Галий — жидкий металл

Галлий

ГА́ЛЛИЙ -я; м. [от лат. Gallia - Франция] Химический элемент (Ga), мягкий легкоплавкий металл серебристо-белого цвета (применяется в производстве полупроводников).

Га́ллий

(лат. Gallium), химический элемент III группы периодической системы. Название от Gallia - латинское название Франции. Серебристо-белый легкоплавкий (t пл 29,77ºC) металл; плотность (г/см 3) твердого металла 5,904, жидкого 6,095; t кип 2205ºC. На воздухе химически стоек. В природе рассеян, встречается вместе с Al. Применяют в основном (на 97%) в производстве полупроводниковых материалов (GaAs, GaSb, GaP, GaN).

ГАЛЛИЙ

ГА́ЛЛИЙ (лат. Gallium, от Gallia - латинского названия Франции), Ga (читается «галлий»), химический элемент с атомным номером 31, атомная масса 69,723.
Природный галлий состоит из двух изотопов 69 Ga (61,2% по массе) и 71 Ga (38,8%). Конфигурация внешнего электронного слоя 4s 2 p 1 . Степень окисления +3 , +1 (валентности I, III).
Расположен в группе IIIА периодической системы элементов, в 4-м периоде.
Радиус атома 0,1245 нм, радиус иона Ga 3+ 0,062 нм. Энергии последовательной ионизации 5,998, 20,514, 30,71, 64,2 и 89,8 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,6.
История открытия
Впервые существование этого элемента предсказано Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) в 1871 на основании открытого им периодического закона. Он назвал его экаалюминий. В 1875 П. Э. Лекок де Буабодран (см. ЛЕКОК ДЕ БУАБОДРАН Поль Эмиль) выделил галлий из цинковых руд.
Де Буабодран определил плотность галлия - 4,7 г/см 3 , что не соответствовало предсказанному Д. И. Менделеевым значению 5,9 г/см 3 . Уточненное значение плотности галлия (5,904 г/см 3) совпало с предсказанием Менделеева.
Нахождение в природе
Содержание в земной коре 1,8·10 –3 % по массе. Галлий относится к рассеянным элементам. В природе встречается в виде очень редких минералов: зенгеита Ga(OH) 3 , галлита CuGaS 2 и других. Является спутником алюминия (см. АЛЮМИНИЙ) , цинка (см. ЦИНК (химический элемент)) , германия (см. ГЕРМАНИЙ) , железа (см. ЖЕЛЕЗО) ; содержится в сфалеритах (см. СФАЛЕРИТ) , нефелине (см. НЕФЕЛИН) , натролите, бокситах, (см. БОКСИТЫ) германите, в углях и железных рудах некоторых месторождений.
Получение
Основной источник галлия - алюминатные растворы, получаемые при переработке глинозема. После удаления большей части Al и многократного концентрирования образуется щелочной раствор, содержащий Ga и Al. Галлий выделяют электролизом этого раствора.
Физические и химические свойства
Галлий - легкоплавкий светло-серый металл с синеватым оттенком. Расплав Ga может находиться в жидком состоянии при температуре ниже температуры плавления (29,75 °C). Температура кипения 2200 °C, это объясняется тем, что в жидком галлии плотная упаковка атомов с координационным числом 12. Для ее разрушения надо затратить много энергии.
Кристаллическая решетка устойчивой a-модификации образована двухатомными молекулами Ga 2 , связанными между собой ван-дер-ваальсовыми силами (см. МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ) , длина связи 0,244 нм.
Стандартный электродный потенциал пары Ga 3+ /Ga равен –0,53В, Ga находится в электрохимическом ряду до водорода (см. ВОДОРОД) .
По химическим свойствам галлий сходен с алюминием.
На воздухе Ga покрывается оксидной пленкой, предохраняющей от дальнейшего окисления. С мышьяком (см. МЫШЬЯК) , фосфором (см. ФОСФОР) , сурьмой (см. СУРЬМА) образует арсенид, фосфид и антимонид галлия, с серой (см. СЕРА) , селеном (см. СЕЛЕН) , теллуром (см. ТЕЛЛУР) - халькогениды. При нагревании Ga реагирует с кислородом (см. КИСЛОРОД) . С хлором (см. ХЛОР) и бромом (см. БРОМ) галлий взаимодействует при комнатной температуре, с иодом (см. ИОД) - при нагревании. Галогениды галлия, образуют димеры Ge 2 X 6 .
Галлий образует полимерные гидриды:
4LiH + GaCl 3 = Li + 3LiCl.
Устойчивость ионов падает в ряду BH 4 – - AlH 4 – - GaH 4 – . Ион BH 4 – устойчив в водном растворе, AlH 4 – и GaH 4 – быстро гидролизуются:
GaH 4 – + 4H 2 O = Ga(OH) 3 + OH – + 4H 2
При нагревании под давлением Ga реагирует с водой:
2Ga + 4H 2 O = 2GaOOH + 3H 2
С минеральными кислотами Ga медленно реагирует с выделением водорода:
2Ga + 6HCl = 2GaCl 3 + 3H 2
Галлий растворяется в щелочах с образованием гидроксогаллатов:
2Ga + 6H 2 O + 2NaOH = 2Na + 3H 2
Оксид и гидроксид галлия проявляют амфотерные свойства, хотя основные свойства у них по сравнению с Al усилены:
Ga 2 O 3 + 6HCl = 2GaCl 2 ,
Ga 2 O 3 + 2NaOH + 3H 2 O = 2Na
Ga 2 O 3 + Na 2 CO 3 = 2NaGaO 2 + CO 2
При подщелачивании раствора какой-либо соли галлия выделяется гидроксид галлия переменного состава Ge 2 O 3 ·x H 2 O:
Ga(NO 3) 2 + 3NaOH = Ga(OH) 3 Ї + 3NaNO 3
При растворении Ga(OH) 3 и Ga 2 O 3 в кислотах образуются аквакомплексы 3+ , поэтому из водных растворов соли галлия выделяются в виде кристаллогидратов, например, хлорид галлия GaCl 3 ·6H 2 O, галлийкалиевые квасцы KGa(SO 4) 2 ·12H 2 O. Аквакомплексы галлия в растворах бесцветны.
Применение
Около 97% получаемого промышленностью галлия используется для получения соединений с полупроводниковыми свойствами, например, арсенида галлия GaAs. Металлический галлий применяют в радиоэлектронике для «холодной пайки» керамических и металлических деталей, для легирования Ge и Si, получения оптических зеркал. Ga может заменять Hg в выпрямителях электрического тока. Эвтектический сплав галлия с индием используют в радиационных контурах реакторов.
Особенности обращения
Галлий - малотоксичный элемент. Из-за низкой температуры плавления слитки Ga рекомендуется транспортировать в пакетах из полиэтилена, который плохо смачивается жидким галлием.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Галлий" в других словарях:

    Металл, простое тело, существование которого предвидел Менделеев и который был открыт Лекок де Буободраном. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГАЛЛИЙ неразложимый минерал, сине белого цвета; твердый,… … Словарь иностранных слов русского языка

    - (Gallium), Ga, химическая элемент III группы периодической системы, атомный номер 31, атомная масса 69,72; металл. Галлий открыт французским химиком П. Лекоком де Буабодраном в 1875 … Современная энциклопедия

    Ga (лат. Gallium * a. gallium; н. Gallium; ф. gallium; и. galio), хим. элемент III группы периодич. системы Mенделеева, ат. н. 31, ат. м. 69,73. Cостоит из двух стабильных изотопов 69Ga (61,2%) и 71Ga (38,8%). Предсказан в 1870 Д. И.… … Геологическая энциклопедия

    галлий - я, м. gallium m. От лат. названия Франции, где был открыт в 1875 г. химиком Лекоком де Буадбодраном. ЭС. Химический элемент, мягкий лекоплавкий серебристо белый металл; применяется вместо ртути для изготовления манометров и высокотемпературных… … Исторический словарь галлицизмов русского языка

    Галлий - (Gallium), Ga, химическая элемент III группы периодической системы, атомный номер 31, атомная масса 69,72; металл. Галлий открыт французским химиком П. Лекоком де Буабодраном в 1875. … Иллюстрированный энциклопедический словарь

Что составляет 29,76 о С. Если поместить его в теплую ладонь, оно постепенно начинает переходить из твердого состояния в жидкую форму.

Краткий экскурс в историю

Как называется металл, который плавится в руке? Как уже было отмечено выше, такой материал известен под определением галлий. Его теоретическое существование предсказал в далеком 1870 году отечественный ученый, автор таблицы химических элементов - Дмитрий Менделеев. Основой к возникновению такого предположения стало изучение им свойств многочисленных металлов. На то время ни одному теоретику не могло прийти в голову, что металл, который плавится в руках, существует в реальности.

Возможность синтеза чрезвычайно легкоплавкого материала, появление которого предсказывал Менделеев, доказал французский ученый Эмиль Лекок де Буабодран. В 1875 году ему удалось выделить галлий из цинковой руды. Во время опытов с материалом ученый получил металл, который плавится в руках.

