4)\cdot\left(\sqrt{(5x+6)^3}+2\cdot\sqrt{(5x+6)^2}+4\cdot\sqrt{5x+6}+8\right)}=\\ \frac{5}{(2^2+2\cdot 2+4)\cdot\left(\sqrt{(5\cdot 2+6)^3}+2\cdot\sqrt{(5\cdot 2+6)^2}+4\cdot\sqrt{5\cdot 2+6}+8\right)}=\frac{5}{384}. $$

Ответ : $\lim_{x\to 2}\frac{\sqrt{5x+6}-2}{x^3-8}=\frac{5}{384}$.

Пример №6

Найти $\lim_{x\to 2}\frac{\sqrt{3x-5}-1}{\sqrt{3x-5}-1}$.

Так как $\lim_{x\to 2}(\sqrt{3x-5}-1)=0$ и $\lim_{x\to 2}(\sqrt{3x-5}-1)=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. В таких ситуациях, когда выражения под корнями одинаковы, можно использовать способ замены. Требуется заменить выражение под корнем (т.е. $3x-5$), введя некоторую новую переменную. Однако простое использование новой буквы ничего не даст. Представьте, что мы просто заменили выражение $3x-5$ буквой $t$. Тогда дробь, стоящая под пределом, станет такой: $\frac{\sqrt{t}-1}{\sqrt{t}-1}$. Иррациональность никуда не исчезла, - лишь несколько видоизменилась, что нисколько не облегчило задачу.

Здесь уместно вспомнить, что корень может убрать лишь степень. Но какую именно степень использовать? Вопрос не тривиален, ведь у нас два корня. Один корень пятого, а другой - третьего порядка. Степень должна быть такой, чтобы одновременно убрать оба корня! Нам нужно натуральное число, которое одновременно делилось бы на $3$ и на $5$. Таких чисел бесконечное множество, но наименьшее из них - число $15$. Его называют наименьшим общим кратным чисел $3$ и $5$. И замена должна быть такой: $t^{15}=3x-5$. Посмотрите, что такая замена сделает с корнями.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Среди примеров пределов функции часто встречаются функции с корнями , которые не всегда понятно как раскрывать. Проще когда есть пример границе с корневой функцией вида

Решение подобных пределов просто и понятно каждому.
Трудности возникают если есть следующие примеры функций с корнями.

Пример 1 . Вычислить предел функции

При прямой подстановке точки x = 1 видно что и числитель и знаменатель функции

превращаются в ноль, то есть имеем неопределенность вида 0/0 .
Для раскрытия неопределенности следует умножить выражение, содержащее корень на сопряженное к нему и применить правило разности квадратов. Для заданного примера преобразования будут следующими



Предел функции с корнями равен 6 . Без приведенного правила ее трудно было бы найти.
Рассмотрим подобные примеры вычисления границы с данным правилом

Пример 2. Найти предел функции

Убеждаемся что при подстановке x = 3 получаем неопределенность вида 0/0.
Ее раскрываем умножением числителя и знаменателя на сопряженное к числителю.


Далее числитель раскладываем согласно правилу разности квадратов

Вот так просто нашли предел функции с корнями.

Пример 3. Определить предел функции

Видим, что имеем неопределенность вида 0/0.
Избавляемся ирациональносьти в знаменателе

Предел функции равна 8 .

Теперь рассмотрим другой тип примеров, когда переменная в переделе стремится к бесконечности.

Пример 4 . Вычислить предел функции

Много из Вас не знают как найти предел функции. Ниже будет раскрыта методика вычислений.
Имемем предел типа бесконечность минус бесконечность. Умножаем и делим на сопряженный множитель и используем правило разности квадратов

Границ функции равна -2,5 .

Вычисление подобных пределов фактически сводится к раскрытию иррациональности, а затем подстановке переменной

Пример 5. Найти предел функции

Предел эквивалентен - бесконечность минус бесконечность
.
Умножим и разделим на сопряженное выражение и выполним упрощение

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что "скучная теория" должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ \lim_{x \to 0} \frac{1}{x} $; б)$ \lim_{x \to \infty} \frac{1}{x} $
Решение

а) $$ \lim \limits_{x \to 0} \frac{1}{x} = \infty $$

б)$$ \lim_{x \to \infty} \frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \text{a)} \lim \limits_{x \to 0} \frac{1}{x} = \infty \text{ б)}\lim \limits_{x \to \infty} \frac{1}{x} = 0 $$

Что делать с неопределенностью вида: $ \bigg [\frac{0}{0} \bigg ] $

Пример 3
Решить $ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = \frac{(-1)^2-1}{-1+1}=\frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ \lim \limits_{x \to -1}\frac{x^2-1}{x+1} = \lim \limits_{x \to -1}\frac{(x-1)(x+1)}{x+1} = $$

$$ = \lim \limits_{x \to -1}(x-1)=-1-1=-2 $$

Ответ
$$ \lim \limits_{x \to -1} \frac{x^2-1}{x+1} = -2 $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac{\infty}{\infty} \bigg ] $

Пример 5
Вычислить $ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} $
Решение

$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \frac{\infty}{\infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное - возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем...

$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} =\lim \limits_{x \to \infty} \frac{x^2(1-\frac{1}{x^2})}{x(1+\frac{1}{x})} = $$

$$ = \lim \limits_{x \to \infty} \frac{x(1-\frac{1}{x^2})}{(1+\frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = \frac{\infty(1-\frac{1}{\infty})}{(1+\frac{1}{\infty})} = \frac{\infty \cdot 1}{1+0} = \frac{\infty}{1} = \infty $$

Ответ
$$ \lim \limits_{x \to \infty} \frac{x^2-1}{x+1} = \infty $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: "ноль делить на ноль" или "бесконечность делить на бесконечность" и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность "ноль делить на ноль" нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность "бесконечность делить на бесконечность", тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.