Солнечные батареи можно или поли. Какие выбрать солнечные батареи: поликристаллические или монокристаллические? И все же, какие солнечные батареи лучше

В статье рассмотрено практическое использование моно и поликристаллов кремния при выпуске различных типов современных солнечных батарей, а также отличия этих существующих типов солнечных модулей.

Множество людей на земле до настоящего времени во многом зависят от таких источников энергии как газ, дрова, мазут, керосин и пр. Отсутствие доступа к электрической энергии, у этой части человечества – существенно замедляет их экономическое развитие, а также ведет в большинстве случаев к нанесению большего вреда окружающей среде. Поэтому, внедрение в их жизнь альтернативных источников энергии, таких как ветер, энергия солнечного излучения, энергия водной стихии – для них выгодно, как с экологической, так и моральной и экономической, точек зрения.

Невозобновляемые источники энергии в перспективе развития человечества, по всей видимости уйдут с энергетической арены его обеспечения, а их место займут , такие, к примеру, как ветер, вода и энергия солнца. Именно об энергии солнечного излучения и возможности ее использования человеком, мы и поговорим с вами сегодня в нашей статье.

Что собой представляют монокристаллические и поликристаллические фотоэлектрические модули?

В настоящее время из всех типов солнечных батарей, наибольшее распространение среди населения, получили солнечные панели: монокристаллические и поликристаллические, последние из которых часто также называют «мультикристаллическими солнечными панелями».

Конструктивно, монокристаллическая панель состоит из десятков силиконовых , собранных в единую панель. Данные фотоэлектрические элементы, смонтированы в стеклопластиковый, надежный и долговечный корпус, дающий хорошую защиту этим фотомодулям, как от пыли, так и от атмосферной влажности.

Такая панельная конструкция солнечных батарей позволяет эксплуатировать их в разнообразных условиях – как на море, так и на суше. Превращение солнечной световой энергии в солнечных батареях в энергию электрическую, происходит за счет фотоэлектрического эффекта преобразования энергии в самих фотомодулях солнечной панели.

Материалом для изготовления монокристаллических солнечных панелей, является сверх чистый кремний, использующийся также для производства полупроводниковых приборов в радиоэлектронике, и хорошо освоенный современной промышленностью. Стержни кремниевого монокристалла, медленно растут» и вытягиваются из кремниевого расплава, а далее разрезаются на части, с их толщиной 0,2-0,4 мм и уже используются после их последующей обработки, для изготовления фотоэлектрических элементов, входящих в состав солнечных панелей.

Практика использования современных солнечных панелей показала, что уже на протяжении многих лет, одними из наиболее популярных и востребованых в мире – есть солнечные панели монокристаллические. КПД монокристаллических панелей составляет примерно 15-17%.

Когда происходит медленное охлаждение кремниевого расплава, то из него получается поликристаллический кремний, использующийся для изготовления поликристаллических солнечных панелей. В этом случае операция вытягивания кристаллов кремния из расплава полностью опускается, а сам процесс менее трудоемок, нежели при изготовлении монокристаллического кремния, а соответственно и такие солнечные батареи дешевле. Но все-таки, существенным недостатком поликристаллического кремния есть то, что он имеет области с зернистыми границами, которые немного ухудшают его качество.

Рамка поликристаллических солнечных батарей (модулей) изготавливается из алюминия и покрывается специальным антикоррозионным составом, имеющим черный цвет. Высокое качество и долговечность такой конструкции, здесь достигается путем надежного закрепления пленки на обратной стороне каждой рамки и ее плотной герметизации по краям. Все элементы поликристаллической панели солнечной батареи покрываются специальным ламинатом, который устойчив, как к перепадам температур, так и к воздействию снега и дождя.

Дабы ответить на вопрос, что же лучше – «моно» или «поли» кристаллы, а соответственно и типы солнечных батарей, необходимо предварительно разобраться в их отличиях и сходстве.

Основные отличия «моно» и «поли» кристаллических типов солнечных батарей.

1. Основное и главное отличие этих двух типов солнечных батарей состоит в их эффективности преобразования солнечной энергии в электрическую. Сегодняшние монокристаллические панели при их серийном производстве – имеют эффективность по преобразованию солнечной энергии максимум до 22%, а используемые в космических технологиях – даже до 38%. Это связано с чистотой сырья монокристаллов кремния, которая в таких батареях – достигает почти 100%.