Известно, что Эмиль Буабодран испытывал значительные трудности с выделением нового элемента из цинковой руды. В ходе первых опытов ему удалось добыть всего лишь 0,1 грамма галлия. Однако даже этого оказалось достаточно, чтобы подтвердить удивительное свойство материала.

Где встречается галлий в природе

Галлий относится к элементам, которые не встречаются в виде залежей руд. Материал очень рассеян в земной коре. В природе он встречается в составе крайне редких минералов, таких как галлит и зенгеит. В ходе лабораторных опытов небольшое количество галлия можно выделить из руд цинка, алюминия, германия, железа. Иногда его находят в бокситах, залежах угля, прочих месторождениях полезных ископаемых.

Как получают галлий

В настоящее время ученые чаще всего синтезируют металл, который плавится в руках, из алюминиевых растворов, что добываются в ходе переработки глинозема. В результате удаления основной массы алюминия и проведения процедуры неоднократного концентрирования металлов получают щелочной раствор, в котором находится незначительная доля галлия. Выделяют такой материал из раствора путем электролиза.

Сферы применения

Галлий по сей день не нашел применения в промышленности. Виной всему широкое использование алюминия, который обладает схожими свойствами в твердом виде. Несмотря на это, галлий выглядит перспективным материалом, поскольку обладает отменными полупроводниковыми качествами. Такой металл потенциально может быть использован для производства элементов транзисторов, высокотемпературных выпрямителей тока, солнечных батарей. Галлий выглядит прекрасным решением для изготовления покрытий оптических зеркал, которые будут обладать высочайшей отражательной способностью.

Главным препятствием на пути к применению галлия в промышленных масштабах остается высокая стоимость его синтеза из руд и минералов. Цена за тонну такого металла на мировом рынке составляет более 1,2 миллиона долларов.

На сегодняшний день галлий нашел эффективное применение лишь в сфере медицины. Металл в жидкой форме применяется в целях замедления потери костной массы у людей, что страдают от онкологических недугов. Его используют для быстрой остановки кровотечений при наличии крайне глубоких ран на теле пострадавших. В последнем случае закупорка сосудов галлием не приводит к образованию тромбов.

Как уже отмечалось выше, галлий - металл, который плавится в руках. Поскольку температура, что требуется для перехода материала в жидкое состояние, составляет чуть больше 29 о С, его достаточно подержать в ладонях. Через некоторое время изначально твердый материал начнет плавиться буквально на глазах.

Довольно увлекательный эксперимент можно провести с затвердеванием галлия. Представленный металл имеет свойство расширяться в ходе затвердевания. Для проведения интересного опыта достаточно поместить жидкий галлий в стеклянный пузырек. Далее необходимо начать охлаждать емкость. Через некоторое время можно заметить, как в пузырьке станут образовываться кристаллы металла. Они будут иметь синеватый цвет, в отличие от серебристого оттенка, который характерен для материала в жидком состоянии. Если не прекращать охлаждение, кристаллизирующийся галлий в конечном итоге разорвет стеклянный пузырек.

В заключение

Вот мы и выяснили, какой металл плавится в руке. Сегодня галлий можно отыскать в продаже для проведения собственных опытов. Однако обращаться с материалом следует крайне осторожно. Твердый галлий является нетоксичным веществом. Однако продолжительный контакт с материалом в жидкой форме может привести к самым непредвиденным последствиям для здоровья, вплоть до остановки дыхания, паралича конечностей и вхождения человека в состояние комы.

Галлий

Галлий – это химический элемент с атомным номером 31. Относится к группе легких металлов и обозначается символом “Ga”. Галлий в чистом виде не встречается в природе, однако его соединения в ничтожно малых количествах содержатся в бокситах и цинковых рудах. Галлий – мягкий пластичный металл серебристого цвета. При низких температурах находится в твердом состоянии, но плавится уже при температуре, не намного превышающей комнатную (29,8°C). На видео ниже можно увидеть, как ложка из галлия плавится в чашке с горячим чаем.

1. С момента открытия элемента в 1875 году и до наступления эры полупроводников, галлий в основном использовался для создания легкоплавких сплавов.

2. В настоящее время весь галлий используется в микроэлектронике.

3. Арсенид галлия, основное используемое соединение элемента, применяется в микроволновых схемах и инфракрасных приложениях.

4. Нитрид галлия используется меньше, при создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона.

