Разработка виртуальной реальности (VR) на заказ. Будущее и VR. Сконцентрируйтесь на качестве - пользователей не должно укачать

«Если вы постоянно вертитесь в этой индустрии, то хотите вы того или нет, но начинаете замечать определённые тренды и тенденции. Мне кажется, что за виртуальной реальностью кроется действительно огромный потенциал» - слова создателя игр Doom и Quake, а также сооснователя Oculus VR Джона Кармака, как нельзя лучше описывают будущее виртуальной реальности.

Эксперты считают, что к 2020 году индустрия виртуальной реальности будет оцениваться в $30 млрд, и сейчас VR движется к этому показателю огромными шагами.

При поддержке компании Microsoft, которая запустила курс по разработке приложений для виртуальной реальности , публикуем материал о том, зачем учиться разработке VR-приложений.

Французский писатель и режиссёр Антонен Арто вряд ли думал, что введённый им термин «виртуальная реальность», к 2016 году превратится в одну из самых перспективных и дорогих компьютерных индустрий. Впервые Арто употребил этот термин в собрании эссе «Театр и его Двойник» в 1938 году. Об очках виртуальной реальности, программном обеспечении и магазинах приложений речи, разумеется, не шло. Виртуальной реальностью Арто называл иллюзорную природу персонажей и объектов в театре.

Виртуальную реальность в её привычном для нас понимании популяризировал программист, писатель и музыкант Джарон Ланье. В середине 80-х, созданная им компания VPL Research, удерживала права на большинство патентов в сфере VR. А настоящий бум виртуальной реальности в то время обеспечили фильмы «Газонокосильщик» и «Мозговой штурм», а также книга Говарда Рейнгольда «Виртуальная реальность».

Сейчас о виртуальной реальности в большей или меньшей мере знает каждый. В конце 2015 года аналитическая компания Statista провела исследование среди жителей США. Всем респондентам задали один и тот же вопрос - «Заинтересованы ли вы в виртуальной реальности?» - и попросили оценить свой интерес по пятибалльной шкале. Лишь 7% оценили свой интерес на единицу, 5% на двойку. 44% сказали, что заинтересованы на пять баллов и 26% - на 4.

В любом исследовании, касающемся виртуальной реальности, всё так или иначе сводится к тому, что индустрия будет процветать. Прибыль от программных продуктов к 2018 году вырастет почти в 60 раз, количество пользователей к этому же году возрастёт до 171 млн, а прибыль от продажи шлемов виртуальной реальности вырастет с $685 млн до $3,89 млрд.

VR - это идеальная индустрия и для разработчиков. Она относительно нова, а значит еще не сформирована и не наполнена специалистами, интересна, а объём инвестиций в неё сейчас катастрофически велик. Разумеется, разработчики и сами это понимают. Статистики по количеству разработчиков в VR-индустрии нет, однако известно , что только Oculus Rift Development Kit купили в количестве более 175 000.

По мнению VR-инженера Лив Эрискон, один из главных вопросов, который ей задают программисты - «Как много денег и времени мне придется инвестировать, чтобы научиться работать с VR?». Учитывая $600-ценник на первые версии Oculus Rift, раньше этот ответ был бы не слишком воодушевляющим. Теперь, когда есть Cardboard, а практически каждый человек имеет смартфон, это не проблема.

Что касается временных рамок - здесь ответ более расплывчат. По мнению Эриксон, многое зависит от уровня подготовки и способности к обучению. «Если вы знакомы с C# и Unity, то дело пойдёт гораздо быстрее», - говорит инженер.

Зарплата VR-программиста зависит от выбранной им специализации, но, в целом, выше средней по рынку. Больше всего получают специалисты, работающие в медицинской и финансовой среде. Несмотря на то, что внимание СМИ обращено на социальные сети и игры, в сфере медицины и бизнеса происходит не меньше интересного. Например, стартап MindMaze разрабатывает виртуальные пространства для восстановления больных после сердечных приступов. Компания Vivid Vision создаёт игры для лечения амблиопии - болезни, которая ослабляет зрение - и косоглазия.


В бизнесе и корпоративной среде виртуальная реальность развивается с не меньшей скоростью. Компания SDK Lab создаёт виртуальные пространства для обучения сотрудников горнодобывающих компаний, Autodesk экспериментируют с использованием VR в сфере недвижимости, а IrisVR создают инструментарий для 3D-моделирования объектов.

Проблема для разработчиков состоит в том, что VR-шлемов много. Oculus, Microsoft Hololens, Samsung Gear VR, Google Cardboard - эти девайсы вспоминаются сразу. Еще есть HTC Vive, Project Morpheus, Visbox, Fove, StarVR - и на самом деле их еще больше. Разработчики сходятся во мнении, что вне зависимости от выбранной платформы, принцип обучения примерно одинаковый. Первый шаг - изучение C++ или C#, затем Unity или Unreal, так как это наиболее распространённые SDK, которые используют при разработке приложений виртуальной реальности.

Другой вопрос - где начать обучение. Во всём мире сейчас не больше 10 университетов, которые предлагают курсы по VR-разработке. Большая часть из них находится в США и лишь несколько за их пределами, в Норвегии и Сингапуре. Хороший вариант - обучаться самостоятельно. Для этого желательно уже иметь навыки разработки. Начать обучение можно с видеоуроков об инструменте для разработки Unity.

После знакомства со средой Unity, можно перейти к более продвинутому курсу Microsoft . Он посвящен созданию приложений виртуальной и расширенной реальности. Курс состоит из десяти модулей. Первые - ознакомительные и отводятся обсуждению основ виртуальной реальности, использованию VR-шлемов и принципам создания VR-программ на Unity.

Ближе к концу преподаватели курса рассказывают о более сложных технических деталях. Например, в четвертом уроке идёт речь о создании ПО для шлема Fibrum. В пятом - об особенностях взаимодействия с пользователем в виртуальной реальности: как избавить пользователя от дискомфорта и сложностей в управлении. Последний модуль отводится созданию высокоэффективных приложений на C++/DirectX.

Курс ведут евангелисты Microsoft Russia Дмитрий Сошников и Дмитрий Андреев, технический директор маркетингового агентства MAAS Александр Кондратов и основатель компании по разработке VR-приложений VR-AR Lab Артём Печеный.

