Ферментативная активность бактерий. Измерение ферментативной активности. Основы количественного определения активности ферментов

Метаболизм - поддерживающая жизнь совокупность химических реакций организма. Вспомнив о миллиардах постоянно происходящих реакций, можно удивиться, как у нас остаются силы на что-то еще. А поскольку одна из главных целей метаболизма - обеспечение организма готовой к использованию энергией, очень важно, чтобы ее выработка превышала - и намного - затраты на производство. К счастью, в ходе эволюции мы получили молекулы, основной задачей которых стало уменьшение энергозатрат, необходимых для химических реакций в организме. Их называют ферментами.

Это крупные белковые молекулы, присутствующие во всех наших клетках и путем серии реакций превращающие одно (скажем, молекулу сахара), именуемое субстратом, в другое (например, связанное с глюкозой вещество, из которого организм синтезирует жиры) - продукт, или метаболит. Представьте себе ферменты как большие автоматизированные фабрики: с одной стороны огромного здания вы подаете бревно (субстрат), а на выходе получаете красивую салатницу (продукт). Конечно, можно сделать ее вручную, но на это уйдет намного больше сил и времени; фабрика сильно повышает эффективность.

Ферменты делают то же внутри клетки, быстро превращая субстраты в продукты и потребляя при этом очень мало энергии. Реакции, которые они вызывают (биологи используют слово «катализируют»), редко или вовсе не происходят без помощи ферментов. Если это случается, скорость реакции составляет крохотную долю возможной при участии фермента, а затраты энергии намного выше.

Относительные размеры ферментов очень велики. Их молекулы могут быть в 10–20 тыс. раз больше молекул субстрата, который они обрабатывают. И правда похоже на фабрику и полено. На рис. 7.4 показан субстрат А, превращающийся в продукт Б. Однако большинство реакций не происходит изолированно: они сопряжены с последующими, где Б (теперь уже субстрат) превращается в В (новый продукт). Фермент 1 превращает А в Б, а фермент 2 - Б в В.

Рис. 7.4. Простая ферментативная реакция

Ферменты могут работать с разной силой в зависимости от запасов (количества субстрата) и потребностей (количества имеющегося в клетке продукта). Как конвейер, который движется быстрее или медленнее в зависимости от поставки сырья и спроса на готовую продукцию, ферменты меняют скорость превращения субстратов (на профессиональном языке - «активность»). Они могут катализировать даже обратные реакции, превращая продукт в субстрат. В общем, от ферментов зависит, произойдет ли реакция, а если да, то как быстро и в каком направлении.

Ферментативная активность и форма фермента

Исходная форма ферментов напоминает цепочку аминокислот, расположенных в последовательности, которая закодирована в ДНК. Но, поскольку аминокислоты имеют химическое и физическое сродство, цепочка складывается и образует трехмерную форму, как очень длинная нить намагниченных бусин (рис. 7.5).

Рис. 7.5. Компьютерная модель фермента цАДФ-рибозы-гидролазы (CD38)

Один из способов корректировки ферментативной активности - изменение формы фермента . Это имеет серьезные последствия, потому что меняет его химические и физические свойства, а также способность модифицировать скорость реакции. Многие ученые-энзимологи поэтизируют быстроту, с которой ферменты меняют конфигурацию для выполнения своих задач. Вот показательная статья из New World Encyclopedia (http:// www. newworldencyclopedia. org):

Чтобы фермент был функционален, он должен принять трехмерную форму. Как происходит этот сложный процесс, остается загадкой. Небольшая цепочка из 150 аминокислот образует фермент, имеющий невероятное число возможных конфигураций: если проверять по 1012 разных конфигураций в секунду, потребуется 1026 лет, чтобы найти верную...

Но денатурировавший фермент может правильно сложиться за долю секунды, а затем участвовать в химических реакциях… Это показывает ошеломляющую сложность и гармонию Вселенной.

Пытаясь описать неописуемое, автор приводит пример сравнительно небольшой (для фермента) гипотетической молекулы. Скорость складывания фермента из линейной цепочки в готовую к работе сферу феноменальна. Не менее потрясает химическое разнообразие субстратов, которые может метаболизировать один активный фермент. И так же впечатляет огромное число факторов, способных модифицировать структуру ферментов, их число и активность.

Все это показывает глубокую связь между метаболизмом питательных веществ и миром ферментов . Катализируемые ими реакции, бесконечные числом и бесконечно переплетенные, контролируются нутриентами и связанными соединениями, число которых тоже бесконечно.