5. У галлия нет известной науке биологической роли. Но, так как соединения галлия и соли железа сходно ведут себя в биологических системах, ионы галлия часто заменяют ионы железа в медицинском применении.

6. В настоящее время разработаны фармацевтические и радиофармацевтические препараты, содержащие галлий.

Химия

Галлий №31

Подгруппа галлия. Содержание каждого из членов данной подгруппы в земной коре по ряду галлий (4-10~4%) -индий (2-10~6) - таллий (8-10-7) уменьшается. Все три" элемента чрезвычайно распылены, и нахождение в виде определенных минералов для них не характерно. Напротив, незначительные примеси их соединений содержат руды многих металлов. Получают Ga, In и Тi из отходов при переработке подобных руд.
В свободном состоянии галлий, индий и таллий представляют собой серебристо-белые металлы. Их важнейшие константы сопоставлены ниже:
Ga In Tl

Физические свойства галлия

Плотность, g/cjH3 5,9 7,3 11,9
Температура плавления, °С. . . 30 157 304
Температура кипения, °С... . 2200 2020 1475
Электропроводность (Hg = 1) . . 2 11 6

По твердости галлий близок к свинцу , In и Тi - еще мягче 6-13.
В сухом воздухе галлий и индий не изменяются , а таллий покрывается серой пленкой окисла. При накаливании все три элемента энергично соединяются с кислородом и серой . С хлором и бромом они взаимодействуют уже при обычной температуре, с иодом -лишь при нагревании. Располагаясь в ряду напряжений около железа , Ga, In и Тi растворимы в кислотах.14’ 15
Обычная валентность галлия и индия равна трем. Таллий дает производные, в которых он трех- и одновалентен. 18
Окиси галлия и его аналогов - белая Ga 2 O 3 , желтая 1п203 и коричневая Т1203 - в воде нерастворимы - отвечающие им гидроокиси Э (ОН)3 (которые могут быть получены исходя из солей) представляют собой студенистые осадки, практически нерастворимые в воде, но растворяю-щиеся в кислотах. Белые гидроокиси Ga и In растворимы также в растворах сильных щелочей с образованием аналогичных алюминатам галлатов и индатов. Они имеют, следовательно, амфотерный характер, причем кислотные свойства выражены у 1п(ОН) 3 слабее, а у Ga(OH) 3 сильнее, чем у Аl(ОН) 3 . Так, помимо сильных щелочей, Ga(OH) 3 растворима в крепких растворах NH 4 OH. Напротив, краснокоричневая Ti(ОН) 3 в щелочах не растворяется.
Ионы Ga"" и In" бесцветны, ион Тi" имеет желтоватую окраску. Производящиеся от них соли большинства кислот хорошо растворимы в воде, но сильно гидролизованы; Из растворимых солей слабых кислот многие подвергаются практически полному гидролизу. В то время как производные низших валентностей Ga и In для них не типичны, для таллия наиболее характерны именно те соединения, в которых он одновалентен. Поэтому соли Т13+ имеют заметно выраженные окислительные свойства.


Закись таллия (Т120) образуется в результате взаимодействия элементов при высоких температурах. Она представляет собой черный гигроскопичный порошок. С водой закись таллия образует желтый гидрат закиси (Т10Н), который при нагревании легко отщепляет воду и переходит обратно в Т120.
Гидрат закиси таллия хорошо растворим в воде и является сильным основанием. Образуемые им соли в большинстве бесцветны и
кристаллизуются без воды. Хлорид, бромид и иодид почти нерастворимы, но некоторые другие ] соли растворимы в воде. Произволные TiOН и слабых кислот вследствие гидролиза дают в растворе щелочную реакцию. При дей- : ствии сильных окислителей (например, хлорной воды) одновалентный таллий окисляется до трехвалентного.57-66
По химическим свойствам элементов и их соединений подгруппа галлия во многом похожа " на подгруппу германия. Так, для Ge и Ga более устойчива высшая валентность, для РЬ и Т1 низшая, химический характер гидроокисей в рядах Ge-Sn-РЬ и Ga-In-Тi изменяется однотипно. Иногда проявляются далее более тонкие ‘ черты сходства, например малая растворимость галоидных (Cl, Br, I) солей как РЬП, так и Тi . При всем том между элементами обеих подгрупп имеются и существенные различия (частично обусловленные их разной валентностью) : кислотный характер гидроокисей Ga и его аналогов выражен значительно слабее, чем у соответствующих элементов подгруппы германия , в противополжность PbF 2 фтористый таллий хорошо растворим и т. д.

