Термообработка аустенитной стали. Термическая обработка аустенитных жаропрочных сталей и сплавов. Межкристаллитная коррозия в аустенитных нержавеющих сталях

Хромоникелевые стали. Введение в сталь никеля сильно расширяет у-область, снижает температуру мартеиситного превращения и при 8(% Ni сталь с 18 % Cr и 0,1 % С пере­ходит в класс аустенитных. Мартенситная точка Mb при охлаждении для этих сталей лежит несколько ниже комнат­ной температуры, а мартенситная точка при деформации Мд - выше.

Точное положение Mn сталей типа 18-8 определяется со­отношением хрома, углерода, никеля и примесей в стадии меняется в широких пределах от 0 до (-180)-^(-190) 0C.

Мартенсит может быть получен пластической деформа­цией или обработкой холодом. Важно отметить, что состав 18 % Cr-8|% Ni при 0,1 % С требует минимального количе­ства никеля (рис. 170) для обеспечения аустенитной струк­туры, т. е. является наиболее экономически выгодным, что и определило широкую распространенность сталей этого типа.

Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (проч­ность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аусте­нитные коррозионностойкие стали нашли широкое приме­нение в качестве конструкционного материала в различных отраслях машиностроения.

В хромоникелевых аустенитных сталях промышленных плавок возможны следующие фазовые превращения: 1) об­разование карбидных, карбонитридных фаз и сг-фазы при нагревах в интервале 650-850 0C; 2) растворение этих фаз при нагреве до более высоких температур (1100-1200°С); 3) образование б-феррита при высокотемпературных нагре­вах; 4) образование а - и е-мартенситных фаз при охлаж­дении и пластической деформации.

Выделение карбонитридных фаз происходит преимуще­ственно по границам зерен, что снижает пластичность ста­лей и их сопротивление МКК. Резко охрупчиваются стали при образовании а-фазы.

Присутствие в структуре стали 6-феррита отрицательно сказывает­ся иа ее технологичности, особенно при горячей обработке давлением. Поэтому в сталях, подвергающихся прокатке, ковке, штамповке, при повышенных температурах количество 6-феррита строго лимитируется-

Рис. 170. Схема термической обработки ауетенитиых нержавеющих сталей1 (Е. А. Ульянин):

А - нестабилизированных; 6 - стабилизирующих Ti или Nb

Так, в сталях типа 10Х18Н9Т при нагреве до 1200 0C может образовать­ся до 40-45 % 6-феррита, а в сталях 10Х18Н10Т, 10Х18Н12Б до 15- 20 % б-феррита. Поэтому при выплавке этих сталей требуется обеспе­чить отношение Cr/Ni

Ниобий и титан, находясь в твердом растворе (аустените), снижают температуру мартенситного превращения, а при выделении их в карбо - иитридиых фазах происходит обеднение аустенита углеродом и азотом, и мартенситиая точка повышается.

Присутствие б-феррита понижает мартенситную точку, так как при его образовании происходит перераспределение легирующих элементов и у-фаза обогащается аустеиитообразующими элементами.

Целью. термической обработки является получение аус­тенитной структуры, снятие внутренних напряжений и уст­ранение склонности к МКК, которая возникает при сварке, горячей обработке давлением или других технологических операциях.

Термическая обработка иестабилизированных титаном и ниобием хромоникелевых аустенитных сталей (например, 12Х18Н9) заключается в закалке из однофазной аустенит­ной области (от IOOO0C) в воду (закалка без полиморфно­го превращения) (см. рис. 170,а). Считается, что закалку следует проводить от температур несколько выше темпера­туры растворения хромистых карбидов (7р), причем чем выше содержание углерода в стали, тем от более высоких температур проводят закалку.

Стали, стабилизированные титаном или ниобием, зака­ливают из двухфазной области аустенита и специальных карбидов TiC (или NbC), причем температура закалки не зависит от содержания углерода и составляет обычно 1000-IlOO0C, чаще всего 1050°С (см. рис. 170,6). Более высокие температуры нецелесообразны из-за возможного роста зерна и начала растворения специальных карбидов.

После закалки стали приобретают оптимальное сочета­ние характеристик механических свойств и коррозионной стойкости.

Недостатком закалки является необходимость нагрева до высоких температур, быстрого охлаждения, что часто трудно технологически осуществить и вызывает коробле­ние конструкции. Стабилизирующий отжиг для сталей без титана и ииобия (рис. 170, а) преследует цель повышения концентрации хрома на границе аустенит - карбид, что приводит сталь в состояние высокого сопротивления МКК. Несмотря на присутствие карбидов хрома в сталях после отжига при 850-950 °С, они не склонны к MKK-

Для сталей, легированных титаном и ниобием, в процес­се отжига возможно превращение карбидов хрома в специ­альные карбиды TiC или NbC, что также, устраняет склон­ность к MKK (см. рис. 170,6). Температура стабилизиру­ющего отжига обычно составляет 850-950 0C. Отжиг до­пускает бодее медленное охлаждение, обычно на воздухе, и более эффективен для стабилизированных сталей.

Хромомарганцевоникелевые и хромомарганцевые стали. Марганец, как и никель, является аустенитообразующим элементом, однако он обладает менее сильным действием на стабилизацию аустенита. Из рис. 171 видно, что аусте- нитиую структуру в Cr-Mn сталях можно получить только при содержании >15,% Mn и <15 % Cr. При других соот­ношениях легирующих элементов структура сталей получит­ся двухфазной (аустенит+феррит или мартенсит или а-фа~ за). Поэтому при замене никеля марганцем приходится по­нижать содержание хрома или заменять никель частично, или дополнительно легировать стали таким сильным аусте - нитообразующим элементом, как азот. В табл. 33 приведе­ны состав и свойства хромомарганцевой стали с азотом 10Х14АГ15 (0,15-0,25 % N) и хромомарганцевоникелевой

Стали 10Х14Г14Н4Т, нашедших применение в промышленности (в основном в торговом и пи­щевом машиностроении). Кро­ме этих сталей, применяют так­же стали 20Х13Н4Г9, 12Х17Г9АН4 и др.

Коррозионная стойкость is Mn хромомарганцевых и хромо-

Марганцевоникелевых сталей

Рис. 171. Структурная диаграм - ВО МНОГИХ ЭГреССИВНЫХ среДЭХ

За\алГеотЫп^сгТГф?0хие достаточно высокая, однако в мушии) средах высокой агрессивности

(например, азотная кислота, среды с галогенами, сульфа­тами, сульфидами) марганец оказывает отрицательное влияние на сопротивление коррозии.