Прежде чем обсуждать свойства ферментов и зависимость ферментов от каких-либо факторов необходимо определиться с понятием активность ферментов .

В повседневной биохимической практике практически не оценивается количество фермента, а только его активность . Активность – более широкое понятие, чем количество. Она подразумевает в первую очередь результат реакции , а именно убыль субстрата или накопление продукта. Естественно, при этом нельзя игнорировать время , которое проработал фермент и число молекул фермента. Но так как число молекул фермента подсчитать обычно нереально, то используют количество биологического материала, содержащего фермент (объем или массу).

Таким образом при определении активности ферментов нужно одновременно учитывать три переменные :

  • масса полученного продукта или исчезнувшего субстрата,
  • время , потраченное на реакцию,
  • количество фермента , но на самом деле массу или объем биологического материала, содержащего фермент.

Для понимания соотношений указанных факторов наглядным и простым примером может служить строительство двух зданий. Здания приравняем к продукту реакции, рабочие – это ферменты, бригада пусть соответствует объему биологического материала. Итак, задачи из 3-го класса:

1. На постройке одного здания трудилась бригада из 10 человек, другого такого же здания – бригада из 5 человек. Строительство закончено одновременно и в полном объеме. Где выше активность рабочих?

2. На постройке одного здания из 3 этажей трудилась бригада из 10 человек, другого здания из 12 этажей – бригада тоже из 10 человек. Строительство закончено одновременно и в полном объеме. Где выше активность рабочих?

3. На постройке одного здания из 5 этажей трудилась бригада из 10 человек, другого такого же здания – бригада тоже из 10 человек. Строительство первого здания заняло 20 дней, второе построено за 10 дней. Где выше активность рабочих?

Основы количественного определения активности ферментов

1. Активность фермента выражается в скорости накопления продукта или скорости убыли субстрата в пересчете на количество материала , содержащего фермент.

В практике обычно используют:

  • единицы количества вещества – моль (и его производные ммоль, мкмоль), грамм (кг, мг),
  • единицы времени – минута, час, секунда,
  • единицы массы или объема – грамм (кг, мг), литр (мл).

Активно используются и другие производные – катал (моль/с), международная единица активности (МЕ, Unit) соответствует мкмоль/мин.

Таким образом, активность фермента может выражаться, например, в ммоль/с×л, г/час×л, МЕ/л, кат/мл и т.д.

Например, известно,

  • что 1 г пепсина расщепляет 50 кг яичного белка за один час – таким образом, его активность составит 50 кг/час на 1 г фермента,
  • если 1,6 мл слюны расщепляет 175 кг крахмала в час – активность амилазы слюны составит 109,4 кг крахмала в час на 1 мл слюны или 1,82 кг/мин×г или 30,3 г крахмала/ с×мл.

2. Создание стандартных условий , чтобы можно было сравнивать результаты, полученные в разных лабораториях – оптимальная рН и фиксированная температура , например, 25°С или 37°С, соблюдение времени инкубации субстрата с ферментом.

Ферментативная активность почв [от лат. Fermentum - закваска] -способность почвы проявлять каталитическое воздействие на процессы превращения экзогенных и собственных органических и минеральных соединений благодаря имеющимся в ней ферментам. Характеризуя ферментативную активность почв, имеют в виду суммарный показатель активности. Ферментативная активность различных почв неодинакова и связана с их генетическими особенностями и комплексом взаимодействующих экологических факторов. Уровень ферментативной активности почв определяется активностью различных ферментов (инвертазы, протеаз, уреазы, дегидрогеназ, каталазы, фосфатаз), выражаемой количеством разложенного субстрата за единицу времени на 1 г почвы.

Биокаталитическая активность почв зависит от степени обогащенности их микроорганизмами и от типа почв. Активность ферментов изменяется по генетическим горизонтам, которые отличаются по содержанию гумуса, типам реакций, окислительно-восстановительным потенциалом и другими показателями по профилю.

В целинных лесных почвах интенсивность ферментативных реакций в основном определяют горизонты лесной подстилки, а в пахотных - пахотные слои. Все биологически менее активные генетические горизонты, находящиеся под горизонтами А или Ап, имеют низкую активность ферментов. Активность их незначительно возрастает при окультуривании почв. После освоения лесных почв под пашню ферментативная активность образованного пахотного горизонта по сравнению с лесной подстилкой резко снижается, но по мере его окультуривания повышается и в сильно окультуренных почвах приближается или превышает показатели лесной подстилки.