Галлий дополнения

  1. Все три члена рассматриваемой подгруппы открыты при помощи спектроскопа: 1 таллий - в 1861 г., индий - в 1863 г. и галлий - в 1875 г. Последний из этих элементов за 4 года до его открытия был предсказан и описан Д. И. Менделеевым (VI § 1). Природный галлий слагается из изотопов с массовыми числами 69 (60,2%) и 71 (39,8); индий-113 (4,3) и 115 (95,7); таллий - 203 (29,5) и 205 (70,5%).
  2. В основном состоянии атомы элементов подгруппы галлия имеют строение внешних электронных оболочек 4s2 34p (Ga), 5s25p (In), 6s26p (Tl) и одновалентны, i Возбуждение трехвалентных состояний требует затраты 108 (Ga), 100 (In) или 129 , (Тi) ккал/г-атом. Последовательные энергии ионизации равны 6,00; 20,51; 30,70 для Ga; 5,785; 18,86; 28,03 для In: 6,106; 20,42; 29,8 эв для Т1. Сродство атома таллия к электрону оценивается в 12 ккал/г-атом.
  3. Для галлия известен редкий минерал галлит (CuGaS 2). Следы этого элемента постоянно содержатся в цинковых рудах. Значительно большие его количества: Е (до 1,5%) были обнаружены в золе некоторых каменных углей. Однако основным сырьем для промышленного получения галлия служат бокситы, обычно содержащие незначительные его примеси (до 0,1%). Извлекается он электролизом из щелочных жидкостей, являющихся промежуточным продуктом переработки природных бокситов на технический глинозем. Размеры ежегодной мировой выработки галлия исчисляются пока немногими тоннами, но могут быть значительно увеличены.
  4. Индий получают главным образом в качестве побочного продукта при комплексной переработке сернистых руд Zn, Pb и Си. Его ежегодная мировая выработка составляет несколько десятков тонн.
  5. Таллий концентрируется главным образом в пирите (FeS2). Поэтому шламы сернокислотного производства являются хорошим сырьем для получения этого элемента. Ежегодная мировая выработка таллия меньше, чем индия, но также исчисляется десятками тонн.
  6. Для выделения Ga, In и Т1 в свободном состоянии применяется или электролиз растворов их солей, или накаливание окислов в токе водорода. Теплоты плавления и испарения металлов имеют следующие значения: 1,3 и 61 (Ga), 0,8 и 54 (In), 1,0 и 39 ккал/г-атом (Т1). Теплоты их возгонки (при 25 °С) составляют 65 (Ga), 57 (In) и 43 ккал/г-атом (Т1). В парах все три элемента состоят почти исключительно из одноатомных молекул.
  7. Кристаллическая решетка галлия образована не отдельными атомами (как обычно для металлов), а двухатомными молекулами (rf = 2,48A). Она представляет собой, таким образом, интересный случай сосуществования молекулярной и металлической структур (III § 8). Молекулы Ga2 сохраняются и в жидком галлии, плотность которого (6,1 г/см) больше плотности твердого металла (аналогия с водой и висмутом). Повышение давления сопровождается снижением температуры плавления галлия. При высоких давлениях, помимо обычной модификации (Gal), установлено существование двух других его форм. Тройные точки (с жидкой фазой) лежат для Gal - Gall при 12 тыс. ат и 3 °С, а для Gall - Galll - при 30 тыс. ат и 45 °С.
  8. Галлий весьма склонен к переохлаждению, и его удавалось удерживать в жидком состоянии до -40 °С. Многократное повторение быстрой кристаллизации переохлажденного расплава может служить методом очистки галлия. В очень чистом состоянии (99,999%) он был получен и путем электролитического рафинирования, а также восстановлением водородом тщательно очищенного GaCl3. Высокая точка кипения и довольно равномерное расширение при нагревании делают галлий ценным материалом для заполнения высокотемпературных термометров. Несмотря на его внешнее сходство с ртутью, взаимная растворимость обоих металлов сравнительно невелика (в интервале от 10 до 95 °С она изменяется от 2,4 до 6,1 атомного процента для Ga в Hg и от 1,3 до 3,8 атомного процента для Hg в Ga). В отличие от ртути жидкий галлий не растворяет щелочные металлы и хорошо смачивает многие неметаллические поверхности. В частности, это относится к стеклу, нанесением на которое галлия могут быть получены зеркала, сильно отражающие свет (однако имеется указание на то, что очень чистый галлий, не содержащий примеси индия, стекло не смачивает). Нанесение галлия на пластмассовую основу используется иногда для быстрого получения радиосхем. Сплав 88% Ga и 12% Sn плавится при 15 °С, а некоторые другие содержащие галлий сплавы (например, 61,5% Bi, 37,2 - Sn и 1,3 - Ga) были предложены для пломбирования зубов. Они не изменяют своего объема с температурой и хорошо держатся. Галлий можно использовать также как уплотнитель для вентилей в вакуумной технике. Однако следует иметь в виду, что при высоких температурах он агрессивен по отношению и к стеклу, и ко многим металлам.
  9. В связи с возможностью расширения производства галлия становится актуальной проблема ассимиляции (т. е. освоения практикой) этого элемента и его соединений, что требует проведения исследовательских работ для изыскания областей их рационального использования. По галлию имеются обзорная статья и монографии.
  10. Сжимаемость индия несколько выше, чем у алюминия (при 10 тыс. ат объем составляет 0,84 исходного). С повышением давления уменьшается его электросопротивление (до 0,5 от исходного при 70 тыс. ат) и растет температура плавления (до 400°С при 65 тыс. ат). Палочки металлического индия при сгибании хрустят, подобно оловянным. На бумаге он оставляет темную черту. Важное применение индия связано с изготовлением германиевых выпрямителей переменного тока (X § 6 доп. 15). Благодаря своей легкоплавкости он может играть роль смазки в подшипниках.