Поэтому коррозиониостойкие хромомарганцевые стали следует применять только после тщательных испытаний на коррозионную стойкость в рабочей среде. В настоящее вре­мя в технике накоплен большой опыт по рациональному использованию сталей с частичной или полной заменой ни­келя марганцем в качестве коррозионностойкого материала.

При нагреве этих сталей (550-800 0C) в них по границам зерен вы­деляются карбиды типа Сг2зСб, при этом скорость процессов выделения определяется содержанием углерода. При наличии в сталях азота ста­билизация титаном не устраняет склонности к МКК, так как могут об­разовываться нитриды титана. Поэтому для предотвращения склонности к MKK в этих сталях требуется понижать содержание углерода «0,03 %).

Хромомарганцевые стали имеют более высокие прочностные свойст­ва, чем хромоникелевые, и большую склонность к образованию мартен­сита при деформации. Следует отметить, что хромомарганцевые аусте­нитные стали сильнее упрочняются при пластической деформации, чем хромоникелевые, даже без учета мартенсита деформации, т. е. при дефор­мации выше Mn. Это обычно связывают с вероятностью образования и величиной энергии дефектов упаковки: никель повышает, а марганец понижает вероятность образования дефектов упаковки в аустените.

Термическая обработка этих сталей заключается в за­калке от 1000-IlOO0C с целью обеспечения аустенитной структуры, снятия предшествующего наклепа и устранения склонности к МКК.

Выдержка под закалку хромомарганцевых сталей дол­жна быть минимальной, так как марганец имеет тенденцию к избирательному окислению при высоких температурах, в результате чего поверхностные слои обедняются марган­цем и могут приобретать феррито-аустенитную структуру, что является нежелательным явлением. Эти стали применя­ют как заменители хромоникелевых сталей в средах сред­ней агрессивности, их используют в широких диапазонах температур.

4. Аустенито-ферритные и аустенито-мартенситные стали

Аустенито-ферритные стали. Преимущество сталей этой группы - повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонно­сти к росту зерна при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость, меньшая склонность к МКК. Состав, режи­мы термической обработки и свойства некоторых аустени - то-ферритных сталей приведены в табл. 34.

Повышенное сопротивление MKK объясняют более мел­козернистой структурой двухфазных сталей, что приводит к меньшей концентрации карбидных фаз по границам (вы­делением карбидов типа Me23C6 на границе б-у-фаз). По­скольку условия проявления MKK в этих фазах разные, то - концентрация хрома в приграничных участках не опуска­ется ниже допустимого уровня. Так как концентрация уг­лерода в аустените выше, чем в феррите, карбиды выделя­ются по границам, не образуя непрерывной сетки.

Аустенито-ферритные стали находят широкое примене­ние в различных отраслях современной техники, особенно - в химическом машиностроении, судостроении, авиации.

Принципиальное отличие сталей аустенито-ферритного - класса в том, что благодаря более высокому содержанию в них хрома аустенит становится более устойчивым по от­ношению к мартенситному превращению, хотя полностью - исключить возможность образования мартенсита в этих сталях не всегда удается.

Аустенито-ферритные стали весьма сложны по химиче­скому составу, могут иметь в структуре различное соотно­шение аустенитной и ферритной фаз. В них могут происхо­дить следующие основные фазовые превращения:

Таблица 34. Состав и механические свойства аустеиито-ферритных и аустенито-мартенситных коррозионностойких сталей

Марка стали

Режим термической

ДРУ - гие

Обработки

Аустенито-ферритные стали

Закалка 1050 0C

Деформация 35 %

Закалка 1050 °С

Ч18Х18Г8Н2Т

Закалка 1000 °С

Аустенито-мартенситные стали

Закалка IOOO0C

Обработка холодом

70 0C1 2 ч, отпуск

Закалка 975 "С, об­

Работка холодом

70°С, 2 ч, старение

Нормализация 950 0C1

Обработка холодом

70 "С, 2 ч, старение

450 °С, 1 ч, деформа­

1. Изменение количества аустенита и феррита в зависи­мости от температуры нагрева (в соответствии с положени-: - ем линий на диаграмме состояния).

2. Распад 6-феррита с образованием а-фазы и вторично - : го аустенита.

3. Выделение карбидных, нитридных и интерметаллид-j ных фаз, которое может происходить как из аустенита, так я из феррита.

5. Процессы охрупчивания ферритной фазы, связанные с явлениями упорядочения и расслоения («хрупкость 475 °С»). I

Возможность протекания в аустенито-ферритных сталях; сложных фазовых превращений в различных интервалах, температур накладывает существенные ограничения на ре-] жимы их технологии производства и области применения. |

Присутствие б-феррита резко ухудшает пластичность сталей при го­рячей обработке давлением, особенно при прокатке и прошивке труб, что связывают с различным сопротивлением феррита и аустенита де­формированию, с разной скоростью рекристаллизации: менее прочные и быстро рекристаллизующиеся зерна феррита приводят к локализации в них пластической деформации и концентрации напряжений.

На рис. 172 приведена зависимость технологической пластичности двухфазных сталей от количественного соотношения а и у фаз. Видно,

Б о, г, МПа

Рис. 172. Влияние соотношения а- и v-фаз на технологическую пластичность ста­лей при высоких температурах (А. А. Бабаков, М. В. Прнданцев):

1 - хорошая; 2 - пониженная; 3 - плокая

О го 40 60 80 700о, % WO 80 60 40 20 О/,%

Al C1N1Ni1Cr1MO

Легирование

Рис. 173. Изменение предела текучестк нержавеющих сталей в зависимости от легирования после различной обработки:

/ - закалка; 2-закалка в обработка холодом; 3 - закалка, обработка холодом и старение.1 - мартеиситный класс;II - аустенитио-мартенситный класс;III - Аустеиитный класс

Что наиболее пластичны однофазные сплавы, однако можно подобрать такой режим прокатки, при котором пластичность двухфазных сталей будет вполне достаточной для производства.

По данным завода «Серп и молот», наиболее высокая пластич­ность аустенито-ферритных сталей наблюдается в интервале 950- 1050 °С, что объясняется наименьшей разницей в свойствах ферритиой. и аустенитной составляющих (И. Я. Сокол). Этим же объясняется по­ложительное влияние на горячую пластичность кремния, который силь­нее упрочняет феррит.

На аустенито-ферритных сталях проявляется эффект сверхпластич­ности, который заключается в очень высокой пластичности (до 300- 600 %) этих сталей без наклепа в определенных интервалах темпера­тур и скоростей деформации и объясняется образованием особой мелко­зернистой двухфазной структуры (величина зерна 2-3 мкм), получив­шей в литературе название микродуплекс.

