Три основы теории массового обслуживания. Простейшие системы массового обслуживания, примеры использования при решении экономических задач

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Рисунок 0 - 2 Потоки событий (а) и простейший поток (б)

10.5.2.1. Стационарность

Поток называется стационарным, если вероятность попадания того или иного числа событий на элементарный участок времени длиной τ (

Рисунок 0-2 , а) зависит только от длины участка и не зависит от того, где именно на оси t расположен этот участок.

Стационарность потока означает его однородность по времени; вероятностные характеристики такого потока не меняются в зависимости от времени. В частности, так называемая интенсивность (или «плотность») потока событий среднее число событий в единицу времени для стационарного потока должна оставаться постоянной. Это, разумеется, не значит, что фактическое число событий, появляющихся в единицу времени, постоянно, поток может иметь местные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера, а среднее число событий, попадающих на единичный участок времени, остается постоянным для всего рассматриваемого периода.

На практике часто встречаются потоки событий, которые (по крайней мере, на ограниченном участке времени) могут рассматриваться как стационарные. Например, поток вызовов, поступающих на телефонную станцию, скажем, на интервале от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не будет стационарным (ночью интенсивность потока вызовов гораздо меньше, чем днем). Заметим, что так же обстоит дело и с большинством физических процессов, которые мы называем «стационарными» в действительности они стационарны только на ограниченном участке времени, а распространение этого участка до бесконечности лишь удобный прием, применяемый в целях упрощения.

10.5.2.2. Отсутствие последействия

Поток событий называется потоком без последействия, если для любых непересекающихся участков времени число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой (или другие, если рассматривается больше двух участков).

В таких потоках события, образующие поток, появляются в последовательные моменты времени независимо друг от друга. Например, поток пассажиров, входящих на станцию метро, можно считать потоком без последействия, потому что причины, обусловившие приход отдельного пассажира именно в данный момент, а не в другой, как правило, не связаны с аналогичными причинами для других пассажиров. Если такая зависимость появляется, условие отсутствия последействия оказывается нарушенным.

Рассмотрим, например, поток грузовых поездов, идущих по железнодорожной ветке. Если по условиям безопасности они не могут следовать один за другим чаще, чем через интервал времени t 0 , то между событиями в потоке имеется зависимость, и условие отсутствия последействия нарушается. Однако, если интервал t 0 мал по сравнению со средним интервалом между поездами, то такое нарушение несущественно.

Рисунок 0 - 3 Распределение Пуассона

Рассмотрим на оси t простейший поток событий с интенсивностью λ. (Рисунок 0-2 б). Нас будет интересовать случайный интервал времени Т между соседними событиями в этом потоке; найдем его закон распределения. Сначала найдем функцию распределения:

F(t) = P(T ( 0-2)

т. е. вероятность того, что величина Т будет иметь значение, меньшее, чем t . Отложим от начала интервала Т (точки t 0 ) отрезок t и найдем вероятность того, что интервал Т будет меньше t . Для этого нужно, чтобы на участок длины t , примыкающий к точке t 0 , попало хотя бы одно событие потока. Вычислим вероятность этого F (t ) через вероятность противоположного события (на участок t не попадет ни одного события потока):

F (t ) = 1 - Р0

Вероятность Р 0 найдем по формуле (1), полагая m = 0:

откуда функция распределения величины Т будет:

(0-3)

Чтобы найти плотность распределения f (t ) случайной величины Т, необходимо продифференцировать выражение (0‑1) по t :

0-4)

Закон распределения с плотностью (0‑4) называется показательным (или экспоненциальным). Величина λ называется параметром показательного закона.

Рисунок 0 - 4 Экспоненциальное распределение

Найдем числовые характеристики случайной величины Т - математическое ожидание (среднее значение) M [ t ]= m t , и дисперсию D t . Имеем

( 0-5)

(интегрируя по частям) .

Дисперсия величины Т составляет:

(0-6)

Извлекая корень квадратный из дисперсии, найдем среднее квадратическое отклонение случайной величины Т.