  11. Введение небольшого количества индия в сплавы меди сильно повышает их устойчивость к действию морской воды, а присадка индия к серебру усиливает его блеск и предупреждает потускнение на воздухе. Сплавам для пломбирования зубов добавка индия придает повышенную прочность. Электролитическое покрытие индием других металлов хорошо предохраняет их от коррозии. Сплав индия с оловом (1:1 по массе) хорошо спаивает стекло со стеклом или металлом, а сплав состава 24% In и 76% Ga плавится при 16°С. Плавящийся при 47 °С сплав 18,1% In с 41,0 - Bi, 22,1 - РЬ, 10,6 - Sn и 8,2 - Cd находит медицинское использование при сложных переломах костей (вместо гипса). По химии индия имеется монография
  12. Сжимаемость таллия примерно такова же, как индия, но для него известны две аллотропические модификации (гексагональная и кубическая), точка перехода между которыми лежит при 235 °С. Под высоким давлением возникает еще одна. Тройная точка всех трех форм лежит при 37 тыс. ат и 110°С. Этому давлению соответствует скачкообразное уменьшение примерно в 1,5 раза электросопротивления металла (которое при 70 тыс. ат составляет около 0,3 от обычного). Под давлением в 90 тыс. ат третья форма таллия плавится при 650 °С.
  13. Таллий используется главным образом для изготовления сплавов с оловом и свинцом, обладающих высокой кислотоупорностью. В частности, сплав состава 70% РЬ, 20% Sn и 10% Т1 хорошо выдерживает действие смесей серной, соляной и азотной кислот. По таллию имеется монография.
  14. По отношению к воде галлий и компактный индий устойчивы, а таллий в присутствии воздуха медленно разрушается ею с поверхности. С азотной кислотой галлий реагирует лишь медленно, а таллий весьма энергично. Напротив, серная, и особенно соляная, кислота легко растворяет Ga и In, тогда как Т1 взаимодействует с ними значительно медленнее (вследствие образования на поверхности защитной пленки труднорастворимых солей). Растворы сильных щелочей легко растворяют галлий, лишь медленно действуют на индий и не реагируют с таллием. Галлий заметно растворяется также в NH4OH. Летучие соединения всех трех элементов окрашивают бесцветное пламя в характерные цвета: Ga - в почти незаметный для глаза темно-фиолетовый (Л. = 4171 А), In -в темно-синий (Л, = 4511 А), Т1 - в изумрудно-зеленый (А, = = 5351 А).
  15. Галлий и индий, по-видимому, не ядовиты. Напротив, таллий сильно ядовит, причем по характеру действия похож на РЬ и As. Поражает он нервную систему, пищеварительный тракт и почки. Симптомы острого отравления проявляются не сразу, а через 12-20 часов. При медленно развивающемся хроническом отравлении (в том числе и через кожу) наблюдается прежде всего возбуждение и расстройство сна. В медицине препаратами таллия пользуются для удаления волос (при лишаях и т. п.). Соли таллия нашли применение в светящихся составах как вещества, увеличивающие продолжительность свечения. Они оказались также хорошим средством против мышей и крыс.
  16. В ряду напряжений галлий располагается между Zn и Fe, а индий и таллий - между Fe и Sn. Переходам Ga и In по схеме Э+3 + Зе = Э отвечают нормальные потенциалы: -0,56 и -0,33 в (в кислой среде) или -1,2 и -1,0 в (в щелочной среде). Таллий переводится кислотами в одновалентное состояние (нормальный потен- пиал -0,34 в). Переход Т1+3 + 2е = Т1+ характеризуется нормальным потенциалом + 1,28 в в кислой среде или +0,02 в - в щелочной.
  17. Теплоты образования окислов Э203 галлия и его аналогов уменьшаются по ряду 260 (Ga), 221 (In) и 93 ккал/моль (Т1). При нагревании на воздухе галлий практически окисляется только до GaO. Поэтому Ga203 обычно получают обезвоживанием Ga (ОН) з. .Индий при нагревании на воздухе образует 1п203, а таллий - смесь Т1203 и Т120 с тем большим содержанием высшего окисЛа, чем ниже температура. Нацело до Т1203 таллий может быть окислен действием озона.
  18. Растворимость окислов Э203 в кислотах увеличивается по ряду Ga - In - Tl. В том же ряду уменьшается прочность связи элемента с кислородом: Ga203 плавится при 1795°С без разложения, 1п203 переходит в 1п304 лишь выше 850 °С, а мелко раздробленная Т1203 начинает отщеплять кислород уже около 90 °С. Однако для полного перевода Т1203 в Т120 необходимы гораздо более высокие температуры. Под избыточным давлением кислорода 1п203 плавится при 1910 °С, а Т1203 - при 716 °С.
  19. Теплоты гидратации окислов по схеме Э203 + ЗН20 = 2Э(ОН)3 составляют +22 ккал (Ga), +1 (In) и -45 (Т1). В соответствии с этим легкость отщепления гидроокисями воды возрастает от Ga к Т1: если Ga(OH)3 полностью обезвоживается лишь при прокаливании, то Т1(ОН)3 переходит в Т1203 даже при стоянии под жидкостью, из которой она была выделена.
  20. При нейтрализации кислых растворов солей галлия его гидроокись осаждается приблизительно в интервале pH = 3-4. Свежеосажденная Ga(OH)3 хорошо растворима в крепких растворах аммиака, но по мере ее старения растворимость все более снижается. Ее изоэлектрическая точка лежит при pH = 6,8, а ПР = 2 10~37. Для 1п(ОН)3 было найдено ПР = 1 10-31, а для Т1(ОН)3- 1 10~45.
  21. Для вторых и третьих констант диссоциации Ga(OH)3 по кислотному и основному типам были определены следующие значения:

H3Ga03 /С2 = 5-10_И К3 = 2-10-12
Ga(OH)3 К2“2. Ю-П /Сз = 4 -10 12
Таким образом, гидроокись галлия представляет собой случай электролита, очень близкого к идеальной амфотерности.

  1. Различие кислотных свойств гидроокисей галлия и его аналогов отчетливо проявляется при их взаимодействии с растворами сильных щелочей (NaOH, КОН). Гидроокись галлия легко растворяется с образованием галлатов типа M, устойчивых и в растворе, и в твердом состоянии. При нагревании они легко теряют воду (соль Na - при 120, соль К - при 137 °С) и переходят в соответствующие безводные соли типа MGa02. Для получаемых из растворов галлатов двухвалентных металлов (Са, Sr) характерен другой тип - M3 ■ 2Н20, которые тоже почти нерастворимы. Водой они полностью гидролизуются.
    Гидроокись таллия легко пептизируется сильными щелочами (с образованием отри-цательного золя), но нерастворима в них и таллатов не дает. Сухим путем (сплавлением окислов с соответствующими карбонатами) производные типа МЭ02 были получены для всех трех элементов подгруппы галлия. Однако в случае таллия они оказались смесями окислов.

    1. Эффективные радиусы ионов Ga3+, In3* и Т13* равны соответственно 0,62, 0,92 и 1,05 А. В водной среде они непосредственно окружены, по-видимому, шестью молекулами воды. Такие гидратированные ионы несколько диссоциированы по схеме Э(ОН2)а Г * Э (ОН2)5 ОН + Н, причем их константы диссоциации оцениваются в 3 ■ 10-3°(Ga) и 2 10-4 (In).
    2. Галоидные соли Ga3+, In3* и Т13*’ в общем похожи на соответствующие соли А13*. Кроме фторидов, они сравнительно легкоплавки и хорошо растворимы не только в воде, но и в ряде органических растворителей. Окрашены из них лишь желтые Gal3

    Сформулировал свой периодических закон и составил периодическую же таблицу, многие металлы были науке ещё не известны.