Дмитрий Сошников, евангелист Microsoft Russia

Сам по себе курс скорее технологический, он учит основам разработки приложений виртуальной реальности для мобильных устройств. Чтобы разработать успешное приложение или игру, необходимо помимо этого ещё несколько составляющих: идея, хорошо подходящая под виртуальную реальность, навыки разработки игр в Unity, навыки создания трехмерных моделей для VR и бизнес-модель - идеи по возможной коммерциализации приложения.

В любом случае, надо пробовать. Придумать какую-нибудь идею и попытаться её реализовать на практике. Даже если не хватает каких-то составляющих, то это не повод откладывать процесс. Рынок VR-приложений пока достаточно свободный, и надо начинать действовать прямо сейчас! При этом с технологической точки зрения, всё не очень сложно, на нашем опыте обучиться созданию VR-приложений можно за пару дней.

Мы со своей стороны поддерживаем разработчиков на нашей платформе, например, в декабре прошел хакатон по VR/AR, на студенческом конкурсе Imagine Cup был целый ряд студенческих VR-проектов, получивших призовые места. Надо начинать действовать и менять этот мир к лучшему.

VR поменяет многие индустрии. В первую очередь, конечно, в голову приходят игры и развлечения. Кроме этого, отдельный класс приложений - это 360-видео или телеприсутствие, когда пользователь может «виртуально» перенестись в другое место. Подобные проекты имеют смысл в сфере образования, туризма и так далее.

Но на самом деле интереснее всего смотреть на то, как VR или AR могут использоваться в неигровых приложениях. Например, в обучении VR может позволить студентам заглянуть внутрь какого-то явления или процесса, будь то движение планет или атомная реакция. Вероятно, VR может изменить и стиль коммуникации людей, ведь недаром Facebook в своё время приобрела компанию Oculus VR.

В школьные годы я ездил на экскурсию в Лондон, и там впервые познакомился с виртуальной реальностью (VR) в игре Zone Hunter. Технология моментально меня зацепила, и я понял – в будущем хочу работать в этой сфере! Теперь, вот уже более 12 лет, я занимаюсь виртуальными промышленными тренажёрами и написанием ПО для VR-систем.

Я основатель и президент компании с названием «i’m in VR» . Мы предлагаем средства для создания VR-приложений, такие, как MiddleVR – связующее ПО, позволяющее 3D-приложениям (например, основанным на Unity) запускаться в любой VR-системе (комнаты виртуальной реальности, шлемы и другое). У меня есть блог про виртуальную реальность, который я начал вести задолго до того, как она стала популярной, и вы можете найти меня в твиттере .

Сегодня вы можете подумать, что создавать VR-приложения проще некуда – нужно просто согласовать движение камеры с отслеживателем Oculus Rift и готово. Иногда этого действительно хватает, но для подавляющего большинства случаев такой подход не сработает.

Главное в виртуальной реальности – эффект присутствия. Если человек не может погрузиться в игру, значит, вы что-то сделали неправильно. Можно обмануть разум, заставляя его воспринимать происходящее, как иной мир, но это не так просто, как кажется. Эффект присутствия – очень зыбкое чувство.

Тексты на тему VR зачастую слишком углубляются в технические аспекты. Я думаю, что в первую очередь здесь главное то, что происходит с разумом пользователя. В этой статье я хочу осветить некоторые базовые моменты погружения в виртуальный мир и высказаться о важности разработки приложений с прицелом на эту технологию.

Виртуальная реальность в 2013-м

Виртуальная реальность погружает человека в трёхмерное окружение с помощью специальных шлемов, очков или других систем погружения. Поэтому мы часто используем термин iVR (immersive VR – виртуальная реальность с погружением), чтобы обособиться от виртуальных миров вроде Second Life или World of Warcraft. В начале 90-х эти технологии приковали к себе всеобщее внимание, но не смогли предоставить ожидаемых ощущений.

Однако, они продолжили своё развитие на фронте серьёзных игр, и сегодня превратились в полезные средства, применяющиеся в нескольких областях:

  • Обучение в виртуальных симуляторах на порядок эффективнее реальной практики: можно с высокой точностью управлять имитируемой средой, просматривать повторы и безбоязненно отрабатывать реальные манипуляции во множестве потенциально опасных ситуаций. На таких тренажёрах обучают хирургов, военных, полицейских, пожарных, стоматологов и даже рабочих по наружной отделке зданий! Это позволяет предприятиям экономить на дорогостоящих материалах и избегать различных рисков, давая более прозрачное представление о способностях практикантов.
  • У всех ведущих автопроизводителей есть VR-системы для тестирования дизайна и эргономики продуктов, которые ещё не увидели свет, позволяющие быстрее перебирать разные вариации по сравнению с реальными макетами. Это применяется и в производстве катеров, самолётов, тракторов, производственных линий, фабрик и даже кухонь! Взгляните на VR-приложения и системы от Peugeot или Ford !
  • Цифровые модели выглядят очень правдоподобно: вы можете со всех сторон рассмотреть свой будущий дом или оценить городскую планировку задолго до начала строительства. Для примера посмотрите демонстрационное видео от Enodo .
  • VR – полезное средство для исследования рынка в области розничной торговли: вы можете вживую взглянуть на внешний вид своего магазина до его постройки или переноса, проследить за движением посетителей и за направлением их взгляда. Это полезно при оценке расстановки фурнитуры и позволяет убедиться, что ваш дизайн выделяется среди прочих.
  • Виртуальная реальность – хороший способ лечения фобий: при боязни высоты можно перенестись на смоделированный утёс и прочувствовать свой страх. В этом случае помощь терапевта будет более эффективной, чем в реальных условиях на настоящей скале. То же самое относится и к боязни перелётов, пауков, собак и выступлений на публике. Таким, к примеру, занимается Стефан Бушар (Stéphane Bouchard) в Лаборатории киберпсихологии Университета Квебека в Оттаве.

И конечно же, виртуальную реальность можно использовать в играх! Но с середины 90-х таких игр было очень мало и создавались они, как правило, либо в исследовательских лабораториях, либо энтузиастами. Для сборки VR-системы и программирования самой игры требуются соответствующие навыки и оборудование. Насколько мне известно, за последние 10 лет не вышло ни одной коммерческой VR-игры.