Ферментативная активность отражает состояние плодородия почв и внутренние изменения, происходящие при сельскохозяйственном использовании и повышении уровня культуры земледелия. Эти изменения обнаруживаются как при вовлечении целинных и лесных почв в культуру, так и при различных приемах их использования .

По всей Беларуси в пахотных почвах ежегодно теряется до 0,9 т/га гумуса. В результате эрозии ежегодно безвозвратно уносится с полей 0,57 т/га гумуса. Причинами дегумификации почв являются усиление минерализации почвенного органического вещества, отставание процессов новообразования гумуса от минерализации в связи с недостаточным поступлением в почву органических удобрений и снижения ферментативной активности почвы .

Биохимические превращения органического вещества почвы происходят в результате микробиологической деятельности под влиянием ферментов. ферментативный активность почва микроорганизм

Особую роль играют ферменты в жизнедеятельности животных, растений и микроорганизмов. Почвенные ферменты участвуют при распаде растительных, животных и микробных остатков, а также синтезе гумуса. В результате питательные вещества из трудно усвояемых соединений переходят в легко доступные формы для растений и микроорганизмов. Ферменты отличаются высокой активностью, строгой специфичностью действия и большой зависимостью от различных условий внешней среды. Благодаря каталитической функции они обеспечивают быстрое протекание в организме или вне его огромного числа химических реакций .

Совместно с другими критериями ферментативная активность почв может служить надёжным диагностическим показателем для выяснения степени окультуренности почв. В результате исследований 4, с. 91 установлена зависимость между активностью микробиологических и ферментативных процессов и проведением мероприятий, повышающих плодородие почв. Обработка почв, внесение удобрений существенно изменяют экологическую обстановку развития микроорганизмов.

В настоящее время в биологических объектах обнаружено несколько тысяч индивидуальных ферментов, а несколько сотен из них выделено и изучено. Известно, что живая клетка может содержать до 1000 различных ферментов, каждый из которых ускоряет ту или иную химическую реакцию .

Интерес к применению ферментов вызван еще и тем, что постоянно возрастают требования по увеличению безопасности технологических процессов. Присутствуя во всех биологических системах, являясь одновременно продуктами и инструментами этих систем, ферменты синтезируются и функционируют при физиологических условиях (pH, температура, давление, присутствие неорганических ионов), после чего легко выводятся, подвергаясь разрушению до аминокислот. Как продукты, так и отходы большинства процессов, протекающих с участием ферментов, являются нетоксичными и легко разрушаемыми. Кроме того, во многих случаях, ферменты, используемые в промышленности, получают экологически безопасным путем. От небиологических катализаторов ферменты отличают не только безопасность и повышенная способность к биодеградации, но и специфичность действия, мягкие условия протекания реакций и высокая эффективность. Эффективность и специфичность действия ферментов позволяет получать целевые продукты с высоким выходом, что делает использование ферментов в промышленности экономически выгодным. Применение ферментов способствует сокращению расхода воды и энергии в технологических процессах, уменьшает выбросы в атмосферу CO2, снижает риск загрязнения окружающей среды побочными продуктами технологических циклов .

Применением передовой агротехники можно изменять в благоприятную сторону микробиологические процессы не только пахотного, но и подпахотного слоев почвы.

При непосредственном участии внеклеточных ферментов происходит разложение органических соединений почвы. Так, протеолитические ферменты расщепляют белковые вещества и до аминокислот.

Уреаза разлагает мочевину до СО2 и NH3. Образующийся аммиак и аммонийные соли служат источником азотного питания растений и микроорганизмов.

Инвертаза и амилаза участвуют в расщеплении углеводов. Ферменты группы фосфатов разлагают фосфорорганические соединения почвы и играют важную роль в фосфатном режиме последней.

Для характеристики общей ферментативной активности почвы обычно используют наиболее распространенные ферменты, свойственные подавляющему большинству почвенной микрофлоры - инвертазу, каталазу, протеазу и другие .

В условиях нашей республики проводилось немало исследований 16, с. 115 по изучению изменения уровня плодородия и ферментативной активности почв при антропогенном воздействии, однако полученные данные не дают исчерпывающий ответ на характер изменений из-за сложности сопоставления результатов в виду различия условий проведения опытов и методик исследований.