    Это, впрочем, не помешало химику выстроить свою периодическую систему, оставив пустые клетки для ещё не открытых элементов. Эти "белые пятна" вскорости были заполнены. Об одном из таких предсказанных Менделеевым элементов и пойдёт сегодня речь.

    Знакомьтесь: галлий, 31 номер в таблице. Третья группа, легкоплавкий металл, близкий по свойствам к алюминию и кремнию. Менделеев не только достаточно подробно описал свойства этого металла, но и практически со стопроцентной точностью указал его атомный вес.

    Открытие и происхождение названия

    Галлий был открыт и выделен в виде просто вещества французским химиком Полем Эмилем Лекоком де Буабодраном. Произошло это в 1875 году, года учёный исследовал образцы цинковой обманки, привезённые из Пиренеев. Исследования проводились методом спектроскопии и учёный заметил в спектре руды фиолетовую линию, свидетельствующую о присутствии в минерале неизвестного элемента.

    Выделение элемента в чистом виде потребовало немало труда, так как содержание его в руде было меньше 0,1%. В конце концов, Лекоку де Буабодрану удалось получить менее 0,1 грамма чистого вещества и исследовать его. Обнаруженный французом элемент по свойствам оказался во многом сходен с цинком.

    На очередном заседании Парижской академии наук, состоявшемся 20 сентября 1875 года, было зачитано письмо Лекока де Буабодрана, в котором сообщалось об открытии нового элемента и изучении его свойств. Также химик сообщал, что назвал новооткрытый элемент в честь Франции, по её латинскому названию - Галлия (Gallia).

    Когда Менделеев прочёл опубликованный доклад, посвящённый этому открытию, он отметил, что описание свойств нового элемента почти в точности совпадает с описанием предсказанного им ранее экаалюминия. Менделеев не замедлил сообщить об этом Лекоку де Буабодрану, указав, что плотность нового металла определена неверно и должна быть 5,9-6,0 , а не 4,7 г/см3. Тщательная проверка показала правоту Менделеева.

    Добыча галлия

    В природе галлий крупных месторождений не образует. В некоторых минералах галлий содержится в относительно больших (для этого металла): гранат, сфалерит, турмалин, берилл, полевые шпаты, нефелин.

    Самый богатый источник галлия - минерал германит, руда, состоящая из сульфида меди, которая может содержать 0,5-0,7% галлия. Кроме этого, галлий получают при переработке боксита и нефелина. Также этот металл можно получить с помощью переработки полиметаллических руд, угля.


    Загрязнённый галлий промывают водой, после этого фильтруют через пористые пластины и нагревают в вакууме для того, чтобы удалить летучие примеси. Для получения галлия высокой чистоты используют химический (реакции между солями), электрохимический (электролиз растворов) и физический (разложение) методы.

    Месторождения, на которых ведётся добыча галлия, находятся, главным образом в Юго-Западной Африке , а также в России и в некоторых из стран СНГ.

    Свойства галлия

    Галлий – мягкий пластичный металл серебристого цвета. При низких температурах находится в твердом состоянии, но плавится уже при температуре, ненамного превышающей комнатную (29,8°C).

    Вообще широкий температурный интервал существования жидкого состояния этого металла (от 30 и до 2230 °C) является одной из особенностей галлия. Химические свойства галлия близки к свойствам алюминия. В связи с легкоплавкостью, перевозка галлия осуществляется в полиэтиленовых пакетах.


    До появления полупроводников, галлий использовался для создания легкоплавких сплавов. Сегодня же галлий используется, главным образом, в микроэлектронике в составе полупроводников. Нитрид галлия используется в создании полупроводниковых лазеров и светодиодов синего и ультрафиолетового диапазона.

    Галлий - превосходный смазочный материал. На основе галлия и никеля, галлия и скандия созданы очень важные в практическом плане металлические клеи. Металлическим галлием также заполняют кварцевые термометры для измерения высоких температур, заменяя этим металлом ртуть. Это связано с тем, что галлий имеет значительно более высокую температуру кипения по сравнению с ртутью.

    Галлий - один из самых дорогих металлов. Так в 2005 году на мировом рынке тонна галлия стоила 1,2 млн долларов США. В связи с его высокой стоимостью и с большой потребностью в этом металле, очень важно наладить его полное извлечение при алюминиевом производстве и переработке каменных углей на жидкое топливо.



    Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.