Когда (не) стоит добавлять VR в игры

В первую очередь, нужно ответить на вопрос, действительно ли вашей игре нужна виртуальная реальность. Это как с 3D. Не каждое занятие автоматически становится интереснее в трёхмерном представлении, и что-то неподходящее будет ещё хуже выглядеть в VR.

В таком случае, где VR будет уместной идеей?

Задача виртуальной реальности – заставить вас почувствовать себя в другом мире, будь он реалистичным или не очень. Вообще, для меня эффект присутствия – это определение VR. Нет чувства присутствия – нет VR!

Очевидно, среди жанров, отлично подходящих для VR, будут игры с видом от первого лица. Вообразите Mirror’s Edge или Call of Duty в VR! В некоторые играх (Assassin’s Creed, Splinter Cell, или Gears of War) вид из-за спины потенциально можно переделать в вид из глаз, чтобы мы могли почувствовать себя в теле героя. Полагаю, мы увидим возрождение квестов и бродилок. Вероятно, виртуальная реальность появится и в совершенно других играх. Симуляторы Бога? Guitar Hero?

Но я считаю, что больше всех от VR выиграют игры, давящие на эмоции.

Хорроры могут быть очень впечатляющими. Ещё можно вспомнить про Heavy Rain. Отличная игра, я по-настоящему погружался в неё и сильно переживал. Однако, временами всё портилось неестественным взаимодействием, к тому же, там нет элемента физического присутствия. И вот тут может помочь виртуальная реальность!

VR как новый формат медиа

Тут я сразу должен предупредить: добавлять виртуальную реальность в игры может быть непростым делом, если её поддержка не задумывалась изначально. VR – это как радио или ТВ на раннем этапе развития: сначала по радио передавали только оперы, а по телевизору показывали одни спектакли. Понемногу люди стали создавать наполнение специально для этих новых форматов. Так операторская работа и монтаж стали базовыми понятиями для киносъёмки.

С виртуальной реальностью будет точно так же! Сначала пойдут адаптации уже существующих игр, не использующие эффект присутствия на полную. Пользы для новой области от них будет немного: даже, если дисплей позволяет добиться новой степени погружения, неудобное управление и неподходящий геймплей могут привести к адаптации, проигрывающей оригиналу.

Эффект присутствия

Как я и говорил, для меня определение VR – эффект присутствия. Без чувства, что вы оказались в каком-то другом месте игра останется обычной интерактивной трёхмерной средой, а не настоящей VR-средой – даже, если в неё вложены миллионы долларов. Уж поверьте, я опробовал несколько таких, и это просто беда.

При наличии эффекта присутствия игрок будет демонстрировать естественные реакции и эмоции. На высоком обрыве вы испытаете страх высоты (гарантированно). Если вам бросят виртуальный мяч, вы попытаетесь поймать его. Если нарисованный человек спасёт вас от неминуемой смерти, вы ему улыбнётесь. Я серьёзно!

Эффект присутствия – это сложная и деликатная тема. На данный момент самые интересные его исследования проводит Мэл Слэйтер (Mel Slater). В довольно известной статье он разделят ощущение присутствия на два типа: когнитивное (разум) и персептивное (чувства).

Люди нередко говорят, что чувство присутствия у них вызывают игры, фильмы, книги и даже просто кем-то рассказанная история (как глубоки корни VR!). Это когнитивное присутствие – в иные миры вас переносит воображение.

Персептивное присутствие

Вышеперечисленные способы погружения не подразумевают персептивного присутствия, которое в самом деле реалистично обманывает ваши чувства. Зрение, слух, осязание, обоняние, проприоцепция (от лат. proprius - «собственный, особенный» и receptor - «принимающий»; от лат. capio, cepi - «принимать, воспринимать»), глубокая чувствительность - ощущение положения частей собственного тела относительно друг друга, далее гугли википедию)… Не забывайте, что человеческое восприятие не идеально: человеческий мозг многое упрощает. Знание этих ограничений – являющееся основой теории VR – позволяет вам создавать персептивные иллюзии, вроде ходьбы в неправильном направлении или пространств с невозможной геометрией.

Как же этого добиться?

Я считаю, самый простой способ добиться эффекта персептивного присутствия – отслеживать движения головы. Поворот головы и поворот камеры в трёхмерном мире – основа для цикла «действие – восприятие».

Значит, вам нужна возможность совершать движения, и эти движения должны отражаться в виртуальном мире. Ваше тело вовлекается в процесс. Как сказал Антонио Дамасио: «Разум заключён в теле, а не в одном лишь мозге».

Прерывание эффекта присутствия

В свою очередь, это означает, что если действие не приводит к ожидаемому результату, разум чувствует неладное. Это называется прерыванием присутствия.

Если вы задаётесь хотя бы одной целью, создавая VR, этой целью должно быть поддержание эффекта присутствия. Чувствовать себя по среди пустой комнаты – это VR. Не чувствовать себя посреди Gears of War– это не VR.

Минимальная VR-система

Я бы рекомендовал отслеживание движений головы (повороты и смещения), хотя бы одной руки (повороты и смещение) и джойстик с парой кнопок. По личному опыту могу сказать, что такой минимум позволяет переступить определённый порог и мозг принимает другую реальность гораздо проще.

Для меня это значит, что сам по себе OculusRift– это (пока) не минимальная VR-платформа. Ему не хватает полноценного отслеживания головы, а отслеживания рук нет вообще. Я знаю, что всё это можно исправить своими силами, с помощью таких устройств, как Razer Hydra. Но пока у нас нет всеобъемлющей VR-платформы, производители не смогут спокойно полагаться на единый стандарт оборудования.

Задержки

Для виртуальной реальности враг номер один – это задержки и лаги. Если после поворота головы изображение меняется через целую секунду, мозг не воспримет это как реальность. Более того, у вас может .

Джон Кармак (John Carmack) говорит, что «при задержках менее 20 миллисекунд начинается настоящая магия – трёхмерный мир кажется незыблемым!»

Некоторые исследователи и вовсе советуют добиваться задержки менее 4 мс от момента начала движения до вывода необходимого изображения на экран. Для наглядного представления скажу, что при игре с фреймрейтом 60 fps между кадрами проходит 16 мс. Добавьте к этому задержку устройства ввода, которая может варьироваться от нескольких миллисекунд до более 100 мс в случае с Kinect, и задержку дисплея, которая тоже может быть как невысокой, так и более 50 мс у потребительских моделей VR-гарнитур.