Итак, для показательного распределения математическое ожидание и среднее квадратическое отклонение равны друг другу и обратны параметру λ, где λ. интенсивность потока.

Т.о., появление m событий в заданный промежуток времени соответствует пуассоновскому распределению, а вероятность того, что временные интервалы между событиями будут меньше некоторого наперед заданного числа, соответствует экспоненциальному распределению. Все это лишь различные описания одного и того же стохастического процесса.


Пример СМО- 1 .

В качестве примера рассмотрим банковскую систему, работающую в реальном масштабе времени и обслуживающую большое число клиентов. В часы пик запросы от кассиров банка, работающих с клиентами, образуют пуассоновский поток и поступают в среднем по два в 1 с (λ = 2).Поток состоит из заявок, поступающих с интенсивностью 2 заявки в секунду.

Рассчитаем вероятность Р ( m ) появления m сообщений в 1 с. Так как λ = 2, то из предыдущей формулы имеем

Подставляя m = 0, 1, 2, 3, получим следующие величины (с точностью до четырех десятичных знаков):

Рисунок 0 - 5 Пример простейшего потока

Возможно поступление и более 9 сообщений в 1 с, но вероятность этого очень мала (около 0,000046).

Полученное распределение может быть представлено в виде гистограммы (показана на рисунке).

Пример СМО- 2 .

Прибор (сервер), обрабатывающей три сообщения в 1с.

Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает всреднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?

Вероятность того, что скорость поступления будет меньше или равна 3 с, определяется выражением

Если система может обрабатывать максимум 3 сообщения в 1 с, то вероятность того, что она не будет перегружена, равна

Другими словами, 85,71% сообщений будут обслуживаться немедленно, а 14,29% с некоторой задержкой. Как видим, задержка в обработке одного сообщения на время, большее времени обработки 3 сообщений, будет встречаться редко. Время обработки 1сообщения составляет в среднем 1/3 с. Следовательно, задержка более 1с будет редким явлением, что вполне приемлемо для большинства систем.

Пример СМО- 3

· Если кассир банка занят в течение 80% своего рабочего времени, а остальное время он тратит на ожидание клиентов, то его можно рассматривать как устройство с коэффициентом использования 0,8.

· Если канал связи используется для передачи 8-битовых символов со скоростью 2400 бит/с, т. е. передается максимум 2400/8 символов в 1 с, и мы строим систему, в которой суммарный объем данных составляет 12000 символов, посылаемых от различных устройств через канал связи в минуту наибольшей нагрузки (включая синхронизацию, символы конца сообщений, управляющие и т. д.), то коэффициент использования оборудования канала связи в течение этой минуты равен

· Если механизм доступа к файлу в час наибольшей нагрузки осуществляет 9000 обращений к файлу, а время одного обращения равно в среднем 300 мс, то коэффициент использования оборудования механизма доступа в час наибольшей нагрузки составляет

Понятие коэффициента использования оборудования будет использоваться довольно часто. Чем ближе коэффициент использования оборудования к 100%, тем больше задержки и длиннее очереди.

Используя предыдущую формулу, можно составить таблицы значений функции Пуассона, по которым можно определить вероятность поступления m или более сообщений в данный отрезок времени. Например, если в среднем поступает 3,1 сообщения в секунду [т. е. λ = 3,1], то вероятность поступления 5 и более сообщений в данную секунду равна 0,2018 (для m = 5 в таблице). Или в аналитическом виде

Используя это выражение, специалист по системному анализу может рассчитать вероятность того, что система не обеспечит заданный критерий нагрузки.

Часто первоначальные расчеты могут быть проведены для значений загрузки оборудования

ρ ≤ 0,9

Эти значения можно получить с помощью таблиц Пуассона.

Пусть снова средняя скорость поступления сообщений λ = 3,1 сообщения/с. Из таблиц следует, что вероятность поступления 6 или более сообщений в 1 с равна 0,0943. Следовательно, это число можно взять в качестве критерия нагрузки для проведения начальных расчетов.