В связи с этим поиск оптимального решения проблемы улучшения гумусного состояния почвы и ее ферментативной активности в конкретных почвенно-климатических условиях на основе разработки ресурсосберегающих приемов основной обработки почвыё применения почвозащитных севооборотов, способствующих сохранению структуры, предотвращению переуплотнения почвы и улучшению их качественного состояния и восстановлению плодородия почв при минимальных затратах, весьма актуален.

Ферменты - это катализаторы химических реакций белковой природы, отличающиеся специфичностью действия в отношении катализа определенных химических реакций. Они являются продуктами биосинтеза всех живых почвенных организмов: древесных и травянистых растений, мхов, лишайников, водорослей, микроорганизмов, простейших, насекомых, беспозвоночных и позвоночных животных, представленных в природной обстановке определенными совокупностями - биоценозами.

Биосинтез ферментов в живых организмах осуществляется благодаря генетическим факторам, ответственным за наследственную передачу типа обмена веществ и его приспособительную изменчивость. Ферменты являются тем рабочим аппаратом, при помощи которого реализуется действие генов. Они катализируют в организмах тысячи химических реакций, из которых в итоге слагается клеточный обмен. Благодаря им химические реакции в организме осуществляются с большой скоростью.

В настоящее время известно более 900 ферментов. Их подразделяют на шесть главных классов.

1. Оксиредуктазы, катализирующие окислительно-восстановительные реакции.

2. Трансферазы, катализирующие реакции межмолекулярного переноса различных химических групп и остатков.

3. Гидролазы, катализирующие реакции гидролитического расщепления внутримолекулярных связей.

4. Лиазы, катализирующие реакции присоединения групп по двойным связям и обратные реакции отрыва таких групп.

5. Изомеразы, катализирующие реакции изомеризации.

6. Лигазы, катализирующие химические реакции с образованием связей за счет АТФ (аденозинтрифосфорной кислоты).

При отмирании и перегнивании живых организмов часть их ферментов разрушается, а часть, попадая в почву, сохраняет свою активность и катализирует многие почвенные химические реакции, участвуя в процессах почвообразования и в формировании качественного признака почв - плодородия. В разных типах почв под определенными биоценозами сформировались свои ферментативные комплексы, отличающиеся активностью биокаталитических реакций.

В. Ф. Купревич и Т. А. Щербакова (1966) отмечают, что важной чертой ферментативных комплексов почв является упорядоченность действия имеющихся групп ферментов, которая проявляется в том, что обеспечивается одновременное действие ряда ферментов, представляющих различные группы; исключаются образование и накопление соединений, имеющихся в почве в избытке; излишки накопившихся подвижных простых соединений (например, NH 3) тем или иным путем временно связываются и направляются в циклы, завершающиеся образованием более или менее сложных соединений. Ферментативные комплексы являются уравновешенными саморегулирующимися системами. В этом основную роль играют микроорганизмы и растения, постоянно пополняющие почвенные ферменты, так как многие из них являются короткоживущими. О количестве ферментов косвенно судят по их активности во времени, которая зависит от химической природы реагирующих веществ (субстрата, фермента) и от условий взаимодействия (концентрации компонентов, рН, температуры, состава среды, действия активаторов, ингибиторов и т.д.).

В данной главе рассматривается участие в некоторых химических почвенных процессах ферментов из класса гидролаз - активность инвертазы, уреазы, фосфатазы, протеазы и из класса оксиредуктаз - активность каталазы, пероксидазы и полифенолоксидазы, имеющих большое значение в превращении азот- и фосфорсодержащих органических веществ, веществ углеводного характера и в процессах образования гумуса. Активность этих ферментов - существенный показатель плодородия почв. Кроме того, будет охарактеризована активность этих ферментов в лесных и пахотных почвах разной степени окультуренности на примере дерново-подзолистых, серых лесных и дерново-карбонатных почв.

ХАРАКТЕРИСТИКА ПОЧВЕННЫХ ФЕРМЕНТОВ

Инвертаза - катализирует реакции гидролитического расщепления сахарозы на эквимолярные количества глюкозы и фруктозы, воздействует также на другие углеводы с образованием молекул фруктозы - энергетического продукта для жизнедеятельности микроорганизмов, катализирует фруктозотрансферазные реакции. Исследования многих авторов показали, что активность инвертазы лучше других ферментов отражает уровень плодородия и биологической активности почв.