В случае со стереоизображением нужно учитывать, что игра потребует обработки двух картинок одновременно. Будучи разработчиком, вы не можете ничего поделать с задержками ввода и дисплея, но вы должны обеспечить высокую производительность игры!

Последовательный мир не обязательно должен быть реалистичным

Мы разобрались, что персептивное присутствие – это реалистичный обман органов чувств. Когнитивное – обман разума, но не чувств – истекает из ощущения, что вы можете влиять на виртуальный мир и что события в нём происходят на самом деле. Это означает, что вы должны поверить в «правила» симуляции. Для этого нужно убедиться, что ваш мир будет не столько реалистичным, сколько связным и последовательным. К примеру, непоследовательность может проявляться в том, что игрок может взять со стола один стакан, но не может взять другой. Прерванный эффект когнитивного присутствия восстановить очень сложно. Игрок постоянно вспоминает, что вокруг не настоящий мир, и чтобы он снова показался реальным, потребуется время.

Если вы надумали создать визуально правдоподобное окружение, вероятность прерывания присутствия будет очень высока. Это из-за того, что мозг будет требовать от виртуальной реальности того, чего мы пока не можем достичь технически: реалистичную физику, обратную связь – чтобы рука не проходила сквозь предметы, разрушаемость объектов, запахи и прочее. В мире, не претендующем на реалистичность, ожидания будут занижены изначально, так что эффект присутствия будет более стойким.

Если вы смогли добиться когнитивного присутствия и разум игрока уже обманут, события симуляции начнут обманывать его чувства. Если привлекательный персонаж взглянет в глаза стеснительному игроку, его пульс повысится, он покраснеет и так далее. Люди с боязнью публичных выступлений будут говорить перед виртуальной аудиторией с тревогой в голосе.

Вот почему я считаю, что наиболее сильное погружение из всех увиденных мной приложений достигнуто в Verdun 1916-Time Machine. Оно обманывает множество чувств за раз: зрение, обоняние, осязание… Но что самое интересное: для наилучших впечатлений там специально ограничили взаимодействие с миром. Вы можете только крутить головой, поскольку вы – раненый солдат.

Учитывая это жёсткое ограничение, будет очень просто удержать игрока от прерывания присутствия. Вы не можете шевелить руками, так что и сквозь объекты они не провалятся; вас не заставляют двигаться с помощью неестественных нажатий на кнопки. Было не раз замечено, что люди улыбались, когда видели подбегающего на помощь виртуального товарища!

Измерение присутствия

Проблема в том, что очень сложно вычислить степень погружения игрока в виртуальный мир. Сейчас нет никаких абсолютных показателей, выявляющих это. Можно следить за пульсом или уровнем проводимости кожи для отслеживания тревоги. Но это работает только со стрессовыми ситуациями.

Впрочем, вы можете попробовать оценить, насколько естественны реакции игрока. Мы уже упоминали о некоторых из них – попытка поймать мяч, страх высоты, страх за своё здоровье при угрозе нападения, попытка избежать столкновения…

На этом закончим с философскими размышлениями и перейдём к практическим советам:

Масштабируйте 1 к 1

Масштаб игрового мира должен быть реальным. Камера должна располагаться на высоте, соответствующей нормальному человеческому росту (если, конечно, вы не хотите играть ребёнком, как в Among the Sleep). Движения головы не должны усиливаться (если вы не используете техники перенаправления).

Самый простой способ добиться реального масштаба: единица длины в виртуальном мире должна соответствовать реальной — 1 виртуальный метр равен 1 метру реальному. Поле зрения должно идеально совпадать с углами обзора вашего дисплея. В идеальном виртуальном мире (или большом промышленном VR-тренажёре) расстояние между глазами должно быть подсчитано с высокой точностью. Мозг будет обрабатывать все эти сигналы; вы можете не добиться эффекта присутствия или он будет нестабильным – к тому же пользователи могут почувствовать тошноту – если строго не следовать этому правилу.

Ознакомьтесь с аппаратным обеспечением

Ознакомьтесь с возможностями отслеживания: позволяет ли устройство отслеживать смещения или только повороты? Способен ли датчик сообщать данные позиционирования и в каких пределах? Какова его точность? Когда данные отслеживания перестают быть полезными? Ознакомьтесь с полем зрения: следуя совету о масштабе, вы не должны искажать виртуальное поле зрения. При узком поле зрения пользователь будет вынужден чаще мотать головой и рискнёт пропустить важные события на периферии. Ознакомьтесь с разрешением: если пользователь должен прочитать текст, придётся размещать его ближе перед глазами. Как и с разработкой под Android, ваша игра в итоге будет запускаться на большом количестве разных устройств. Вскоре нас может ожидать война множества платформ с разными характеристиками. Такие инструменты, как MiddleVR, помогут вам работать с разными VR-системами.

Не меняйте точку обзора

Если делаете игру от первого лица, избегайте видеороликов и управления транспортом от третьего лица. Это прерывает погружение.

Боритесь с плохими привычками

У многих заядлых игроков есть плохие привычки: надев шлем, они будут сидеть ровно, будто перед телевизором. Те же, кто играет редко, сразу начнут оглядываться по сторонам. Игроков нужно отучать от сегодняшних игровых ограничений. В обучающих миссиях нужно мотивировать игрока оглядываться вокруг и двигать руками. Игра должна извлекать из этого пользу. Например, в одном моём недавнем прототипе враги появлялись справа, слева и сверху, и нельзя было двигаться/осматриваться кнопками или мышкой. Чтобы победить, пользователь вынужден поворачивать голову и целиться рукой. В другом моём недавнем прототипе единственным интерактивным объектом была свеча посреди очень тёмного окружения. Отличный способ заставить игрока исследовать местность: он берёт свечу и идёт в темноту, двигая и поджигая некоторые объекты при решении головоломок.

Поддерживайте активность игроков

В том же Heavy Rain вас почти не отрывают от игрового процесса. Есть множество роликов, похожих на неигровые, но тут, вдруг, вам даётся управление. Если в это время у вас в руках нет контроллера, вы не успеете выполнить действие. Это заставляет всегда быть начеку.