10.6.2. Задачи проектирования

При случайном характере поступления сообщений в устройство последнее затрачивает часть времени на обработку или обслуживание каждого сообщения, в результате чего образуются очереди. Очередь в банке ожидает освобождения кассира и его компьютера (терминала). Очередь сообщений во входном буфере ЭВМ ожидает обработки процессором. Очередь требований к массивам данных ждет освобождения каналов и т. д. Очереди могут образовываться во всех узких местах системы.

Чем больше коэффициент использования оборудования, тем длиннее возникающие очереди. Как будет показано ниже, можно спроектировать удовлетворительно работающую систему с коэффициентом использований ρ =0,7 но коэффициент, превышающий ρ > 0,9, может привести к ухудшению качества обслуживания. Другими словами, если канал пересылки массива данных имеет загрузку 20%, вряд ли на нем возникнет очередь. Если же загрузка; составляет 0,9, то, как правило, будут образовываться очереди, иногда очень большие.

Коэффициент использования оборудования равен отношению нагрузки на оборудование к максимальной нагрузке, которую может выдержать это оборудование, или равен отношению времени занятости оборудования к общему времени его функционирования.

При проектировании системы обычно делается оценка коэффициента использования для различных видов оборудования; соответствующие примеры будут приведены в последующих главах. Знание этих коэффициентов позволяет рассчитать очереди к соответствующему оборудованию.

· Какова длина очереди?

· Сколько времени на нее будет затрачиваться?

На вопросы подобного типа можно ответить с помощью теории очередей.

10.6.3. Системы массового обслуживания, их классы и основные характеристики

Для СМО потоки событий это потоки заявок, потоки «обслуживании» заявок и т. д. Если эти потоки не являются пуассоновскими (марковский процесс), математическое описание процессов, происходящих в СМО, становится несравненно более сложным и требует более громоздкого аппарата, доведение которого до аналитических формул удается только в простейших случаях.

Однако, аппарат «марковской» теории массового обслуживания может пригодиться и в том случае, когда процесс, протекающий в СМО, отличен от марковского с его помощью характеристики эффективности СМО могут быть оценены приближенно. Следует заметить, что чем сложнее СМО, чем больше в ней каналов обслуживания, тем точнее оказываются приближенные формулы, полученные с помощью марковской теории. Кроме того, в ряде случаев для принятия обоснованных решений по управлению работой СМО вовсе и не требуется точного знания всех ее характеристик зачастую достаточно приближенного, ориентировочного.

СМО классифицируются на системы с:

· отказами (с потерями). В таких системах заявка, поступившая в момент, когда все каналы заняты, получает «отказ», покидает СМО и в дальнейшем процессе обслуживания не участвует.

· ожиданием (с очередью). В таких системах заявка, поступившая в момент, когда все каналы заняты, становится в очередь и ожидает, пока не освободится один из каналов. Когда канал освобождается, одна из заявок, стоящих в очереди, принимается к обслуживанию.

Обслуживание (дисциплина очереди) в системе с ожиданием может быть

· упорядоченным (заявки обслуживаются в порядке поступления),

· неупорядоченным (заявки обслуживаются в случайном порядке) или

· стековым (первой из очереди выбирается последняя заявка).

· Приоритетным

o со статическим приоритетом

o с динамическим приоритетом

(в последнем случае приоритет может, например, увеличиваться с длительностью ожидания заявки).

Системы с очередью делятся на системы

· с неограниченным ожиданием и

· с ограниченным ожиданием.

В системах с неограниченным ожиданием каждая заявка, поступившая в момент, когда нет свободных каналов, становится в очередь и «терпеливо» ждет освобождения канала, который примет ее к обслуживанию. Любая заявка, поступившая в СМО, рано или поздно будет обслужена.

В системах с ограниченным ожиданием на пребывание заявки в очереди накладываются те или другие ограничения. Эти ограничения могут касаться

· длины очереди (числа заявок, одновременно находящихся в очереди система с ограниченной длиной очереди),

· времени пребывания заявки в очереди (после какого-то срока пребывания в очереди заявка покидает очередь и уходит система с ограниченным временем ожидания),

· общего времени пребывания заявки в СМО

и т. д.