Уреаза- катализирует реакции гидролитического расщепления мочевины на аммиак и диоксид углерода. В связи с использованием мочевины в агрономической практике необходимо иметь в виду, что активность уреазы выше у более плодородных почв. Она повышается во всех почвах в периоды их наибольшей биологической активности - в июле - августе.

Фосфатаза (щелочная и кислая) - катализирует гидролиз ряда фосфорорганических соединений с образованием ортофосфата. Активность фосфатазы находится в обратной зависимости от обеспеченности растений подвижным фосфором, поэтому она может быть использована как дополнительный показатель при установлении потребности внесения в почвы фосфорных удобрений. Наиболее высокая фосфатазная активность в ризосфере растений.

Протеазы - это группа ферментов, при участии которых белки расщепляются до полипептидов и аминокислот, далее они подвергаются гидролизу до аммиака, диоксида углерода и воды. В связи с этим протеазы имеют важнейшее значение в жизни почвы, так как с ними связаны изменение состава органических компонентов и динамика усвояемых для растений форм азота.

Каталаза - в результате ее активирующего действия происходит расщепление перекиси водорода, токсичной для живых организмов, на воду и свободный кислород. Большое влияние на каталазную активность минеральных почв оказывает растительность. Как правило, почвы, находящиеся под растениями с мощной глубоко проникающей корневой системой, характеризуются высокой каталазной активностью. Особенность активности каталазы заключается в том, что вниз по профилю она мало изменяется, имеет обратную зависимость от влажности почв и прямую - от температуры.

Полифенолоксидаза и пероксидаза - им в почвах принадлежит важная роль в процессах гумусообразования. Полифенолоксидаза катализирует окисление полифенолов в хиноны в присутствии свободного кислорода воздуха. Пероксидаза же катализирует окисление полифенолов в присутствии перекиси водорода или органических перекисей. При этом ее роль состоит в активировании перекисей, поскольку они обладают слабым окисляющим действием на фенолы. Далее может происходить конденсация хинонов с аминокислотами и пептидами с образованием первичной молекулы гуминовой кислоты, которая в дальнейшем способна усложняться за счет повторных конденсаций (Кононова, 1963).

Замечено (Чундерова, 1970), что отношение активности полифенолоксидазы (S) к активности пероксидазы (D), выраженное в процентах (), имеет связь с накоплением в почвах гумуса, поэтому эта величина получила название условный коэффициент накопления гумуса (К). У пахотных слабоокультуренных почв Удмуртии за период с мая по сентябрь он составил: у дерново-подзолистой - 24 %, у серой лесной оподзоленной - 26 и у дерново-карбонатной почвы - 29 %.

ФЕРМЕНТАТИВНЫЕ ПРОЦЕССЫ В ПОЧВАХ

Биокаталитическая активность почв находится в значительном соответствии со степенью обогащенности их микроорганизмами (табл. 11), зависит от типа почв и изменяется по генетическим горизонтам, что связано с особенностями изменения содержания гумуса, реакции, Red-Ox-потенциала и других показателей по профилю.

В целинных лесных почвах интенсивность ферментативных реакций в основном определяют горизонты лесной подстилки, а в пахотных - пахотные слои. Как в одних, так и в других почвах все биологически менее активные генетические горизонты, находящиеся под горизонтами А или А п, имеют низкую активность ферментов, незначительно изменяющуюся в положительную сторону при окультуривании почв. После освоения лесных почв под пашню ферментативная активность образованного пахотного горизонта по сравнению с лесной подстилкой оказывается резко сниженной, но по мере его окультуривания повышается и в сильно окультуренных видах приближается или превышает показатели лесной подстилки.

11. Сопоставление биогенносга и ферментативной активности почв Среднего Предуралья (Пухидская, Ковриго, 1974)

№ разреза, название почвы

Горизонт, глубина взятия образца, см

Общее количество микроорганизмов, тыс. на 1 г абс.

сух. почвы (в среднем за 1962,

1964-1965 гг.)

Показатели активности ферментов (в среднем за 1969-1971 гг.)

Инвертаза, мг глюкозы на 1 г почвы за I сут

Фосфатаза, мг фенолфталеина на 100 г почвы за 1 ч

Уреаза, мг NH, нa 1 г почвы за 1 сут

Каталаза, мл 0 2 на 1 г почвы за 1 мин

Полифенолоксидаза

Пероксидаза

мг пурпурогаллина на 100 г почвы

3. Дерново-среднеподзолистая среднесуглинистая (под лесом)

Не определяли

1.Дерново-средне-подзолистая средне-суглинистая слабоокультуренная

10.Сераялесная оподзоленная тяжел осуглинистая слабоокультуренная

2. Дерново-карбонатная слабовыщело-ченная л егкосуглинистая слабоокультуренная

Активность биокаталитических реакций почв изменяется. Наименьшая она весной и осенью, а наиболее высокая обычно в июле-августе, что соответствует динамике общего хода биологических процессов в почвах. Однако в зависимости от типа почв и их географического положения динамика ферментативных процессов весьма различна.