Промежуточную термическую обработку сталей этого - класса проводят обычно для снятия наклепа при произ­водстве тонкого листа или проволоки. При этом после смягчающей термической обработки или горячей деформа­ции охлаждение от 900-IOOO0C должно быть ускоренным, чтобы предотвратить охрупчивание.

Температуру закалки этих сталей выбирают в зависи­мости от состава и назначения детали; она обычно состав­ляет 900-IlOO0C. Стали, предназначенные для сварных деталей, подвергают отпуску для снятия напряжений, при­чем температуры и время отпуска выбирают с учетом пре­дотвращения охрупчивания стали в интервале «хрупкости 475 °С» и охрупчивания вследствие сигматизации сталей в интервале 650-850 °С.

Аустенито-мартенситные стали. Потребности новых от­раслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разра­ботке сталей аустенито-мартенситного (переходного) класса.

Структура этих сталей после закалки представляет со­бой неустойчивый (метастабильный) аустенит, который мо­жет претерпевать мартенситное у->ам-превращение в ре­зультате обработки холодом или пластической деформации ниже Мд. Свойства определяются соотношением количест­ва аустенита и мартенсита в структуре. Изменения прочно­стных свойств в зависимости от содержания легирующих элементов в сталях мартенситного (I), переходного (//) и аустенитного (III) классов приведены на рис. 173.

Температура Ma в этих сталях должна лежать ниже комнатной, но не настолько низко, чтобы сталь была Ста­бильной при обработке холодом. В аустенито-мартенсит - ных сталях может образовываться некоторое количество 6-феррита, однако его присутствие в структуре ограничивав ют из-за возможного охрупчивания сталей и снижения уров­ня прочности.

Состав сталей этого типа приходится строго контроли­ровать для поддержания сбалансированного содержания - феррито - и аустенитообразующих элементов и заданной температуры мартенситного превращения. Накопленный экспериментальный материал позволяет ориентировочно оценить действие различных легирующих элементов на со-; держание б-феррита и положение точки Mh в сталях этого] типа, что позволяет рассчитать состав стали. Ниже показа-; но влияние легирующих элементов на количество 6-ферри­та и положение мартенситной точки сталей переходного класса (Ф. Б. Пикеринг):

Легирующий эле­мент……..

Дополнительное упрочнение этих сталей может быть по­лучено в результате дисперсионного твердения мартенсита при температурах 400-500 0C. Для этого в стали вводят такие элементы^ как алюминий, медь, титан. В этом случае в сталях возможно выделение интерметаллидной фазы NiAl, когерентной с о. ц. к.-матрицей, и NiTi или Ni (Al, Ti), также имеющих о. ц. к. структуру; при введении меди обра­зуются комплексы, очень богатые медью (предположитель­но твердый раствор никеля в меди).

В процессе отпуска в сталях выделяются карбонитри­ды молибдена и ванадия, что также повышает прочность. Однако в результате старения падают характеристики пла­стичности, поэтому при легировании сталей стремятся к максимальному выигрышу в прочности при заданных ха­рактеристиках пластичности.

Экспериментально установлено, что оптимальное сочета­ние прочности и пластичности обеспечивает легирование молибденом и алюминием, что объясняет наиболее широ­кое распространение сталей соответствующих композиций.

Сталь, легированная хромом, никелем и марганцем, сохраняющая при охлаждении с высокой темп-ры до комнатной и ниже структуру у-твердого раствора (аустенита). В отличие от ферритной нержавеющей стали, нержавеющая аустенитная сталь не магнитна, имеет умеренную твердость и прочность, низкий предел текучести и высокие пластич. св-ва (б и г) 50%). Применительно к нержавеющей аустенитной стали закалка является операцией термич. обработки, фиксирующей аустенитную структуру. При содержании в стали никеля или марганца, недостаточном для образования полностью аустенитной структуры, получаются промежуточные структуры: аустенит + феррит, аустенит + мартенсит и др. В стали системы Fe -Сг-Мп вследствие меньшей эффективности марганца в образовании аустенитной структуры области аустенит + феррит или аустенит 4-мартенсит более развиты.

Повышение содержания хрома, введение титана, ниобия, кремния, тантала, алюминия и молибдена способствуют образованию ферритной фазы. Увеличение содержания никеля, введение азота, углерода, марганца, наоборот, способствуют расширению области существования аустенита и его большей устойчивости. Легирующие элементы по эффективности их аустенитообразующего влияния располагаются в след. последовательности (с указанием условных коэфф.): углерод (30), азот (26), никель (1), марганец (0,6-0,7), медь (0,3). Ферритообразующие элементы: алюминий (12), ванадий (11), титан (7,2-5), кремний (5,2), ниобий (4,5), молибден (4,2), тантал (2,8), вольфрам (2,1), хром (1).

Длительный нагрев нержавеющей аустенитной стали при 700-900° или медленное охлаждение с высоких темп-р вызывает образование твердой и хрупкой интермета л лидной сг-фазы, что может приводить к очень сильной потере вязкости. Нагрев стали выше 900° устраняет это явление, обеспечивая переход хрупкой а-фазы в твердый раствор. Выделение а-фазы может происходить непосредственно из аустенита либо из феррита, образовавшегося после превращения у-Н.а.с., имеющая в структуре 0-фазу, более склонна к растрескиванию в результате действия теплосмен. Степень эффективности влияния легирующих элементов на понижение темп-ры мартенсит- ного превращения увеличивается в след. порядке: кремний (0,45), марганец (0,55), хром (0,68), никель (1), углерод или азот (27).

Выделение карбидов из твердого раствора (аустенита) вызывает изменение в нем концентрации легирующих элементов, что может вызвать частичное структурное превращение и изменение магнитности, особенно в сплавах, лежащих вблизи границы между областями y ~ и а-фаз. Это превращение протекает преимущественно по границам зерен, где имеется наибольшее обеднение твердого раствора углеродом и хромом, что сообщает стали склонность к межкристаллитной коррозии. При воздействии агрессивных сред такая сталь быстро разрушается, причем тем сильнее, чем больше содержание углерода.

Нержавеющая аустенитная сталь промежуточной группы (00Х18Н10, 00Х17Г9АН4, 0Х17Н5Г9БА) при кратковрем. нагревах в течение 5-30 мин. не приобретает большой склонности к межкристаллитной коррозии. Это позволяет проводить сварку без опасности возникновения межкристаллитной коррозии в сварном соединении и зоне термич. влияния, если она проводится достаточно быстро.