В зависимости от типа СМО при оценке ее эффективности могут применяться те или другие величины (показатели эффективности). Например, для СМО с отказами одной из важнейших характеристик ее продуктивности является так называемая абсолютная пропускная способность среднее число заявок, которое может обслужить система за единицу времени.

Наряду с абсолютной часто рассматривается относительная пропускная способность СМО средняя доля поступивших заявок, обслуживаемая системой (отношение среднего числа заявок, обслуживаемых системой в единицу времени, к среднему числу поступающих за это время заявок).

Помимо абсолютной и относительной пропускной способностей при анализе СМО с отказами нас могут, в зависимости от задачи исследования, интересовать и другие характеристики, например:

· среднее число занятых каналов;

· среднее относительное время простоя системы в целом и отдельного канала

и т. д.

СМО с ожиданием имеют несколько другие характеристики. Очевидно, для СМО с неограниченным ожиданием как абсолютная, так и относительная пропускная способность теряют смысл, так как каждая поступившая заявка рано или поздно будет обслужена. Для такой СМО важными характеристиками являются:

· среднее число заявок в очереди;

· среднее число заявок в системе (в очереди и под обслуживанием);

· среднее время ожидания заявки в очереди;

· среднее время пребывания заявки в системе (в очереди и под обслуживанием);

а также и другие характеристики ожидания.

Для СМО с ограниченным ожиданием интерес представляют обе группы характеристик: как абсолютная и относительная пропускная способности, так и характеристики ожидания.

Для анализа процесса, протекающего в СМО, существенно знать основные параметры системы: число каналов п, интенсивность потока заявок λ , производительность каждого канала (среднее число заявок μ, обслуживаемое каналом в единицу времени), условия образования очереди (ограничения, если они есть).

В зависимости от значений этих параметров выражаются характеристики эффективности работы СМО.

10.6.4. Формулы расчета характеристик СМО для случая обслуживания с одним прибором

Рисунок 0 - 6 Модель системы массового обслуживания с очередью

Такие очереди могут создаваться сообщениями на входе процессора, ожидающими начала обработки. Они могут возникать при работе абонентских пунктов, подключенных к многопунктовому каналу связи. Аналогично образуются очереди из автомобилей на заправочных станциях. Однако при наличии более одного входа на обслуживание мы имеем очередь со многими приборами и анализ усложняется.

Рассмотрим случай простейшего потока заявок на обслуживание.

Назначение излагаемой теории очередей состоит в приближенном определении среднего размера очереди, а также среднего времени, затрачиваемого сообщениями на ожидание в очередях. Желательно также оценить, насколько часто очередь превышает определенную длину. Эти сведения позволят нам вычислить, например, необходимый объем буферной памяти для хранения очередей сообщений и соответствующих программ, необходимое количество линий связи, необходимые размеры буферов для концентраторов и т. д. Появится возможность оценивать времена ответа.

Каждая из характеристик меняется в зависимости от используемых средств.

Рассмотрим очередь с одним прибором обслуживания. При проектировании вычислительной системы большинство очередей подобного типа рассчитывается по приведенным формулам. коэффициент вариации времени обслуживания

Формула Хинчина-Полачека используется для вычисления длин очередей при проектировании информационных систем. Она применяется в случае экспоненциального распределения времени поступления при любом распределении времени обслуживания и любой дисциплине управления, лишь бы выбор очередного сообщения для обслуживания не зависел от времени обслуживания.

При проектировании систем встречаются такие ситуации возникновения очередей, когда дисциплина управления несомненно зависит от времени обслуживания. Например, в некоторых случаях мы можем выбрать для первоочередного обслуживания более короткие сообщения, чтобы получить меньшее среднее время обслуживания. При управлении линией связи можно присвоить входным сообщениям более высокий приоритет, чем выходным, ибо первые короче. В таких случаях уже необходимо использовать не уравнение Хинчина

Большинство значений времени обслуживания в информационных системах лежит где-то между этими двумя случаями. Времена обслуживания, равные постоянной величине, встречаются редко. Даже время доступа к твердому диску непостоянно из-за различного положения массивов с данными на поверхности. Одним из примеров, иллюстрирующих случай постоянного времени обслуживания может служить занятие линии связи для передачи сообщений фиксированной длины.