Ещё одна интересная особенность Heavy Rain – события происходят в реальном времени, а значит вам нужно думать и действовать быстро: застрелить парня до того, как он убьёт моего товарища? Вас заставляют быстро принимать решения, и, как и в реальной жизни, вы никогда не узнаете, насколько правильными они были.

Придумывайте реалистичные головоломки

Опять пример из Heavy Rain: вам нужно быстро позвонить в одну из комнат гостиницы. Сможете вспомнить её номер за 15 секунд? Как и в жизни, приходится напрягать память, переживая сильный стресс.

И наконец, как можно усерднее работайте над эффектом присутствия

Создать эффект присутствия непросто. Начинайте с малого, тестируйте почаще. Работайте над присутствием постепенно, вносите небольшие изменения и тестируйте снова. Переживания игрока происходят у него в голове! Вы не создаёте переживания, а провоцируете их. Эффект присутствия должен быть естественным. Изучайте реакции пользователей и вносите изменения. Не месите в кучу все свои хорошие идеи только ради эффектного трейлера. Немало многообещающих роликов на деле оказывались отвратными играми.

Заключение

О разработке VR-приложений можно рассказать гораздо больше, но надеюсь, эта статья заострила ваше внимание на базовых принципах. Оставляю вас с цитатой, которую вы, надеюсь, будете вспоминать почаще:

«Мы относимся к виртуальной реальности, как к чему-то совершенно новому, со своими возможностями и особенностями, позволяющими создавать формы медиа, с которыми люди взаимодействуют всем своим телом, принимая всё происходящее за реальность». – Мэл Слэйтер.

По материалам Gamasutra , автор Себастьен Кунц (Sébastien Kuntz).

Сегодня технология виртуальной реальности помогает музеям перейти на качественно новый уровень взаимодействия с посетителями. С помощью панорамного видео и 3D-графики каждый желающий получает возможность увидеть закрытые для посещения архивы музеев, утерянные экспонаты или реконструированные исторические памятники. Кроме того, виртуальная реальность - это отличный способ посетить удаленные архитектурные объекты и выставочные залы в любой точке земного шара. Наша статья поможет разобраться в устройствах для создания виртуальной реальности, расскажет об истории этой технологии и о применении виртуальной реальности в музеях.

Вконтакте

Одноклассники

Технология видео 360° позволяет создавать панорамные фильмы с различной степенью интерактивности, где зритель по своему желанию управляет ракурсом просмотра. Такое видео можно посмотреть в шлеме виртуальной реальности, с помощью специального приложения на смартфоне или на дисплее персонального компьютера.

Опыт туристов, совершивших экскурсию в древнюю пирамиду или посетивших выставку в Лувре, который раньше был доступен немногим, теперь сможет разделить каждый желающий за счет полного погружения в виртуальную реальность.

Виртуальная реальность (virtual reality,VR) – это компьютерная имитация реального или вымышленного мира, в который погружается и с которым взаимодействует человек. Не просто искусственный мир, а сложная и отлаженная система устройств, способных синхронно воздействовать на органы чувств.

Кажется, что виртуальная реальность была придумана и создана лишь в последние десятилетия. Однако эту идею начали воплощать в жизнь почти 100 лет назад.

История виртуальной реальности

История виртуальной реальности началась задолго до появления первых компьютеров. В 1929 году был разработан авиасимулятор «Link Trainer», предназначенный для обучения пилотов. Авиасимулятор был закреплен на шарнире и напоминал маленький самолет с короткими крыльями. Внутри находились авиаприборы, кресло и наушники с микрофоном для общения с тренером.

Link Trainer во время его использования на станции Британской авиации и флота в 1943 году

В 1956 году кинематографист Мортон Хейлиг, которого позже назвали «отцом виртуальной реальности», взялся за разработку непростого механизма, способного имитировать поездку на мотоцикле по улицам Бруклина. Он хотел создать «кино будущего», главная идея которого заключалась в полном погружении человека в специально подготовленный фильм при помощи тряски, шума, ветра и запахов. Проект получил название «Sensorama» и был запатентован. Принцип этого устройства стал основой для создания современных 4D-кинотеатров.

Следующий важнейший рывок в области VR-технологий и создании той виртуальной реальности, которую мы с вами знаем, произошел в 1977 году. Первой современной VR-системой стала «Кинокарта Аспена», разработанная в Массачусетском Технологическом Институте. Эта компьютерная программа симулировала прогулку по городу штата Колорадо, давая возможность выбрать между разными способами отображения местности: летний и зимний варианты виртуальной прогулки по Аспену были основаны на реальных фотографиях.

Демонстрация работы «Кинокарты Аспена»

До конца восьмидесятых технология виртуальной реальности считалась перспективной, но вскоре из-за сложности реализации и дороговизны оборудования интерес к ней угас. Снова о виртуальной реальности заговорили только в 2012 году, когда появились устройства для погружения в виртуальную реальность, доступные широкому кругу людей.

Технологии виртуальной реальности

Крупнейшие компании (Facebook, Nokia, Samsung, Google и др.) в настоящее время ведут разработки камер для съемки видео в формате 360°, гарнитур виртуальной реальности для различных смартфонов и стационарных компьютеров, а также различных звукозаписывающих устройств, обеспечивающих создание объемного звука и позволяющих реализовать целый комплекс технологий «мультимедиа 360°».

Камеры для съемки видео 360°

Камеры для съемки панорамного видео называются сферическими и состоят из нескольких видеокамер, которые производят синхронную съемку. Количество объективов колеблется от 2 до 16, а обработка видео осуществляется как в самой камере, так и в специальных программах. Помимо камер именитых марок (Google, Samsung, LG, Nokia, GoPro, Nikon, Kodak, Ricoh) существует множество других - Giroptic, Bublcam, Vuze и т.д.

Камеры для съемки видео 360°

Бинауральный звук

Особой задачей при создании контента для виртуальной реальности является запись и воспроизведение объемного звука – ведь пользователь, находясь в виртуальной реальности, должен слышать разный звук в зависимости от положения головы.

В компьютерных играх эта проблема решена с помощью специальных программных средств, задающих расположение источников звука в виртуальном пространстве. Однако с появлением формата «Видео 360°» возникла необходимость записывать звук предельно точно – так, как его слышит человек, стоящий в определенной точке.

Для этой цели используется так называемый бинауральный звук – он записывается на специальные микрофоны, по форме повторяющие ушную раковину человека.