Прочность хромоникелевой стали можно значительно повысить наклепом при холодной прокатке, волочении, штамповке. При этом вь может достигать 120 кг!мм2 для листа и ленты, 0О,2 увеличивается до 100-120 кг!мм2у пластич. свойства при этом падают б с 50- 60% до 10-18%. Однако этого запаса пластичности достаточно для изготовления деталей. Для проволокись увеличивается до 180- 260 кг!мм2. В сравнении с нержавеющей ферритной и полуферритной сталью

Хромоникелевые стали типа 18-8 (00Х18Н10, 0Х18Н10, Х18Н9, 2Х18Н9). Стали с малым содержанием углерода (00Х18Н10 и 0Х18Н10) применяются гл. обр. в качестве электродной проволоки для сварки. Чем ниже содержание углерода в сварочной проволоке, тем выше корроз. стойкость сварного шва. Стали Х18Н9 и 2Х18Н9 имеют сильную склонность к межкристаллитной коррозии даже при кратковрем. нагреве в интервале умеренных темп-р, поэтому после сварки детали подвергают закалке на аустенитную структуру. В осн. стали Х18Н9 и 2Х18Н9 применяют в наклеп, состоянии для изготовления высокопрочных деталей самолетов и автомобилей, соединяемых точечной или роликовой электросваркой.

Хромомарганцовоникелевая сталь Х14Г14Н с содержанием хрома 12-14% склонна к межкристаллитной коррозии при сварке и после нагрева в интервале опасных темп-р. Применяется для деталей оборудования, от к-рых требуется высокая пластичность и немагнитность. По корроз. стойкости близка к 12- 14%-ным хромистым сталям. После закалки превосходит по прочности стали типа 18-8. Удовлетворительно сваривается ручной и автоматич. роликовой и точечной сварками с применением присадочной проволоки из хромоникелевой стали типа 18-8. Термич. обработка стали после сварки (кроме точечной) устанавливается в зависимости от содержания углерода методом контрольных испытаний сварных образцов на межкристаллитную коррозию по ГОСТ 6032-58.

Сталь 2Х13Г9Н4 применяется для изготовления высокопрочных конструкций, гл. обр. из холоднокатаной профилиров. ленты. Прочность и твердость этой стали возрастают при холодной деформации более интенсивно, чем у хромоникелевой стали типа 18-8. Поэтому при холодной прокатке лент не следует допускать больших степеней деформации во избежание чрезмерной потери пластичности.

Эта сталь надежно работает в условиях глубокого холода, широко применяется в пищевой пром-сти. Сохраняет высокие механич. св-ва до 450°. Имеет склонность к межкристаллитной коррозии, поэтому служит гл. обр. для изготовления деталей, соединение к-рых осуществляется с помощью точечной или роликовой сварки. По той же причине при термич. обработке холоднокатаной ленты следует применять повыш. скорости охлаждения.

X ромомарганцовоникелевые стали с содержанием хрома 17-19% и добавкой азота (Х17АГ14 и Х17Г9АН4) имеют высокую стойкость против атмосферной коррозии и в окислит, средах. Для деталей, изготовляемых с помощью дуговой, арг оно-дуговой, газовой и атомноводородной сварки, необходимо применять сталь с низким содержанием углерода (0,03-0,05%) и строго контролировать процесс во избежание появления в сварных соединениях склонности к межкристаллитной коррозии. Для деталей, изготовляемых с помощью точечной или роликовой сварки, и деталей, к-рые после сварки подвергаются термич. обработке, а также для деталей, работающих в атм. условиях, можно применять сталь данного типа с более высоким содержанием углерода.

Хромоникелевые стали типа 18-8 с присадками титана или ниобия (Х18Н9Т, Х18Н10Т,0Х18Н10Т,0Х18Н12Т,0Х18Н12Б). Добавки титана или ниобия уменьшают склонность стали к межкристаллитной коррозии. Титан и ниобий образуют стойкие карбиды типа TiC и NbC , при этом полезный для повышения коррозионной стойкости хром не входит в состав карбидов и сохраняется в твердом растворе. Титана вводится в сталь в 4-5,5 раза больше, а ниобия в 8-10 раз больше, чем углерода. Когда содержание титана или ниобия по отношению к углероду находится на нижнем пределе, сталь не всегда стойка против межкристаллитной коррозии, особенно в условиях длит, службы деталей при умеренных темп-рах (500-800°). Это вызывается влиянием всегда присутствующего в стали азота, к-рый связывает часть титана в нитриды, а также с влиянием тепловой обработки. Перегрев стали при термич. обработке (выше 1100°) или сварке считается вредным, особенно в тех случаях, когда соотношение между титаном и углеродом находится на нижнем пределе по формуле Ti ^5(%G -0,02). В этом случае закаленная с темп-ры выше 1150° сталь 1Х18Н9Т приобретает склонность к межкристаллитной кор- розии. В случае норм, режимов термич. обработки (закалка с 1050°) и при кратковрем. нагревах необходимо, чтобы отношение титана или ниобия к углероду было соответственно не менее 5 и 10. Для длит, службы деталей при 500-750° важно, чтобы эти соотношения были не менее 7-10 для титана и 12 для ниобия. Для уменьшения склонности стали к межкристаллитной коррозии целесообразно большое снижение содержания углерода до0,03- 0,05%. Коррозионная стойкость сварных соединений из стали данного типа зависит от содержания титана и углерода в осн. металле и наплавленном шве. Т.к. титан при сварке сильно выгорает, то для электродов применяются спец. обмазки, в состав к-рых титан входит в виде ферро- титана для компенсации угара титана в присадочной проволоке. Чаще всего применяют присадочную проволоку из хромо- никелевой стали типа 18-8 без титана, но с очень низким (^0,06%) содержанием углерода (стали 0Х18Н9 и 00Х18Н10) или электроды из стали типа 18-12 с ниобием (0Х18Н12Б). В сварных соединениях из стали 1Х18Н9Т, работающих в средах, содержащих азотную к-ту, возможно появление коррозии ножевого типа, обусловленное повышенным (>0,06%) содержанием в стали углерода. Поэтому детали аппаратуры для произ-ва азотной кислоты выполняются из стали 0Х18Н10Т с содержанием углерода 0,06%. Кроме того, такая сталь обладает более высокой общей коррозионной стойкостью.

В наплавленном металле шва сварного соединения стали с титаном, имеющей двухфазную структуру (у+а), возможно a -^a - превращение при длит, нагреве в интервале умеренных темп-р (650-800°), сообщающее сварному шву высокую хрупкость. Для восстановления вязкости сварного шва и повышения корроз. стойкости рекомендуется применять стабилизирующий отжит при темп-ре 850-900°. Он очень полезен также для снятия наклепа и устранения растрескивания от коррозии под напряжением в среде кипящего хлористого магния и др. средах, содержащих ионы хлора.