С другой стороны, разброс времени обслуживания не так велик, как в случае произвольного или экспоненциального его распределения, т.е., σ s редко достигает значений t s . Этот случай иногда считают "наихудшим и потому пользуются формулами, относящимися к экспоненциальному распределению времен обслуживания. Такой расчет может дать несколько завышенные размеры очередей и времен ожидания в них, но эта ошибка, по крайней мере, не опасна.

Экспоненциальное распределение времен обслуживания, конечно, не наихудший случай, с которым приходится иметь дело в действительности. Однако, если времена обслуживания, полученные при расчете очередей, оказываются распределенными хуже, чем времена с экспоненциальным распределением, это часто является предостерегающим сигналом для разработчика. Если стандартное отклонение больше среднего значения, то обычно возникает необходимость в коррекции расчетов.

Рассмотрим следующий пример. Имеется шесть типов сообщений с временами обслуживания 15, 20, 25, 30, 35 и 300. Число сообщений каждого типа одинаково. Стандартное отклонение указанных времен несколько выше их среднего. Значение последнего времени обслуживания намного больше других. Это приведет к тому, что сообщения будут находиться в очереди значительно дольше, чем, если бы времена обслуживания были одного порядка. В таком случае при проектировании целесообразно принять меры для уменьшения длины очереди. Например, если указанные цифры связаны с длинами сообщений, то, возможно, очень длинные сообщения стоит разделить на части.

10.6.6. Пример расчета

При проектировании банковской системы желательно знать число клиентов, которым придется ожидать в очереди к одному кассиру в часы пик.

Время ответа системы и его стандартное отклонение рассчитаны с учетом времени ввода данных с АРМа, печатания и оформления документа.

Действия кассира были прохронометрированы. Время обслуживания ts равно общему времени, затрачиваемому кассиром на клиента. Коэффициент использования кассира ρ пропорционален времени его занятости. Если λ число клиентов в часы пик, то ρ для кассира равно

Предположим, что в часы пик приходит 30 клиентов в час. В среднем кассир тратит 1,5 мин на клиента. Тогда

ρ =(1,5 * 30) / 60 = 0,75

т. е. кассир используется на 75%.

Число людей в очереди можно быстро оценить с помощью графиков. Из них следует, что если ρ = 0,75, то среднее число nq людей в очереди у кассы лежит между 1,88 и 3,0 в зависимости от стандартного отклонения для t s .

Предположим, что измерение стандартного отклонения для t s дало величину 0,5 мин. Тогда

σ s = 0,33 t s

Из графика на первом рисунке находим, что nq = 2,0, т. е. в среднем у кассы буду ожидать два клиента.

Общее время, в течение которого клиент стоит у кассы, может быть найдено как

t ∑ = t q + t s = 2,5 мин + 1,5 мин=4мин

где t s вычисляется с помощью формулы Хинчина-Полачека.

10.6.7. Фактор усиления

Анализируя кривые, изображенные на рисунках, мы видим, что, когда оборудование, обслуживающее очередь, используется более чем на 80%, кривые начинают расти с угрожающей быстротой. Этот факт очень важен при проектировании систем передачи данных. Если мы проектируем систему, в которой оборудование используется более чем на 80%, то незначительное увеличение трафика может привести к резкому спаду производительности системы или даже заставить ее работать в аварийном режиме.

Увеличение входного трафика на небольшое число х%. приводит к увеличению размеров очереди приблизительно на

Если коэффициент использования оборудования равен 50%, то это увеличение равно 4ts % для экспоненциального закона распределения времени обслуживания. Но если коэффициент использования оборудования равен 90%, то увеличение размера очереди равно 100ts %, что в 25 раз больше. Незначительное увеличение нагрузки при 90%-ном использовании оборудования приводит к 25-кратному увеличению размеров очереди по сравнению со случаем 50%-ного использования оборудования.