У серийно выпускаемых поликристаллических панелей – эффективность преобразования солнечной энергии в электрическую, намного меньше, нежели у монокристаллических панелей, и составляет по максимуму – 18%. Такие низкие показатели по эффективности у данного типа батарей связаны с тем, что для их изготовления, используется не лишь чистый первичный кремний, но и сырье с переработанных солнечных батарей и пр. Здесь также следует понимать, что чем выше у солнечных батарей эффективность по преобразованию солнечного света, тем при одинаковой мощности разных типов батарей – их размер будет меньше.

2. Относительно внешнего вида – отметим следующее. У монокристаллических элементов солнечных панелей – углы скруглены, а поверхность однородна. Округленность их форм связана здесь с тем, что монокристаллический кремний, при его производстве получают в цилиндрических заготовках. Поликристаллические элементы солнечных модулей имеют квадратную форму, поскольку их заготовки при производстве – также квадратной формы. По своей структуре – цвет поликристаллов неоднороден, ибо состав поликристаллического кремния также неоднороден и включает в себя множество разнородного кристаллического кремния, а также в незначительном количестве и примеси.

3. Относительно ценовой политики солнечных модулей, то солнечные батареи из монокристаллического кремния незначительно дороже (примерно на 10%), нежели цена солнечных батарей из поликристаллического кремния – если брать, конечно же, в пересчете на единицу их мощности. Как, наверное, вы уже поняли, большая цена монокристаллических солнечных батарей, в первую очередь связана с более дорогостоящим процессом изготовления и очистки исходного монокристаллического кремния.

Заключение.

Подводя небольшой итог сказанному, можно предположить, что основные параметры по которым мы подбираем себе солнечные батареи для нашей солнечной электростанции, к примеру, для загородного дома – от типа применяемых в них фотоэлектрических элементов, не зависят. Если мы хотим более экономный вариант исполнения, то наш выбор падет на поликристаллические солнечные модули – которые при той же мощности, будут немного больше по площади, нежели модули монокристаллические, но зато немного их дешевле. Цвет же самой поверхности солнечных панелей, роли вообще никакой не играет при их выборе, учтите это!

Скажем еще пару слов относительно использования солнечных батарей в мире по их типам. На первом месте здесь с объемом рынка продаж в 52,9%, стоят более дешевые, поликристаллические солнечные панели. Второе место по праву, относительно продаж, принадлежит панелям из монокристаллического кремния, которых на рынке примерно 33,2%. Третье же место по продажам – за аморфными и прочими солнечными батареями, с их соотношением к общему рынку продаж в 13,9% (их мы в статье не рассматривали).

Июнь 2018

Идея создания устройств, способных накапливать энергию Солнца, возникла еще в XIX веке. Первая батарея появилась в 1839 году - благодаря усилиям Антуана-Сезара Беккереля. Ее КПД составлял всего 1 %. За истекшее с тех пор время технология много раз совершенствовалась, коэффициент полезного действия современных солнечных аккумуляторов превышает 20 %. Сегодня поговорим о том, какие батареи лучше: монокристаллические или поликристаллические. Критерии оценки: КПД, сохранение исходных свойств, стоимость, эксплуатационные затраты.

Конструкция и применение

Солнечная батарея - совокупность элементов, которые служат для получения электрической энергии из световой. Принцип действия основан на фото-электрическом эффекте - за счет преобразования солнечного света в электроток. Основные компоненты системы:

    Полупроводник. Как правило, моно- или поликристаллический кремний, дополненный другими химическими соединениями, которые способствуют образованию фото-электрического эффекта. Состоит из 2 материалов с разной проводимостью, за счет чего между ними происходит постоянное перемещение электронов (p-n-переход).

    Прокладка - тончайшее покрытие, которое препятствует свободному движению электронов, находится между слоями полупроводника.

    Источник электроэнергии, при подключении которого к прокладке электроны приобретают способность ее преодолевать - в результате этого возникает упорядоченное движение заряженных частиц, собственно, генерируется электрический ток.

    Аккумулятор - накапливает полученную электроэнергию.

    Контроллер заряда - выполняет функцию распределителя потоков электрической энергии.

    Инвертор - нужен для трансформации постоянного тока в переменный.

    Стабилизатор напряжения.

Для использования солнечных батарей в качестве основного источника электроэнергии важно, чтобы количество ясных дней преобладало над пасмурными. По этой причине в большинстве регионов нашей страны подобные установки используют преимущественно как вспомогательные.