Устройства для записи бинаурального звука

Шлемы виртуальной реальности

Шлем виртуальной реальности позволяет частично погрузиться в иллюзорный мир, создав зрительный и акустический эффект присутствия. Название «шлем» достаточно условное: современные модели гораздо больше похожи на очки, чем на шлем.

Gear VR - шлем виртуальной реальности от Samsung

Существует два вида шлемов виртуальной реальности: полноценные, имеющие свой процессор и подключающиеся к компьютеру, а также мобильные, в которые вставляется смартфон со специальным приложением.

В полноценных шлемах (например, Oculus Rift, HTC Vive и Sony PlayStation VR) есть два встроенных дисплея - когда вы надеваете устройство, они находятся в нескольких сантиметрах от глаз. На дисплеи передается одна и та же картинка, но с небольшим смещением. Перед дисплеями находятся две искривляющие изображение линзы, которые создают эффект объемного изображения. Чтобы в виртуальном мире можно было смотреть по сторонам при повороте головы, в шлеме имеется несколько датчиков: магнитометр, гироскоп и акселерометр. Еще один - трекер с инфракрасными светодиодами - должен стоять на столе, смотреть на человека и фиксировать его положение в пространстве. Он требуется для игр, где допускается свобода передвижения. К устройству также подсоединяется USB-кабель для передачи данных и питания.

Шлем виртуальной реальности Oculus Rift

Самым современным шлемом виртуальной реальности на сегодняшний день является Oculus Rift. Отличительной особенностью Oculus Rift является линзовый способ построения изображения – зритель, надевший шлем, смотрит на стереоизображение не напрямую, а через специальные асферические линзы. С помощью линз удалось существенно расширить угол обзора, сделав его близким к биологическому зрению человека, благодаря чему шлем обеспечивает необыкновенно глубокое погружение в виртуальную реальность. Данная особенность определила дальнейшую судьбу очков – проект стал одним из самых динамично развивающихся в индустрии, по всему миру стали создаваться экспериментальные приложения для Oculus Rift, а в 2014 году произошла одна из рекордных сделок в индустрии – Facebook осуществил покупку компании Oculus за $2 млрд.

Пока Oculus Rift не поступили в розничную продажу, их можно заказать на сайте разработчика за 599 долларов.

Наиболее простые мобильные шлемы виртуальной реальности представляют собой кусок картона, пару пластиковых линз и смартфон в качестве экрана.

Google Cardboard (в переводе с английского - картон ) - эксперимент компании Google в области виртуальной реальности, в основе которого лежит картонный шлем, в который вставляется Android-смартфон. Смартфон разделяет картинку на стереопару и даже отслеживает положение головы.

Google Cardboard

Шлем можно собрать самому или купить за 15 долларов. На сегодня это самый распространенный шлем в мире, который был выпущен тиражом около пяти миллионов экземпляров.

Другие мобильные шлемы Cardboard в большинстве случаев производят из картона и из металла, чтобы устройство служило как можно дольше.

Кроме того, существуют мобильные шлемы виртуальной реальности из пластика с возможностью регулировать положение линз, встроенным вентилятором, кнопкой регулировки громкости и аккумулятором для подзарядки смартфона (например, Homido, Durovis Dive, Gear VR и другие).

Бинокуляры

Это изобретение больше известно, как смотровой бинокль. В отличие от стандартных конструкций в бинокуляре вместо оптической части находится механизм виртуальной реальности, который дает возможность просмотра панорамного видео с любой стороны простым поворотом устройства. Угол обзора составляет 360 градусов по вертикальной оси и 180 градусов по горизонтальной. Пространственно-звуковая картина меняется в зависимости от поворота устройства, которое может быть установлено как в помещении, так и на городских улицах.

Бинокуляр виртуальной реальности, разработанный Лабораторией мультимедийных решений

С помощью бинокуляра можно переместиться на сотни лет и увидеть реконструкции исторических объектов и событий своими глазами с эффектом полного погружения.

Интерактивность в виртуальной реальности

Не смотря на то, что просмотр объемного видео 360° в различных устройствах виртуальной реальности обеспечивает качественное погружение в видео контент, следующим шагом является возможность внедрения в видеоматериал формата видео 360° различных интерактивных элементов.

3D графика в виртуальной реальности

Такими элементами могут выступать:


Активные метки внутри виртуального пространства для движения по различным траекториям, предварительно отснятым в технологии видео 360°

Внедрение в видео 360° различного дополнительного контента (изображения, видео, гиперссылки и т.д.) – функция «картинка в картинке»

Переход из видеоизображения в формате видео 360° в смоделированное 3D-пространство реконструированной реальности.

Интерактивное взаимодействие дает возможность выбора пути следования: пользователю, в определенных точках видео (развилках), можно выбрать желаемое продолжение экскурсии, либо вернуться назад. Наведение на элемент осуществляется поворотом головы, которое отслеживается с помощью шлема виртуальной реальности. При удержании прицела на выбранном элементе в течение нескольких секунд происходит активация элемента и запускается следующий сегмент видео 360°, например, появляется видео следующего выставочного зала.

На проходах «вперед» может присутствовать экскурсовод в виде трехмерной анимации, рассказывающий об экспонатах. При желании, пользователь может пропустить просмотр отрезка видео нажатием клавиши на клавиатуре или с помощью интерактивного элемента.

Вторая форма интерактивного взаимодействия – возможность перейти из видео 360° в виртуальную трехмерную реконструкцию. В определенных точках видео-экскурсии появляется элемент, активировав который пользователь перемещается в 3D-реконструкцию с возможностью свободного перемещения в виртуальном пространстве и возможностью вернуться в исходное видео.

Примеры использования технологий виртуальной реальности в музеях

Музей Сальвадора Дали, расположенный в американском городе Сент-Питерсбурге, предлагает своим посетителям в буквальном смысле оказаться внутри картины «Археологический отголосок Анжелюса Милле», принадлежащего кисти великого испанского художника.

Для создания VR-версии картины было привлечено агентство Goodby Silverstein & Partners. Художники кропотливо исследовали полотно и воссоздали его 3D-версию в мельчайших подробностях. В проекте также активно участвовали художники студии Disney, которые ранее уже сотрудничали с музеем при создании анимационного фильма Destino. Результатом их совместной работы стал проект для виртуального шлема Oculus Rift, при помощи которого любой желающий сможет оказаться внутри знаменитого полотна.