Аналогично время пребывания в очереди увеличивается на

При экспоненциально распределенном времени обслуживания эта величина имеет значение 4 t s 2 для коэффициента использования оборудования, равного 50%, и 100 t s 2 для коэффициента 90%, т. е. снова в 25 раз хуже.

Кроме того, для малых коэффициентов использования оборудования влияние изменений σs на размер очереди незначительно. Однако для больших коэффициентов изменение σ s сильно сказывается на размере очереди. Поэтому при проектировании систем с высоким коэффициентом использования оборудования желательно получить точные сведения о параметре σ s . Неточность предположения относительно экспоненциальности распределения t s наиболее ощутима при больших значениях ρ. Более того, если вдруг время обслуживания возрастет, что возможно в каналах связи при передаче длинных сообщений, то в случае большого ρ образуется значительная очередь.

Математический (абстрактный) объект, элементами которого являются (рис. 2.1):

  • входной (входящий) поток заявок (требований) на обслуживание;
  • приборы (каналы) обслуживания;
  • очередь заявок, ожидающих обслуживания;
  • выходной (выходящий) поток обслуженных заявок;
  • поток заявок на дообслуживание после прерывания обслуживания;
  • поток необслуженных заявок.

Заявка (запрос, требование, вызов, клиент, сообщение, пакет) - объект, поступающий в СМО и требующий обслуживания в приборе. Совокупность последовательных заявок, распределенных во времени, образуют входной поток заявок.

Рис. 2.1.

Обслуживающий прибор (прибор, устройство, канал, линия, орудие, автомобиль, маршрутизатор и т.п.) - элемент СМО, назначением которого является обслуживание заявок.

Обслуживание - задержка заявки в обслуживающем приборе на некоторое время.

Длительность обслуживания - время задержки (обслуживания) заявки в приборе.

Накопитель (буфер, входной буфер, выходной буфер) - совокупность мест для ожидания заявок перед обслуживающим прибором. Количество мест для ожидания - емкость накопителя.

Заявка, поступившая в СМО, может находиться в двух состояниях:

  • 1) обслуживания (в приборе);
  • 2) ожидания (в накопителе), если все приборы заняты обслуживанием других заявок.

Заявки, находящиеся в накопителе и ожидающие обслуживания, образуют очередь заявок. Количество заявок в накопителе, ожидающих обслуживания, - длина очереди.

Дисциплина буферизации (дисциплина постановки в очередь) - правило занесения поступающих заявок в накопитель (буфер).

Дисциплина обслуживания - правило выбора заявок из очереди для обслуживания в приборе.

Приоритет - преимущественное право (на захват ресурсов) на занесение в накопитель или выбор из очереди для обслуживания в приборе заявок одного класса по отношению к заявкам других классов.

Существует множество систем массового обслуживания, отличающихся структурной и функциональной организацией. В то же время разработка аналитических методов расчета показателей функционирования СМО во многих случаях предполагает наличие ряда ограничений и допущений, сужающих множество исследуемых СМО. Поэтому всеобщей аналитической модели для произвольной СМО сложной структуры не существует.

Аналитической моделью СМО является совокупность уравнений или формул, позволяющих определять вероятности состояний системы в процессе ее функционирования и показатели эффективности по известным параметрам входящего потока и каналов обслуживания, дисциплинам буферизации и обслуживания.

Аналитическое моделирование СМО существенно облегчается, если процессы, протекающие в СМО, - марковские (потоки заявок простейшие, времена обслуживания распределены экспоненциально). В этом случае все процессы в СМО можно описать обыкновенными дифференциальными уравнениями, а в предельном случае - для стационарных состояний - линейными алгебраическими уравнениями и, решив их любыми методами, имеющимися в математических программных пакетах, определить выбранные показатели эффективности.

В системах ИМ при реализации СМО принимаются следующие ограничения и допущения:

  • поступившая в систему заявка мгновенно попадает на обслуживание, если в очереди нет заявок и прибор свободен;
  • в приборе на обслуживании в каждый момент времени может находиться только одна заявка;
  • после окончания обслуживания какой-либо заявки в приборе очередная заявка выбирается из очереди на обслуживание мгновенно, т.е., прибор не простаивает, если в очереди есть хотя бы одна заявка;
  • поступление заявок в СМО и длительности их обслуживания не зависят от числа заявок, уже находящихся в системе, или от каких- либо других факторов;
  • длительность обслуживания заявок не зависит от интенсивности поступления заявок в систему.