Хромомарганцовоникелевая сталь с присадкой ниобия 0Х17Н5Г9БА имеет повыш. сопротивление межкристаллитной коррозии и высокую корроз. стойкость в сварных соединениях, работающих в азотной к-те. Полного иммунитета против межкристал- литной коррозии при длит, воздействиях опасных темп-р сталь не имеет, показывает склонность к межкристаллитной коррозии после длит, нагрева при 500-750° (рис.7). При высоких темп-рах обладает примерно такими же механич. св-вами, что и хромо- никелевые стали типа 18-8.

Сталь Х14Г14НЗТ имеет повыш. прочность и высокую пластичность, не склонна к межкристаллитной коррозии и может применяться для изготовления сварных деталей без последующей термич. обработки. Механич. св-ва этой стали могут быть повышены прокаткой в холодном состоянии. Нагрев в интервале темп-р 500-700° не изменяет механич. св-в стали при комнатных темп-рах. Сталь изготовляется в виде прутков, листов и ленты, хорошо сваривается всеми видами сварки при применении сварочной проволоки из стали типа 18-8 без ниобия или с ним.

Хромоникельмолибденовые стали Х17Н13М2Т и X 17H 13M 3T применяются при изготовлении аппаратуры для производства искусств, удобрений, в писчебумажной пром-сти, в химич. машиностроении и нефтеперерабатывающей пром-сти. Стали показывают высокую коррозионную стойкость против сернистой, кипящей фосфорной, муравьиной и уксусной к-т, а стали с повышенным содержанием молибдена - в горячих растворах белильной извести. Стали с повышенным содержанием углерода (>0,07%) приобретают склонность к межкристаллитной коррозии при сварке и замедленном охлаждении, а также в условиях длит, нагрева в интервале умеренных: темп-р.

Хромоникельмолибденовые стали хорошо свариваются с применением в качестве сварочного материала присадочной проволоки того же состава.

Хромоникельмолибденовая сталь 0Х23Н28М2Т благодаря присадке молибдена и большому содержанию никеля обладает высокой коррозионной стойкостью в разведенных растворах серной к-ты (до 20%) при темп-ре не выше 60°, фосфорной к-ты, содержащей фтористые соединения,и др. средах высокой агрессивности. Она применяется в деталях машин для производства искусств, удобрения. После закалки на аустенит сталь имеет умеренную прочность и высокую пластичность, хорошо говой сваркой с состава. Несмотря на содержание титана, сталь приобретает склонность к межкристаллитной коррозии после кратковрем. нагрева при 650°, если отношение содержания титана к содержанию углерода меньше 7.

Технологические свойства нержавеющей аустенитной стали вполне удовлетворительны, обработка давлением производится при 1150-850°, а для сталей с медью интервал горячей обработки сужен (1100-900°). Нержавеющая аустенитная сталь при высоких темп-рах менее склонны к росту зерен, чем стали мартенситного и ферритного классов. При комнатной темп-ре Н.а.с. имеет высокий коэфф. линейного расширения, увеличивающийся с повышением темп-ры нагрева, и пониженный коэфф. теплопроводности. Однако при высоких темп-рах разница между а и q Н.а.с. и стали ферритного класса уменьшается. Поэтому нагрев Н.а.с. при пониж. темп-рах должен проводиться медленно, а при высоких (выше 800°) - быстро.

Лит.: Химушин Ф. Ф., Нержавеющие стали, М., 1963; его же, «Качественная сталь», 1934, № 4; 1935, № 1; X имушин Ф. Ф. и Курова О. И., там же, 1936, №6;Химушин Ф. Ф.2 Ратнер С. И., Рудбах 3. Я., «Сталь», 1939, № 8, с. 40; Медовар Б. И., Сварка хромоникелевых аустенитных сталей, 2 изд., Киев - М., 1958; Металловедение и термическая обработка стали. Справочник, 2 изд., т. 2, М., 1962; Schaeffler A . L ., « Metal Progr .», 1949, v . 56, № 5, р. 680; Post С. В., Е,Ь е г 1 у W . S ., « Trans . Amer. Soc. Metals», 1947, v. 39, p. 868; Symposium on the nature, occurrence and effects of sigma phase, Phil., 1951 (ASTM. Special techn. publ , № 110); Symposium on evaluation tests for stainless steels, , 1950 (ASTM. Special techn. publ., № 93); Rosenberg S. J., D a r r J. H., «Trans. Amer. Soc. Metals», 1949, v. 41, p. 1261; К r 1 v о b о k V. N., Linkoln R. А., там же, 1937, v. 25, № 3. стали делятся на аустенитные, аустенитно-ферритные, аустенитно-мартенситные
www..htm

Аустенитные стали

(стали аустенитного класса) : общая характеристика

К аустенитному классу относятся высоколегированные стали, образующие пpи кристаллизации преимущественно однофазную аустенитную структуру γ -Fe c гранецентрированной кристаллической (ГЦК) рeшеткой и сохраняющие еe при охлаждении дo криогенных температур. Кoличество другой фазы - высоколегированного феррита (δ -Fe с объемноцентрированной кристаллической (ОЦК) решеткой) изменяется от О до 10 %. Они содержат 18 ...25 % Сг, обеспечивающего жаро- и коррозионную стойкость, а также 8...35 % Ni, стабилизирующего аустенитную структуру и повышающего жаропрочность, пластичность и технологичность сталей в широком интервале температур. Этo пoзволяет применять аустенитные стали в качествe коррозионно-стойких, жаропрочных, жаростойких, криогенных конструкционных материалов в химических, теплоэнергетических и атомных установках, гдe oни подвергаются совместному дeйствию напряжeний, высоких температур и агрессивных сред. Химичeский состав основных коррозионно-стойких и жаропрочных сталей привeден в таблицах 1 и 2.

В аустенитных сталях наряду с хромом и никелем могут находиться в твердом растворе или избыточных фазах и другие легирующие элементы: аустенитизаторы (углерод, азот, марганец) и ферритизаторы (титан, ниобий, молибден, вольфрам, кремний, ванадий), улучшающие указанные служебные свойства и действующие на стабильность аустенитной структуры эквивалентно хрому и никелю.

Ферритизаторы способствуют формированию высоколегированного феррита (δ -Fe) с ОЦК-решеткой; аустенитизаторы стабилизируют аустенитную структуру (γ -Fe) с ГЦК-решеткой. Эквивалентное содержание хрома и никеля (в %) подсчитывают по следующим формулам:

Сr экв = %Сг + 2 (%Мо + %Nb + %AI) + 1,5 (% Si + % W) + 5 % Ti + 1 %V;

Ni экв = % Ni + 0,5 % Мn +30 (% С + % N).