Особенности монокристаллических панелей

Монокристаллическая система представляет собой десятки фотоэлементов, объединенных в единую панель. Кристаллы получают путем выращивания - по методу Чохальского. Каждый из них закреплен на стеклопластиковой основе, которая защищает от пыли и влажности. Материал элементов - очищенный кремний. Светочувствительные ячейки ориентированы в одну сторону, за счет чего КПД монокристаллических панелей выше, чем поликристаллических. Другие особенности:

    продолжительность непрерывной эксплуатации - не менее 20 лет;

    КПД монокристаллов - в среднем до 20–22 % (без учета потерь полученной электроэнергии), в отдельных случаях - до 20 %;

    уровень поглощения выше, чем в поликристаллических панелях;

Единственный минус монокристаллических систем - более высокая стоимость, впрочем, затраты на их приобретение быстро окупаются. При дефиците площади, когда крайне важно добиться максимального количества энергии с каждого квадратного метра, подобное решение предпочтительнее.

Особенности поликристаллических панелей

Поликристаллы получают путем постепенного охлаждения расплавленного кремния. Такая технология обходится дешевле, чем искусственное выращивание монокристаллов, правда, на краях поликристаллов может присутствовать зернистость, что приводит к снижению их эффективности. Принципиальное отличие от монокристаллических - неоднородная структура и окрас. Это обусловлено примесями и тем, что в системе содержатся кристаллы разного типа. Особенности:

    КПД меньший, чем у монокристаллических элементов - до 17-18 %;

    доступная цена - производство поликристаллических панелей менее затратное;

    скорость утраты мощности (деградация) поликристаллов меньше, чем у монокристаллов.

Таким образом, если стоит задача получить определенное количество электроэнергии, при использовании поликристаллических панелей потребуется большая площадь. Есть мнение, что их выгоднее использовать в регионах с преобладанием пасмурных дней - при недостаточном количестве солнца поликристаллы дают больше энергии, чем монокристаллы.

Сравнение основных характеристик монокристаллических и поликристаллических элементов

Каждая из систем имеет свои плюсы и минусы. Как определить, что предпочтительнее, моно- или поликристаллы? Предлагаем вашему вниманию сравнительную таблицу, в которой рассмотрены ключевые характеристики каждого из вариантов:

Параметр

Монокристаллы

Поликристаллы

Вывод

Температурный коэффициент

0,45 %

0,45 %

Снижение мощности в системах обоих типов происходит практически одинаково

Скорость деградации

На 3 % в первый год эксплуатации, в последующие - на 0,71 %.

На 2 % в первый год эксплуатации, на 0,67 % в последующие годы.

Разница несущественна, поэтому ею можно пренебречь.

Цена

Высокая стоимость, обусловлена сложностью производства.

На 10-15 % дешевле, чем монокристаллические элементы.

Для многих цена оказывается решающим доводом в пользу поликристаллических панелей.

Фоточувствительность (при уровне освещенности 600 Вт/м 2

При одинаковой мощности модулей разница не превышает 10 %.

По сути этим показателем можно пренебречь.

Годовая выработка

По данным лаборатории PHOTON она незначительно выше (не более 2 %) у монокристаллов. Однако более подробные исследования показали, что имеет значение не только тип панели, но и бренд.

Важнее свойства конкретной солнечной батареи - именно они являются ключевым критерием выбора.

При выборе солнечных панелей необходимо обращать внимание не только на тип фотоэлементов, но и на другие критерии: соотношение цены и эффективности, заявленный ресурс (гарантийный срок), напряжение при максимальной мощности, комплектацию.

Эффективные решения для вашего дома

Как видите, мы так и не смогли дать однозначный ответ на вопрос о том, какие фотоэлементы предпочтительнее - моно- или поликристаллические. Наша компания осуществляет продажу солнечных батарей с панелями обоих типов - мы предлагаем только проверенные решения, эффективность которых доказана на практике. Приглашаем к сотрудничеству застройщиков и собственников коттеджей, заинтересованных в получении доступной, а главное экологически безопасной электроэнергии:

· подберем солнечные батареи с учетом площади дома, климатических и ландшафтных особенностей;

· предоставим долгосрочную гарантию на приобретенный товар;

· за умеренную плату выполним обслуживание приобретенных у нас систем;

· предложим несколько вариантов солнечных батарей с детальным описанием плюсов и особенностей каждой из них - вы сможете подобрать для себя лучший вариант.

Позвоните нам, и мы подробнее расскажем о преимуществах солнечных батарей, особенностях их эксплуатации и выгоде от использования предлагаемых технологий.