Контрольные вопросы и задания

1. Какие соединения называют ферментами? Каковы их продуцирование и значение для живых организмов? 2. Назовите источники почвенных ферментов. Какую роль играют отдельные ферменты в почвенных химических процессах? 3. Дайте понятие о ферментативном комплексе почв и его функционировании. 4. Дайте общую характеристику течения ферментативных процессов в целинных и пахотных почвах.

Понятие о ферментах

Ферментами (энзимами) называют растворимые или связанные с мембранами белки, наделенные каталитической активностью.(Кроме белков каталитическую активность в организме могут проявлять некоторые РНК (рибозимы) и антитела (абзимы), однако они в тысячи раз менее эффективны, чем ферменты.) Эти названия произошли от латинского «fermentatio» - брожение и греческого «en zym» - внутри закваски. Они напоминают о первых источниках ферментов. Биохимии, которая изучает ферменты, называется энзимология . На схемах и в уравнениях реакций молекулы ферментов обозначают - Е . Вещества, превращения которых катализируют ферменты, называют субстратами (S) . Продукты энзиматической реакцииобозначают - Р . Так как ферменты являются белками, их получают в гомогенном виде теми же способами, что и другие белки. Для ферментов характерны физико-химические свойства, присущие белкам.

Отличие ферментов от неорганических катализаторов:

а) ускоряют реакции значительно эффективнее;

б) наделены высокой специфичностью действия;

в) подвергаются регуляции в физиологических условиях;

г) действуют в мягких условиях.

Строение ферментов

Ферментами могут являться как простые, так и сложные (конъюгированные) белки, в состав которых могут входить липиды, углеводы, ионы металлов, азотистые основания, производные витаминов. В организме ферменты могут функционировать как в растворимом состоянии, так и в виде нерастворимых комплексов или входить в состав биологических мембран.

Отличительной особенностью ферментов является наличие активного центра . Активный центр - это уникальная комбинация сближенных в пространстве аминокислотных остатков, которая обеспечивает:

а) узнавание молекулы субстрата,

б) связывание субстрата с ферментом,

в) осуществление каталитического превращения (в случае сложного фермента в акте катализа также принимает участие кофермент, входящий в состав активного центра).

Активный центр возникает в тот момент, когда белок сворачивается и принимает свою нативную (активную) конформацию. Структура активного центра может изменятся при взаимодействии с субстратом. По образному выражению Д. Кошланда субстрат подходит к активному центру как рука к перчатке.

Одна молекула фермента, особенно если она состоит из нескольких субъединиц, может содержать более одного активного центра.

В активном центре имеются два участка. Первый участок отвечает за узнавание и связывание субстрата. Он называется субстрат-связывающим участком или якорной площадкой. Второй участок называется каталитическим, в его состав входят аминокислотные остатки, принимающие участие в акте катализа.

Ферменты представляют белки, сильно различающиеся по молекулярной массе и сложности строения. Примером фермента с небольшой молекулой является рибонуклеаза, состоящая из одной субъединицы с молекулярной массой 13700 Дa. (У рибонуклеазы определена аминокислотная последовательность. В 1969 г. рибонуклеаза была синтезирована в лаборатории Б.Меррифилда в Нью-Йорке.) Многие ферменты состоят из нескольких субъединиц, например, лактатдегидрогеназа состоит из четырех субъединиц двух видов. К настоящему времени известно несколько мультиферментных комплексов, состоящих из десятков различных субъединиц и нескольких типов коферментов. Например, пируватдегидрогеназный комплекс состоит из 60 субъединиц трех типов и пяти типов кофакторов. Молекулярная масса такого комплекса составляет 2,3 * 10 6 - 10 * 10 6 Дa в зависимости от источника фермента. Молекула фермента может быть меньше, чем молекула субстрата. Например: молекулы ферментов амилазы и рибонуклеазы меньше, чем молекулы их субстратов – крахмала и РНК.