Таблица 1. Жаропрочные : химический состав и применение для сварных конструкций .

Марка стали Массовая доля, % Применение
C Si Mn Cr Ni W Nb Mo Ti Прочих элементов
08Х16Н9М2 0,08 0,60 1,0.. 1,5 15,5.. 17,0 8,5.. 10,0 - 1,0.. 1,5 - Паропроводы
10Х14Н16Б (ЭП 694) 0,07- 0,12 1,0.. 2,0 13,0 .. 15,0 14,0 .. 17,0 - 0,9... 1,3 - -
10X18H12T 0,12 0,75 17,0 .. 19,0 11,0 .. 13,0 - - 0,02
10X14H14B2M (ЭП 257) 0,15 0,80 0,70 13,0 .. 15,0 13,0 .. 16,0 3,0.. .4,0 0,45... 0,60
10Х16Н14В2БР (ЭП 17) 0.07- 0,12 0,60 1,0... 2,0 15,0 .. 18,0 13,0 .. 15,0 2,0... 2,75 0,9... 1,3 - Трубы, поковки
09Х14Н18ВБР (ЭП 695Р) 0,60 13,0 .. 15,0 18,0... 20,0 Трубы, листовой прокат
10X15H18B4T (ЭП501) 0,50 0,5 .. 1,0 14,0 .. 16,0 4,0... 5,0 - Паропроводы
10Х14Н18В2БР1 (ЭП 726) 0,60 1,0... 2,0 13,0 .. 15,0 2,0... 2,75 0,9... 1,3 Роторы, диски, турбины
20X23H13 (ЭП 319) 0,20 1,0 2,0 22,0... 25,0 12,0. . 15,0 - - 0.025 В Камеры сгорания
08X23H18 0,1 17.0. . 20,0
1Х15Н25М6А (ЭП395) 0,12 0,5... 1,0 1,0... 2,0 15,0 .. 17,0 24,0 .. 27,0 5,5... 7,0 0,1 ..0,2 В Роторы газовых турбин
40Х18Н25С2 (ЭЯЗС) 0,32- 0,4 1,5 2,0. . 3,0 17,0. . 19,0 23,0 .. 26,0 - Литые реакционные трубы
20Х25Н20С2 (ЭП 283) 0,2 2,0... 3,0 1,5 24,0 .. 27,0 18,0... 21.0
10Х12Н20Т3Р (ЭП 696А) 0,10 1,0 1,0 10,0 .. 12,5 2,3 ..2,8 0,5 ..0,008 В Паропроводы
10Х15Н35ВТ (ЭП 612) 0,12 0,6 1.0... 2,0 14,0 .. 16,0 34,0. . 38,0 2,8 ..3,5 1,1 .. 1,5 - Роторы турбин
Х15Н35ВТР (ЭП 725) 0,10 1,0 14,0 35,0. . 38,0 4,0. .5,0 1,1 .. 1,5 0,25 ..0,005 В

Таблица 2. Коррозионнo-стойкие аустенитные стали: химический состав (по ГОСТ 5632-72) .

Тип легирования C Si Mn Cr Ni Ti=zC - yД Mo S P Коррозионная стойкость
не более
Хромоникелевый:
08X18H10 ≤0,08 ≤0,08 ≤2,0 17,0- 19,0 9,0- 11,0 - - 0,02 0,035 Первый балл стойкости (И кр до 0,1 мм/год) в 65%- н 80%-ной азотной кислоте при температурах соответственно до 85 и 65 о С; 100%-ной серной кислоте при температуре до 70 о С; смеси азотной и серной кислот (25 % НNО з, 70% H 2 SO 4 ; 10 % НNO 3 + 60 % H 2 SO 4) при 60 о C. 40%-ной фосфорной кислоте при 100 о C
08X18H10T 5С-0,7
12X18H10T ≤0,12 5С-0,8
03Х18Н11 ≤0,03 10,5- 12,5
-
06X18Н11 ≤0,06 10,0- 12,0
08Х18Н12Б ≤0,08 11,0- 13,0 Nb-10C- 1,1
Хромомарганцовый и хромоникеле-марганцовый
10X14Г14H4T ≤0,1 ≤0,7 13,0- 15,0 13,0- 16,0 2,8- 4,5 5(С - 0,02) - 0,6 0,02 0,035 Первый балл стойкости в ряде кислот невысоких концентрации и температуры (5 ... 10%-ная азотная кислота до 80 o С; 58- и 65%-ная азотная кислота при 20 o С; 10%-ная уксусная кислота до 80 o С; 10%-ная фосфорная кислота до 80 o С), моющих средствах, водопроводной воде при 85 o С и в ряде других сред
10X14AГ15 14,5- 16,5 13,0- 15,0 - 0,15..0,25 N 2 0,03 0,045
07Х21Г7AН5 ≤0,07 ≤0,7 6,0- 7,5 19,5 - 21,0 5,0- 6,0 0,03
Хромоникельмо-либденовый:
08X17Н13M2T ≤0,08 ≤0,8 ≤2,0 16,0- 18,0 12,0- 14,0 5С-0,7 2.5- 3,5 0,020 0,035 Первый балл стойкости в 50%-ной лимонной кислоте приT кнп; 10%-ной муравьиной кислоте до 100 о С; 5-, 10- и 25%-ной серной кислоте до 75 о С; 50%-ной уксусной кислоте до 100 о С и в дрyrиx средах
10Х17Н13М3Т ≤0,10 3,5- 4,0
08Х17Н15М3Т ≤0,08 14,0- 16,0 0,3- 0,6 3,0- 4,0
03X16H15M3 ≤0,03 ≤0,6 ≤0,8 15,0- 17,0 - 2.5- 3,5 0,015 0,020
03Х21Н21М4ГБ ≤1,8- 2,5 20,0- 22,0 20,0- 22,0 Nb-15C-0,8 3,4- 3,7 0,020 0,030
Высококрем-
нистый:
02Х8Н22С6 ≤0,02 5,4... 6,7 ≤0,6 7,5- 10,0 21,0- 23,0 - 0,13... 0,35А1 0,02 0,025 Первый балл стойкости в азотной кислоте концентрацией >90 % при температуре 100 о С (02Х8Н22С6) и до 50 о С (15Х18Н12С4ТЮ)
15Х 18Н12C4Т10 0,12... 0,17 3,8.. .4,5 0,5- 1,0 17,0- 19,0 11,0- 19,0 0,4- 0,7 0,03 0,035

Рис. 1. Структурная диаграмма Шеффлера для определения фазового состава аустенитных швов .