Солнечная энергия относится к возобновляемым источникам энергии, так же как вода и ветер. Сейчас большинство жителей нашей планеты зависит от таких источников энергии как газ, нефть, мазут, уголь, дрова. Внедрение альтернативных источников энергии выгодно с экологической и экономической точки зрения. Их использование дает человеку автономность и является правильным решением с этической точки зрения.

Солнечные панели могут быть на основе поли- или монокристаллического кремния. Несмотря на одинаковый принцип работы, разница между ними в условиях эксплуатации и КПД существенна. Популярностью пользуются оба типа ячеек.

Монокристаллические панели

Отличить монокристаллические солнечные батареи можно по характерной форме отдельных ячеек – квадрат со срезанными углами и однородной поверхностью. Это связано с особенностями производства и кристаллической решеткой кремния. Выращенный отдельный кристалл имеет цилиндрическую форму, а после нарезки на тонкие пластины толщиной 0,2-0,4 мм получается характерная псевдоквадратная форма. Сам процесс протекает в вакуумных ростовых печах, благодаря чему становится возможным достичь чистоты материала в 99,99%. Поэтому монокристаллические солнечные панели имеют более высокий КПД, чем у поликристаллов.

Использование круглых пластин неэффективно из-за потерь полезной площади, а если обрезать до правильного прямоугольника, тогда получится много отходов и значительно возрастет стоимость всей солнечной панели. Поэтому для монокристаллических элементов была принята специальная форма усеченного в вершинах квадрата. Отдельные элементы собираются в целую батарею и заключаются в надежную пластиковую оболочку, после чего их можно использовать в любых погодных и климатических условиях.

Плюсы монокристаллических элементов

Высокий КПД, порядка 15-20% солнечной энергии может быть преобразовано в электрическую;
Эффективно работают при отрицательных температурах;
Эффект старения у этих элементов протекает не так заметно, в среднем этот показатель составляет порядка 20% на 25 лет срока службы;
Занимают меньшую площадь при одинаковой электрической отдаче;

Поликристаллические панели

Технология получения поликристаллических солнечных панелей немного проще. Емкость с расплавом кремния плавно охлаждают до полного затвердевания, после чего получается прямоугольная заготовка, состоящая из поликристаллического кремния. Чистота и однородность такого материала будет ниже. В качестве сырья часто используются уже переработанные солнечные батареи. Теперь их можно нарезать на тонкие, меньше 1 мм пластины правильной прямоугольной формы. Такие ячейки легко отличить по неоднородной структуре поверхности, связанной с особенностями строения кристаллической решетки кремния.

Полученные поликристаллы подрезаются до нужного размера, а затем приклеиваются на специальную основу. Рамка для крепления изготавливается из алюминия и окрашивается в черный цвет. После чего поликристаллические солнечные панели устанавливаются на рамку и герметизируются. Внешняя поверхность покрывается ламинирующим слоем, который защищает от дождя, холода и механических повреждений. От качества проделанной операции будет зависеть срок службы и эффективность солнечной панели.

Плюсы поликристаллических солнечных модулей

Недорогое и технологичное производство обеспечивает низкую цену готовым изделиям;
Хорошо улавливают рассеянный солнечный свет из-за своей неровной поверхности, эффективны в пасмурную погоду;
Больше выбор размеров и форм готовых панелей, по своим свойствам они уже очень близко подошли к изделиям из монокристалла.

Недостатки панелей из моно и поликристаллов

Несмотря на отличия в изготовлении элементов солнечных панелей, для них будут характерны общие недостатки, связанные со свойствами кремния и особенностями производства.

Отдельные элементы из моно и поликристаллов очень хрупкие. Небольшая толщина рабочего слоя требует для них прочной подложки и ровного основания. Трещины на поверхности фотоячейки приводят к ее полному выходу из строя.
Низкая эффективность преобразования солнечной энергии. Для лучших образцов, применяемых в космических технологиях, кпд может достигать 38%. Обычные панели имеют кпд не более 22% для монокристаллических элементов и 15-18% для поликристаллов.
Зависимость от количества солнечных дней в году. Этот источник энергии будет эффективен только в регионах, где количество солнечных дней будет значительно превышать число пасмурных. Необходимо также учитывать широту их расположения и климат.