Белковая часть сложных ферментов каталитически неактивна и называется апоферментом . Связывание апофермента с небелковым компонентом приводит к образованию каталитически активного фермента (холофермента):

Многие ферменты содержат в своем составе ион металла, который может выполнять различные функции:

а) участвовать в связывании субстрата и процессе его каталитического превращения;

б) способствовать присоединению кофермента к молекуле фермента;

в) стабилизировать третичную структуру фермента (например Са 2+ в амилазе);

г) связываясь с субстратом, образовывать истинный субстрат, на который действует фермент.

Многие коферменты являются производными витаминов, поэтому нарушение обмена веществ при витаминной недостаточности обусловлено снижением активности определенных ферментов.

Некоторые ферменты наряду с активным центром содержат аллостерический (регуляторный) центр - участок белковой глобулы,вне активного центра, где могут связываться вещества, регулирующие ферментативную активность. Эти вещества называют аллостерическими эффекторами (аллостерическими активаторами или ингибиторами) . В результате связывания эффектора с аллостерическим центром происходит изменение структуры белка, приводящее к изменению пространственного расположения аминокислотных остатков в активном центре и, в итоге, к изменению ферментативной активности.

Ферменты, встречающиеся в одном организме и катализирующие одну и ту же химическую реакцию, но с различной первичной структурой белка, называются изоферментами. Изоферменты отличаются друг от друга по таким физико-химическим свойствам, как молекулярная масса, термостабильность, субстратная специфичность, электрофоретическая подвижность. Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты или их субъединицы. Например, фермент лактатдегидрогеназа (ЛДГ), катализирующая обратимую реакцию окисления лактата до пирувата, имеет четыре субъединицы двух типов М и Н, комбинация этих субъединиц лежит в основе формирования пяти изоферментов ЛДГ (рис.1). Для диагностики заболеваний сердца и печени необходимо исследование изоферментного спектра ЛДГ в сыворотке крови, поскольку ЛДГ 1 и ЛДГ 2 активны в сердечной мышце и почках, а ЛДГ 4 и ЛДГ 5 - а скелетных мышцах и печени.

Рис.1 Строение различных изоферментов ЛДГ.

Измерение ферментативной активности

Определение активности ферментов осуществляется путем измерения скорости катализируемых реакций. Скорость ферментативных реакций измеряют по убыли концентрации субстрата или увеличению концентрации продукта за единицу времени:

v = -ΔС S /Δτ , v = ΔC P /Δτ ,

где ΔС S – изменение молярной концентрации субстрата (моль/л),

ΔC P - изменение молярной концентрации продукта реакции (моль/л),

Δτ - изменение времени (мин, сек).

Кинетические исследования желательно проводить при насыщающей концентрации субстрата, в противном случае фермент не будет иметь возможность проявить максимальную активность.

Единицы активности ферментов:

Международная единица фермента (U) - это такое количество фермента, которое катализирует превращение 1 мкмоль субстрата за 1 минуту при температуре 25 о С и оптимальном рН среды.

В системе СИ единицей фермента является катал (кат) –это такое количество фермента, которое катализирует превращение одного мольсубстрата за 1 секунду. Нетрудно подсчитать, что:

1 U = (1 * 10 -6 М)/60 с = 1,67 * 10 -8 М с-1 = 1, 67 * 10 -8 кат = 16,7 нкат.

Часто определяют удельную активность препаратов фермента делением активности навески препарата фермента, выраженной в (U), на массу навески в миллиграммах:

А уд = U/масса препарата (мг)

При очистке ферментов удельная активность увеличивается. По возрастанию удельной активности можно судить об эффективности стадий очистки и чистоте ферментного препарата.

Для оценки активности высокоочищенных, гомогенных препаратов ферментов делением числа международных единиц (U) фермента в образце на количество вещества фермента (мкмоль) в этом образце рассчитывают молярную активность (число оборотов). По физическому смыслу молярная активность - это число молекул субстрата, подвергающихся превращению на одной молекуле фермента за 1 минуту или за 1секунду. Например: для уреазы, ускоряющей гидролиз мочевины, молярная активность составляет 30000, трипсина - 102, глюкозоксидазы - 17000 циклов в секунду.

Свойства ферментов

4.1. Механизм действия. Ферменты не смещают равновесие катализируемых реакций в сторону образования продуктов, таким образом, константа равновесия реакции остается постоянной. Как и все катализаторы, ферменты лишь уменьшают время достижения этого равновесия. В большинстве случаев ферменты ускоряют реакции в 10 7 - 10 14 раз. В основе эффективности ферментативного катализа лежит сильное снижение энергии активации реакции за счет превращения субстрата в продукт через переходные состояния.