Виртуальная реальность в Музее Сальвадора Дали

С помощью приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR можно посещать самые известные художественные музеи мира, не выходя из дома. На сегодняшний день доступен тур по лондонской галерее Курто. Виртуальная прогулка сопровождается комментариями известного британского писателя, автора графических романов Нила Геймана. Идея создать такое приложение пришла в голову исполнительному директору компании Woofbert Роберту Хамви, который не смог попасть в Национальную галерею во время своего визита в Вашингтон.

Приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR

В 2016 году Лаборатория мультимедийных решений создала панорамную экскурсию для посетителей Музея истории города Мончегорска. Гости музея смогут совершить виртуальную экскурсию по цехам Кольской горно-металлургической компании и увидеть весь цикл производства цветных металлов, надев шлем виртуальной реальности и запустив специальное приложение на смартфоне.

Съемки виртуальной экскурсии по цехам Кольской ГМК

Существует множество вариантов применения виртуальной реальности в выставочной деятельности. Наша команда специалистов поможет вам в выборе лучшего решения
именно для вашего музея и поможет реализовать проект на самом высоком уровне.

Хотите проект с виртуальной реальностью?

Напишите нам!

Вконтакте

Виртуальная реальность ещё не стала частью нашей повседневности, но на уровне разработок уже проникла в сферы от медицины до искусства и становится всё более доступна пользователю: самые простые VR-очки изготавливаются из картона. Постепенно VR находит своё место и в сфере детского образования, значительно меняя сам процесс обучения.

Как технологии меняют образование

Сразу скажем: речь не о том, чтобы приложения и гаджеты заменили школьникам учебники или работу в классе с учителем. Но современные технологии, такие как виртуальная и дополненная реальность, могут существенно дополнить традиционные методы и обеспечить более полное погружение в предмет изучения.

Исследования показываютThe Brain May Use Only 20 Percent of Its Memory-Forming Neurons , что мы запоминаем только 20% от того, что мы слышим, 30% - от того, что видим, и до 90% - от того, что делаем сами или испытываем во время симуляции. Виртуальная реальность позволяет получить реальный опыт присутствия, повышая эффективность обучения и вероятность запоминания.

Погулять внутри человеческого тела, совершить экспедицию на Марс, оказаться внутри химической реакции вещества - всё это позволяет совершенно иначе понимать и воспринимать предмет.

Кроме того, использование современных технологий во время школьных занятий кажется детям очень увлекательным, они с энтузиазмом погружаются в процесс. Если во время традиционного урока учителю трудно удерживать внимание всех учеников, то во время виртуального тура дети полностью вовлечены и фокусируются на 100%, поэтому процесс обучения идет с максимальной эффективностью.

Чему можно научиться в виртуальной реальности

Виртуальная реальность, как никакая другая технология, может обеспечить эффект погружения. VR - это не абстрактная информация, которую ребёнку надо запомнить, а полноценный визуальный опыт, на котором многим легче учиться.

Многие VR-приложения основаны на простой демонстрации 3D-объектов, фото или видео, но даже это фундаментально меняет процесс познания. И уже существует немало VR-приложений, в которых пользователь может активно влиять на виртуальную реальность и преобразовывать её. Мы подобрали несколько интересных VR-проектов, чтобы показать, чему школьник может научиться и что узнать с их помощью.

Путешествовать с Google Expeditions

Приложение Google содержит сотни туров и объектов в виртуальной или дополненной реальности, с которыми можно отправиться на раскопки археологов, совершить экспедицию под водой, превратить класс в музей. Пока преподаватель рассказывает, например, об океане, ученики «погружаются» на дно океана и «плавают» рядом с акулами. Или, используя дополненную реальность, учитель может устроить извержение вулкана прямо в классе, рассмотрев и обсудив его вместе с учениками.

Недорогие картонные очки Google Cardboard вместе с приложением Expeditions уже используются преподавателями в тысячах школ по всему миру.

Разобраться со сложными научными понятиями в MEL Chemistry VR

VR-уроки от Mel Science позволяют оказаться внутри химических реакций и увидеть своими глазами, что происходит с частицами веществ. Ученики могут взаимодействовать и экспериментировать с атомами и молекулами, а учитель контролирует ход VR-урока и видит прогресс каждого ученика. Мощная визуализация и эффект присутствия помогают понять суть химических явлений без бессмысленного зазубривания формул.


Рисовать в Tilt Brush

Это приложение позволяет рисовать в виртуальной реальности, где всё, что вы задумаете, возникает прямо из воздуха. Представляете, какой взрыв фантазии такие возможности вызовут у творческого школьника?

Даже если ребёнок не будет связывать свою дальнейшую жизнь с искусством, вполне вероятно, что к моменту, когда он будет получать профессиональное образование, проектирование в виртуальной реальности для многих специальностей станет обычным делом. К сожалению, VR-шлемы, необходимые для этой программы, всё ещё довольно дорогое оборудование.


Узнать о строении организма в InMind и InCell

Два очень красивых приложения, наглядно раскрывающих принципы работы мозга и клеток организма в виде игр. Анатомия вдохновляет разработчиков VR-приложений, и интересных решений в этой области можно найти немало. Мы остановились на этих двух, потому что, во-первых, это примеры российской разработки (их выпустила студия Nival VR), а во-вторых, они полностью бесплатны. Кстати, медицина - одна из сфер, где VR-технологии уже сегодня заняли заметное место в науке, практике и профессиональном обучении.



Познакомиться с виртуальной реальностью в The Lab и создавать её в CoSpaces Edu

Ещё один распространённый тип образовательных VR-приложений даёт представление о самой этой технологии. The Lab - альманах мини-игр, демонстрирующих возможности виртуальной реальности. С этого полностью бесплатного приложения рекомендуют начинать знакомство с VR.

Если ребёнок уже заинтересовался виртуальной реальностью, то ему можно предложить площадку для самостоятельного творчества. Подойдёт CoSpaces Edu: 3D-конструктор можно собирать из готовых объектов или строить их самостоятельно, а можно и писать код.


Это новое захватывающее направление в разработке приложений. Оно знаменует собой новые форматы сторителлинга и более действенные способы передачи эмоций и ощущений.