Моно и поли элементы обладают эффектом старения. Для моноячейки падение эффективности за срок службы в 25 лет составляет 20%, то для поли- падение может достигать 30% и выше. Таким образом, даже такой надежный источник энергии в виде солнечных батарей имеет ограниченный срок эксплуатации и может потребовать обновления.
Для любого типа солнечных модулей необходима специальная электростанция, преобразовывающая и стабилизирующая выходное напряжение. Для создания автономной системы или системы «умный дом» потребуется установка аккумуляторов и включение их в общую сеть.
Цена на солнечные фотоэлементы все еще остается достаточно высокой, по сравнению с традиционными источниками энергии. При этом поликристаллические солнечные батареи стоят немного дешевле своих аналогов из монокристаллов.
Современные солнечные батареи все чаще находят применение в быту. Благодаря им становится возможным обеспечивать энергией удаленные объекты связи, автономные объекты в сельском хозяйстве и промышленности. С их помощью осуществляется освещение парков и дорог, работают светофоры на пешеходных переходах, заряжаются различные гаджеты и устройства в местах, где отсутствует электричество.

Для освещения дома, сада, беседки или для зарядки электрических приборов можно использовать солнечную энергию. Солнечные батареи широко используются в бытовых и промышленных целях. Для более серьезных целей сооружают солнечные станции, они способны обеспечить энергией крупные объекты. Данная разработка используется на земле, на воде и даже в космосе.

Устройство солнечных пластин несложное и состоит из корпуса, фотоэлемента и проводов. Фотоэлемент чаще всего изготавливают из кремния. Под воздействием солнечного света электроды движутся, и выделяемая энергия через подключенные с обеих сторон провода поступает к подсоединенному прибору или аккумулятору. Кремний используется как в монокристаллических, так и в поликристаллических пластинах.

Внешний вид монокристаллической пластины напоминает квадрат, но имеет округленные углы.

Такая форма получается при выращивании монокристаллов. Поверхность батареи однородная и имеет насыщенный синий цвет. За счет однородности пластины достигается очень высокий КПД, так как солнечная энергия не рассеивается, а лучи равномерно освещают всю поверхность. Попадая на поверхность батарей, они проходят через переход в полупроводниковых пластинах на большой площади.

Монокристаллические батареи лучше поликристаллических, так как намного эффективнее и имеют ряд положительных моментов:

  1. Монобатареи можно крепить на неровную поверхность, они гибкие и при волновом размещении не портятся и не теряют своих свойств.
  2. Гибкие солнечные батареи превзошли поликристаллические и по эффективности работы в непогоду, монокристаллические модели могут работать и в тени.
  3. Для зимы также лучше подойдут монокристаллические панели, они могут выдержать минусовую температуру.


К минусу с монокристаллами можно отнести цену, она будет примерно на 10% выше цены батареи на поликристаллах.

Главное при покупке – тщательно осмотреть панель. Она не должна иметь повреждений, царапин или сколов.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Читайте также: Изготовляем солнечную панель из светодиодов

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД. Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно

С появлением новейших разработок в области науки и техники, ассортимент солнечных модулей постепенно расширяется. Но неизменную популярность среди пользователей, как и прежде, занимают солнечные батареи из монокристаллического и поликристаллического кремния.

Монокристаллические солнечные батареи

Изготовление солнечных батарей на базе монокристаллического кремния позволяет получать наиболее высокие показатели эффективности фотоэлектрического преобразования среди модулей коммерческого применения за счёт максимально возможной чистоты исходного материала (монокристаллического кремния). КПД монокристаллических солнечных элементов (из которых производятся такие модули) достигает показателей до 19-22%; КПД монокристаллических солнечных батарей, соответственно, – 16-18%.

За счёт более качественного исходного материала, монокристаллические солнечные батареи имеют лучшие показатели по работе при низких уровнях освещённости (в условиях облачности). Что очень важно для электрогенерации в осенне-зимний период, особенно при применении солнечных батарей в Украине. Помимо этого, монокристаллические элементы более эффективно работают в морозную погоду, поэтому использовать монокристаллические солнечные батареи в зимний период более практично.

В случае, если целью является получение максимальной генерации с единицы площади, следует использовать только монокристаллические модули.

Поликристаллические солнечные батареи

Основное преимущество поликристаллических солнечных батарей – они дешевле, так как себестоимость исходного материала (мультикристаллических пластин) ниже, но и эффективность работы таких модулей ниже. Их использование целесообразно если нет задачи получения максимальной выработки электроэнергии с единицы установленной мощности. Если в вашей местности нету значительных перепадов уровней освещенности в течении длительного периода.

Внешний вид

Сырьем для производства монокристаллических элементов солнечных батарей является монокристалл кремния, полученный путем выращивания в специальных ростовых вакуумных печах. Чистота такого изделия равна 99,999%, от сюда и значительно высший КПД по сравнению с поликристаллическими элементами. Кристалл кремния в печи растет в форме цилиндра, если его порезать на пластины – мы получим круги).