4.2. Специфичность действия . Специфичность связывания с субстратом и пути протекания ферментативной реакции определяются апоферментом. Специфичность действия ферментов определяет направленный обмен веществ в организме.

О ферментах говорят, что они имеют узкую субстратную специфичность , если они действуют на очень небольшой круг субстратов. Иногда можно говорить об абсолютной субстратной специфичности, например, каталаза катализирует только одну реакцию - разложение пероксида водорода:

Для большинства ферментов характерна относительная (широкая, групповая) субстратная специфичность , когда они катализируют группу однотипных реакций. Например, алкогольдегидрогеназа катализирует превращения спиртов в альдегиды, причем в качестве субстратов могут выступать метанол, этанол, пропанол и другие спирты. Интересным является тот факт, что алкогольдегидрогеназа может окислять и нелинейные спирты, а также спиртовую группу, входящую в состав сложных молекул, в частности, этот фермент может катализировать превращение ретинола в ретиналь. Естественно, ферменты, наделенные широкой субстратной специфичностью, катализируют превращения субстратов с различной эффективностью.

Ферменты наделены также стереохимической специфичностью : их активный центр распознает молекулы субстратов по пространственной конфигурации. Например, оксидазы L-аминокислот активны только в отношении L-аминокислот и совершенно не действуют на их D-аналоги. Для окислительного дезаминирования D-аминокислот в живых организмах имеются оксидазы D-аминокислот, не действующие на L-аминокислоты. Именно способность активного центра связываться с определенными стереоизомерами субстрата лежит в основе функционирования таких ферментов, как рацемазы, которые превращают одни стереоизомеры в другие.

Специфичность путей превращения заключается в том, что один субстрат под действием разных ферментов может превращаться в продукты, различающиеся по структуре и роли в метаболизме.

Приведем пример: оксидазы L-аминокислот действуют на L-аминокислоты, превращая их в альфа-кетокислоты с образованием аммиака и пероксида водорода.

Декарбоксилазы L-аминокислот связываются с теми же субстратами, но катализируют другую реакцию: декарбоксилирование с образованием биогенных аминов и выделением углекислого газа.

Еще одним примером является возможность превращения глюкозо-6 фосфата под действием различных ферментов, по одному из возможных метаболических путей:

4.3. Термолабильность.

Как и многие белки, при повышении температуры ферменты подвергаются термической денатурации, что приводит к нарушению нативной конформации фермента и изменению структуры активного центра. Ферменты млекопитающих начинают заметно денатурировать при температурах выше 40 о С.

В связи с вышесказанным, ферментные препараты желательно хранить при пониженных температурах. Одним из лучших путей сохранения ферментов является их лиофилизация (высушивание при температуре ниже -70 о С в вакууме), переведение в частично денатурированное состояние с помощью солей аммония и помещение в холодильник.

4.4. Зависимость скорости реакции от температуры. Скорость ферментативных реакций, как и любых химических реакций, зависит от температуры. При повышении температуры на 10 о С скорость реакции увеличивается в 2-4 раза согласно правилу Вант-Гоффа. Однако при температурах выше 40 о С существенной становится денатурация ферментов, что приводит к уменьшению суммарной активности (рис. 2):

Рис. 2. Зависимость скорости ферментативной реакции от температуры.

4.5. Зависимость скорости реакции от рН. Зависимость скорости ферментативной реакции от рН имеет колоколообразный вид (рис. 3). Значения рН, при которых наблюдается наиболее высокая скорость ферментативной реакции, называют оптимальными (рН-оптимум). Характер кривых и значение рН-оптимума зависит от природы заряженных групп субстрата и заряженных групп фермента (особенно тех, которые входят в активный центр). Оптимум рН для большинства ферментов лежит в пределах от 6,0 до 8,0 (рис. 3).

Рис. 3. Зависимость скорости ферментативной реакции от рН.

Однако, есть и исключения, например, пепсин наиболее активен при рН 1,5 – 2,0, а щелочная фосфатаза при рН 10,0 – 10,5 (рис. 4)

Рис. 4. Зависимости скорости ферментативной реакции (v) от рН среды.

При экстремальных (очень низких или очень высоких) значениях рН происходит нарушение третичной структуры молекулы фермента, приводящее к потере ферментативной активности.


Похожая информация.




Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.