Если раньше для создания подобных приложений требовалось дорогое оборудование и специальные навыки, то сейчас разработка виртуальной реальности стала доступна благодаря интуитивно понятным инструментам и технике, которую можно найти в ближайшем магазине электроники. В этом руководстве мы разберём, как создать видео-приложение с обзором в 360 градусов для Android за десять минут. Навыки программирования не требуются.

Что понадобится

Телефон с гироскопом под управлением Android KitKat или более новой версии.

Unity3D — кроссплатформенный игровой движок версии 5.6 и выше.

Видео с обзором в 360 градусов.

Как создать приложение?

Если обычное видео ограничено прямоугольной рамкой, то панорамное имеет форму сферы. Поэтому для начала создадим сферический экран, на который будет спроецировано видео с обзором в 360 градусов. Игрок (или наблюдатель) будет находиться внутри этой сферы и сможет смотреть видео в любом направлении.

Шаг 1: Построить сферу ?

Создадим новый Project в Unity или новую Scene, если хотим интегрировать видеоплеер в уже существующий проект. Считайте, что Scene - это один уровень в игре, а Project - вся игра.

Поместите сферу (3D object → Sphere) радиуса 50 (Scale = 50, 50, 50) в центр Scene (Position = 0, 0, 0). Установите позицию камеры на 0, 0, 0. Камера - это глаза игрока: если поместить её не в центр, то видео будет искажённым.

Поместив камеру внутрь сферы, мы больше не видим её на сцене. Так происходит из-за того, что большинство игровых движков не отображает внутреннюю сторону 3D-объектов, так как нам почти никогда не нужно её видеть, а значит можно не тратить ресурсы на отрисовку.

Шаг 2: Перевернуть нормали сферы ?

В нашем случае нужно смотреть на сферу изнутри, поэтому мы вывернем её наоборот.

В Unity сферы на самом деле являются многогранниками, составленными из тысяч крошечных граней. Их внешние стороны видимы, а внутренние - нет. Чтобы увидеть сферу изнутри, необходимо перевернуть эти грани. В терминах трёхмерной геометрии такая трансформация называется переворачиванием нормалей.

Применим программу Shader к Material сферы. Материалы в Unity контролируют внешний вид объектов. Шейдеры - это небольшие скрипты, которые рассчитывают цвет каждого рендерированного пикселя, основываясь на информации о материале и освещении.

Создадим новый Material для сферы, к нему применим Shader, код для которого можно скопировать отсюда . Этот шейдер вывернет каждый пиксель сферы, и изнутри сфера будет выглядеть как большой белый шар.

Шаг 3: Спроектировать панорамное видео внутрь сферы?

Импортируйте в проект видео с обзором в 360 градусов формата mp4, перенесите его на сферу. Появится компонент Video Player, и видео будет готово к воспроизведению. В окне этого компонента можно установить бесконечный повтор и отрегулировать настройки звука.

Прим. ред. Если у вас нет собственного видео такого типа, можно использовать чужие заготовки, свободно распространяемые в Интернете.

Шаг 4: Настроить поддержку Google Cardboard ?

Используя GoogleVR SDK, мы создадим стереоскопическое изображение. Совокупность эффекта рыбьего глаза, применённого к обеим частям разделённого наполовину экрана, и искажения пластиковых линз Google Cardboard создаёт иллюзию глубины картинки и погружения в виртуальную реальность.

Для того чтобы добавить GoogleVR SDK к проекту, скачайте и импортируйте плагин . Далее скорректируйте настройки Android:

  1. В верхнем меню выберите File → Build Settings . Добавьте сцену, если она еще не была добавлена, а из предлагаемых платформ выберите Android.
  2. Нажмите на Switch Platform . Переключение платформы займёт некоторое время.
  3. Нажмите на Player Settings . На панели инструктора появятся компоненты.

В окне Player Settings в секции Other settings :

  • Отметьте галочкой Virtual Reality Supported . В выпавшем окне Virtual Reality SDKs нажмите на +, добавьте в список Cardboard .
  • Выберите для вашего приложения уникальное имя и введите его в поле Bundle Identifier . Уникальные имена приложений под Android обычно имеют форму обратного доменного имени, например, com.example.CoolApp . Подробнее про это можно почитать в официальной документации и в Википедии .
  • В меню Minimal API Level выберите Android 4.4 Kit Kat (API Level 19) .

В панели Project Browser в папке GoogleVR/Prefabs выберите элемент GvrViewerMain и перетащите его на сцену. Задайте ему такую же позицию, как у центра сферы: 0, 0, 0 .

Префаб GvrViewerMain контролирует все настройки режима виртуальной реальности, например, адаптацию экрана к линзам Cardboard. Он также получает данные с гироскопа телефона для отслеживания поворотов и наклонов головы. При повороте головы Camera в видеоплеере тоже повернётся.

Шаг 5: Запустить приложение на Android ?

Это можно сделать двумя разными способами:

  • Выберите File → Build Settings . С помощью USB-кабеля подключите телефон к компьютеру, включите отладку по USB и нажмите Build & Run . Приложение загрузится сразу на телефон.
  • Или нажмите Build only . Приложение не загрузится на телефон, но зато сгенерируется в APK-файл, который можно отправить другим людям или выложить в магазин мобильных приложений.

В течение процесса сборки вас могут попросить выбрать корневую папку Android SDK. В этом случае скачайте Android SDK и укажите расположение его папки.

Осталось только запустить приложение и вставить телефон в Cardboard. Теперь вы можете испытать погружение в виртуальную реальность с обзором в 360 градусов у себя дома.

Что дальше

Поздравляем, вы создали видео-приложение с обзором в 360 градусов! Теперь вы на шаг ближе к разработке видео-приложения виртуальной реальности. Да, между ними есть разница. В первом случае наблюдатель может только смотреть в любом направлении. Во втором случае добавляется интерактивность, то есть контроль над объектами.

Приложение, которое вы только что создали, может послужить отправной точкой в построении более разнообразной виртуальной реальности. Например, в Unity можно наложить на верхний слой видео 3D-объекты и эффекты частиц.

Вы также можете попробовать поместить внутрь панорамного видеоплеера трёхмерное изображение некоторой окружающей обстановки и использовать видеоплеер как skybox. Для навигации пользователя по созданному окружению можно использовать этот



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.