Растущий в печи кристалл кремния имеет цилиндрическую форму

Если далее из таких круглых пластин сделать солнечные элементы и собрав их в готовую солнечную панель, у нас будет очень много неэффективной площади панели. Но если же из круглой пластины вырезать квадрат, получится много отходов производства. Поэтому принята стандартная форма монокристаллических солнечных элементов, так называемый псевдоквадрат . Это лучшее решение по оптимизации полезной площади монокристаллической солнечной панели и уменьшении производственных отходов.


Монокристаллический солнечный элемент формы псевдоквадрат

Производство элементов (ячеек) для поликристаллических солнечных батарей технологически на много проще, в следствии сами элементы значительно дешевле. Чаще всего, емкость – тигель с расплавленным кремнием, чистота которого намного ниже чем при производстве монокристаллических элементов, плавно охлаждают до полного остывания. Полученный слиток кроят на пластины нужной формы. Внешне элемент для поликристаллической солнечной панели легко отличить от монокристаллического благодаря визуально неоднородной структуре.


Эффект старения

С каждым годом эксплуатации любых солнечных батарей их производительность немного уменьшается, можно сказать что происходит “старение”. И для монокристаллических солнечных батарей этот эффект значительно ниже, это связано с их равномерной структурой. К примеру, если монокристаллические элементы стареют за 25 лет на 17 – 20%, то для монокристаллических элементов этот показатель может превысить все 30%.

Сравнение по эффективности работы

Начиная с «бума» массового производства солнечных панелей в начале 2000-х годов, ведутся споры, какой из вариантов, моно- или мультикремний является более предпочтительным, с точки зрения эффективности использования.

В данной статье мы не будем проводить глубокий теоретический анализ физических процессов, а обратим внимание только на имеющиеся статистические данные.

Наиболее объективной информацией о эффективности работы фотоэлектрических модулей, являются данные об натурных испытаниях, проводимых под эгидой журнала Photon International (модули различных производителей устанавливаются в одинаковых условиях, на каждую группу устанавливается отдельный счётчик вырабатываемой энергии). Место проведения испытаний – Аахен, Германия.

В качестве результирующего параметра для сравнения взят параметр «коэффициент выработки», определяемый как соотношение выработанной энергии к расчётной, которая должна быть полученной исходя из номинальной мощности модуля, реальных условий окружающей среды (освещённость, температура и т.д.). По результатам 2013 и 2014 года, были получены следующие значения по лидерам:

Компания

Материал подложки

Место 2013 год

Процент 2013

ET Solar Industry

Seraphim Solar System

ET Solar Industry

Hareon Solar Technology

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 60%.

Компания

Материал подложки

Место 2014 год

Процент 2014

Huanghe Photovoltaic Technology

ET Solar Industry

Seraphim Solar System

Hareon Solar Technology

Мы видим, что:

ТОП-3: монокремний 100%; ТОП-5: монокремний 80%; ТОП-10: монокремний 70%.

Таким образом, образцы, где в качестве базового материала использован монокремний, при проведении данных испытаний продемонстрировали более высокую эффективность по выработке электроэнергии. Покольку результатов по другим объективным сравнительным испытаниям не приводится, мы рекомендуем использование монокристаллических солнечных панелей.

Наше предприятие “Пролог Семикор” производит солнечные модули только из монокристаллических солнечных элементов. Если вы заинтересованны купить солнечные батареи полностью украинского производства, посетите наш магазин, нажав в меню сайта “Наш магазин”. Так же мы можем предоставить консультацию по внедрению “Зеленого Тарифа” с 10% надбавкой за использования украинских комплектующих.

Поликристаллические и монокристаллические солнечные батареи позволяют установить независимый источник энергообеспечения в домах, а также на предприятиях. На сегодняшний день благодаря солнечным батареям можно:

    Обеспечивать автономное и резервное электроснабжение частных домов, офисных зданий, заправочных комплексов, тепличных и фермерских хозяйств, киосков.

    Обеспечивать освещение парков, садов, улиц и шоссейных дорог;

    Обеспечивать электроэнергией удалённые объекты телекоммуникаций.

    Усовершенствовать работу газопроводов и нефтепроводов;

    Обеспечить электропитанием системы подачи воды, а также ее опреснения.

    Заряжать разнообразные гаджеты (актуально в походах и поездках за город).



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.