Совместное действие легируюших элементов на конечную структуру оценивают по соотношению Cr экв / Ni экв, называемому хромоникелевым эквивалентом, и с помошью структурных диаграмм Шеффлера (рис. 1). На этой диаграмме структура стали определяется соотношением координат Cr экв и Ni экв. Стали, попадаюшие в области А, Ф и М, имеют стабильно аустенитную, ферритную или мартенситную конечную структуры соответственно.

Стали, попадаюшие в переходные области А + Ф, А + М, А + М + Ф, обладают смешанной структурой. Соотношение А + Ф дифференuировано количественно с помошью ряда веерообразно расположенных линий. Цифры над лими линиями указывают количество высоколегированного феррита (δ -Fe с ОЦК-решеткой), содержашегося в стали наряду с аустенитом (γ -Fe). Эта структурная диаграмма описывает структуры, получаемые после кристаллизаuии металла сварного шва. Для других состояний металла (прокат, поковка, литье) существуют аналогичные диаграммы, количественно отличаюшиеся от приведенной на рис. 1.

Более точно определяют oстаточoe количество δ -Fe по ферритному числу с помошью формулы:

FN = -18 +2.9(%Сг+% Мо +0.3 % Si)- 2,6(% Ni + 35 % С + 20 % N + 0,3 % Мn).

где FN - ферритное число, приблизительно равное проuентному содержанию δ -Fe.

Обладая одновременно жаропрочными и антикоррозионными свойствами, (стали аустенитного класса) получают то или иное сверхвысокое свойство принципиально различным легированием и термической обработкой. В связи с этим различают две основные группы аустенитных сталей:

  • жаропрочные аустенитные стали;
  • коррозионно-стойкие аустенитные стали.

Жаропрочность - сопротивление стали разрушению при высокой температуре, зависящее не только от температуры, но и от времени. Механизм разрушения металла при высокотемпературном длительном нагружении имеет диффузионную природу и состоит в развитии дислокационной ползучести. Под действием температуры, времени, напряжений дислокации у барьеров, создавшие упрочнение, приходят в движение (совместно с облаком легируюших элементов и примесей) в результате взаимодействия с созданными нагревом подвижными вакансиями. которые обеспечивают их «переползание» в другие плоскости кристаллической решетки на границы зерен. Зто при водит к разупрочнению, развитию локальной пластической деформаuии и охрупчиванию. Дислокации выходяшие на границы зерен, создают микроступеньки и вызывают из-за соответствуюшего изменения размеров контактируюших зерен меЖJеренное проскальзывание, раскрываюшее микроступеньки в поры и трешины. чему способствуют потоки вакансий. В этих условиях прочность и пластичность металла зависят от температуры и времени. т.е. от длительности нагружения. Для предотврашения ползучести жаропрочность повышают двумя основными способами:

  • подвижности вакансий (легирование γ -твердого раствора молибденом, вольфрамом и другими элементами);
  • созданием большого количества термостойких дисперсных включений-барьеров, препятствующих переползанию и скольжению дислокаций. Эту роль выполняют карбиды и интерметаллиды. Соответственно жаропрочные стали (см. табл. 1) разделяют на гомогенные нетермоупрочняемые и гетерогенные, упрочняемые термообработкой.

Коррозионная стойкость сталей - сопротивление металла воздействию агрессивных сред. Химические составы коррозионно-стойких сталей, приведенные в табл. 2, разработаны с учетом двух видов коррозии: химической и электрохимической.


Под химической коррозией понимают окисление металлов внеэлектропроводной среде (струе горячих газов и т.п.). Она развивается, eсли образующиеся продукты коррозии болeе чeм в 2,5 раза увeличиваются в объемe, что приводит к иx пeриодическому отслаиванию и утонению деталeй. Стали, содержащие >12 % Сr, образуют прочную пленку оксидов, прeпятствующую проникновению окислителя в металл, чтo oбеспечивает их окалино- и жаростойкость. Нaиболее жаростойки стали, содержащие нaряду c хромом кремний и алюминий.

Под электрохимической коррозией понимают растворение металла в жидких электропроводных растворах кислот и расплавах, содержащих ионы с положительным и отрицательным зарядами (Н 2 2+ , SO4 2- и др.). Наиболее опасны межкристаллитная и структурноизбирательная коррозии, развивающиеся по границам зерен. При контакте металла с электропроводным раствором термодинамически обусловлен и неизбежен переход ионов Fe+ из дефектных мест кристаллической решетки в раствор, что создает на металле отрицательный заряд и разность потенциалов между металлом и электролитом, препятствующую дальнейшему растворению (поляризация). Однако в других местах контактной поверхности в результате электропроводности металла и раствора действуют электростатические силы, при водящие к оседанию на поверхности металла положительно заряженных ионов (Н 2 2+ и др.), образующих нейтральные молекулы Н 2 . Это вызывает деполяризацию и непрерывное действие гальванической пары: металл (-) - раствор (+), т.е. коррозии. Скорость коррозии хрома в кипящей 65%-ной кислоте 5 * 10 -2 г/(м 2 * ч), а железа -10 5 г/(м 2 * ч), т.е. в 10 7 раз выше.

Поэтому при наличии в стали хрома коррозия практически не развивается. Главный фактор коррозионной стойкости стали - однородность твердого раствора хрома в железе, отсутствие его соединений с углеродом и другими элементами, приводящих к локальному обеднению стали хромом и создающих границы раздела между фазами с дефектными участками кристаллической решетки, где у атомов железа ослаблены межатомные связи. Так, образование карбида хрома Сr 23 С 6 . содержащего 94 % Сr, обедняет окружающую матрицу с 18 ...25 % Сr. Поэтому составы коррозионностойких сталей отличаются от жаропрочных минимумом углерода (до 0,02 %), являющегося для них вредной примесью, либо наличием в стехиометрическом отношении стабилизирующих элементов (титан, ниобий), образующих более прочные карбиды, чем хром, что исключает обеднение твердого раствора хромом. Для обеспечения прочности и стабильности аустенита в ряде сталей часть углерода заменена азотом. Он препятствует образованию δ -Fe, упрочняет аустенит и не образует карбидов.

Кроме того, в рассматриваемых сталях снижены пределы содержания серы и фосфора. В ряде сталей допустимо ≤10% δ -Fe, который обладает высокой концентрацией хрома и повышает коррозионную стойкость при нормальных температурах, но охрупчивает сталь при длительном нагреве до температуры >500 о С. превращаясь в σ -фазу, что снижает и коррозионную стойкость.

Аустенитные стали имеют ряд особых преимуществ и могут применяться в рабочих средах, отличающихся значительной агрессивностью. Без таких сплавов не обойтись в энергетическом машиностроении, на предприятиях нефтяной и химической промышленности.

Аустенитные стали - это стали с высоким уровнем легирования, при кристаллизации образуется однофазная система, характеризуемая кристаллической гранецентрированной решеткой. Такой тип решеток не меняется даже под воздействием очень низких температур (около 200 градусов Цельсия). В отдельных случаях имеется еще одна фаза (объем в сплаве не превышает 10 процентов). Тогда решетка получится объемноцентрированной.

Описание и характеристики

Стали разделяют на две группы относительно состава их основы и содержания легирующих элементов, таких как никель и хром:

  • Композиции, в основе которых содержится железо: никель 7%, хром 15%; общее количество добавок - до 55%;
  • Никелевые и железоникелевые композиции. В первой группе содержание никеля начинается от 55% и больше, а во второй - от 65 и больше процентов железа и никеля в соотношении 1:5.

Благодаря никелю можно добиться повышенной пластичности, жаропрочности и технологичности стали, а с помощью хрома - придать требуемую коррозийность и жаростойкость. А добавление других легирующих компонентов позволит получать сплавы с уникальными свойствами. Компоненты подбирают в соответствии со служебным предназначением сплавов.

Для легирования преимущественно используют:

  • Ферритизаторы, стабилизирующие структуру аустенитов: ванадий, вольфрам, титан, кремний, ниобий, молибден.
  • Аустенизаторы, представленные азотом, углеродом и марганцем.

Все перечисленные компоненты расположены не только в избыточных фазах, но и в твердом растворе из стали.

Сплавы, устойчивые к коррозии и перепадам температур

Широкий спектр добавок позволяет создать особые стали, которые будут применены для изготовления компонентов конструкций и будут работать в криогенных, высокотемпературных и коррозионных условиях. Поэтому составы разделяют на три типа:

  • Жаропрочные и жаростойкие.
  • Стойкие к коррозии.
  • Устойчивы к воздействию низких температур.

Жаростойкие сплавы не разрушаются под влиянием химикатов в агрессивных средах, могут использоваться при температуре до +1150 градусов. Из них изготавливают:

  • Элементы газопроводов;
  • Арматуру для печей;
  • Нагревательные компоненты.

Жаропрочные марки на протяжении длительного времени могут оказывать сопротивление нагрузкам в условиях повышенных температур, не теряя высоких механических характеристик. При легировании используются молибден и вольфрам (на каждое дополнение может отводиться до 7%). Для измельчения зерен в небольших количествах применяется бор.

Аустенитные нержавеющие стали (стойкие к коррозии) характеризуются незначительным содержанием углерода (не более 0,12%), никеля (8−30%), хрома (до 18%). Проводится термическая обработка (отпуск, закалка, отжиг). Она важна для изделий из нержавейки, ведь дает возможность хорошо держаться в самых разных агрессивных средах - кислотных, газовых, щелочных, жидкометаллических при температуре 20 градусов и выше.

У хладостойких аустенитных композициях содержится 8−25% никеля и 17−25% хрома. Применяют в криогенных агрегатах, но стоимость производства существенно возрастает, потому используются очень ограниченно.

Свойства термической обработки

Жаростойкие и жаропрочные марки могут подвергаться разным типам тепловой обработки, чтобы нарастить полезные свойства и модифицировать уже имеющуюся структуру зерен. Речь идет о числе и принципе распределения дисперсных фаз, величине блоков и собственно зерен и тому подобное.

Отжиг такой стали помогает уменьшить твердость сплава (иногда это важно при эксплуатации), а также устранить излишнюю хрупкость. В процессе обработки металл нагревается до 1200 градусов на протяжении 30−150 минут, потом его необходимо как можно быстрее охладить. Сплавы со значительным количеством легирующих элементов, как правило, охлаждаются в маслах или на открытом воздухе, а более простые - в обычной воде.

Нередко проводится двойная закалка. Сначала выполняют первую нормализацию составов при температуре 1200 градусов, затем следует вторая нормализация при 1100 градусах, что позволяет значительно увеличить пластические и жаропрочные показатели.

Добиться повышения жаропрочности и механической прочности можно в процессе двойной термической обработки (закалка и старение). До эксплуатации проводится искусственное старение всех жаропрочных сплавов (то есть выполняется их дисперсионное твердение).

В энергетическом машиностроении, на предприятиях химической и нефтяной промышленности элементы оборудования, находящиеся в прямом контакте с агрессивными средами, должны быть выполнены из специального материала, который способен выдерживать негативное воздействие. Согласно современным технологиям, используются аустенитные стали, марки их выбираются в соответствии с производственными задачами.

Это высоколегированный материал, который в процессе кристаллизации формирует 1-фазную структуру. Его характеризует гранецентрированная кристаллическая решетка, которая сохраняется и при криогенных температурах – ниже -200 градусов С. Материал характеризуется повышенным содержанием никеля, марганца и некоторых других элементов, способствующих стабилизации при различных температурах. Аустенитные стали классифицируют на 2 группы относительно состава:

  • материал на основании железа, в котором хрома до 15%, а никеля – до 7%, общее число легирующих элементов не должно превышать 55%;
  • материал на основании никеля, когда его содержание 55% и выше, или на основе железоникелевой, когда содержание этих компонентов 65% и выше, а соотношение железа и никеля находятся в пропорции 1 к 1 ½ соответственно.

Содержание никеля в этих железных сплавах необходимо для увеличения технологичности, стойкости и прочности к жару, увеличению параметров пластичности. Хром увеличивает стойкость к коррозии и высоким температурам. Другие легирующие добавки способны сформировать и другие уникальные свойства, которыми должна обладать аустенитная нержавеющая сталь в тех или иных технологических условиях. В отличие от других материалов этот железный сплав не имеет трансформаций при снижении и повышении температур. Поэтому температурная обработка его не применяется.

Классификация аустенитных сталей по группам и маркам

Какие стали относятся к аустенитным сталям принято классифицировать на три группы:


Особенности обработки аустенитных сталей

Аустенитные стали относятся к труднообрабатываемым материалам. Термическое воздействие на них затруднительно, поэтому используются другие технологии. Механическая обработка этих сплавов сложна, поскольку материал склонен к наклепу и незначительные деформации значительно уплотняют материал. Этот железный сплав образует длинную стружку, поскольку обладает высокими параметрами вязкости. Механическая обработка аустенитных сталей энергозатрана, ресурса потребляется на 50% больше в сравнении с углеродистыми сплавами. Поэтому обработка их должна выполняться на мощных и жестких станках. Возможна сварка, ультразвуковое воздействие и криогенно-деформационная технология.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.