Остановимся на некоторых элементах СМО более подробно.

Входной (входящий) поток заявок. Потоком событий называется последовательность однородных событий, следующих одно за другим и происходящих в какие-то, вообще говоря, случайные моменты времени. Если событие заключается в появлении заявок, имеем поток заявок. Для описания потока заявок в общем случае необходимо задать интервалы времени т = t k - t k-1 между соседними моментами t k _ k и t k поступления заявок с порядковыми номерами к - 1 и к соответственно (к - 1, 2, ...; t 0 - 0 - начальный момент времени).

Основной характеристикой потока заявок является его интенсивность X - среднее число заявок, поступающих на вход СМО за единицу времени. Величина т = 1/Х определяет средний интервал времени между двумя последовательными заявками.

Поток называется детерминированным, если интервалы времени т к между соседними заявками принимают определенные заранее известные значения. Если при этом интервалы одинаковы (х к = т для всех к = 1, 2, ...), то поток называется регулярным. Для полного описания регулярного потока заявок достаточно задать интенсивность потока X или значение интервала т = 1/Х.

Поток, в котором интервалы времени х к между соседними заявками представляют собой случайные величины, называется случайным. Для полного описания случайного потока заявок в общем случае необходимо задать законы распределений F fc (x fc) каждого из интервалов времени х к, к = 1,2,....

Случайный поток, в котором все интервалы времени х ь х 2 , ... между соседними последовательными заявками представляют собой независимые случайные величины, описываемые функциями распределений FjCij), F 2 (x 2), ... соответственно, называется потоком с ограниченным последействием.

Случайный поток называется рекуррентным, если все интервалы времени х ь т 2 , ... между заявками распределены по одному и тому же закону F(t). Рекуррентных потоков много. Каждый закон распределения порождает свой рекуррентный поток. Рекуррентные потоки иначе называют потоками Пальма.

Если интенсивность X и закон распределения F(t) интервалов между последовательными заявками не меняются со временем, то поток заявок называется стационарнъш. В противном случае поток заявок является нестационарным.

Если в каждый момент времени t k на входе СМО может появиться только одна заявка, то поток заявок называется ординарным. Если в какой-либо момент времени может появиться более одной заявки, то поток заявок - неординарный, или групповой.

Поток заявок называется потоком без последействия, если заявки поступают независимо друг от друга, т.е. момент поступления очередной заявки не зависит от того, когда и сколько заявок поступило до этого момента.

Стационарный ординарный поток без последействия называется простейшим.

Интервалы времени т между заявками в простейшем потоке распределены по экспоненциальному (показательному ) закону: с функцией распределения F(t) = 1 - е~ м; плотностью распределения/(f) = Хе~" л, где X > 0 - параметр распределения - интенсивность потока заявок.

Простейший поток часто называют пуассоновским. Название происходит от того, что для этого потока вероятность P fc (At) появления ровно к заявок за некоторый интервал времени At определяется законом Пуассона:

Следует заметить, что пуассоновский поток, в отличие от простейшего, может быть:

  • стационарным, если интенсивность X не меняется со временем;
  • нестационарным, если интенсивность потока зависит от времени: X = >.(t).

В то же время простейший поток, по определению, всегда является стационарным.

Аналитические исследования моделей массового обслуживания часто проводятся в предположении о простейшем потоке заявок, что обусловлено рядом присущих ему замечательных особенностей.

1. Суммирование (объединение) потоков. Простейший поток в теории СМО аналогичен нормальному закону распределения в теории вероятностей: к простейшему потоку приводит предельный переход для потока, являющегося суммой потоков с произвольными характеристиками при бесконечном увеличении числа слагаемых и уменьшении их интенсивности.

Сумма N независимых стационарных ординарных потоков с интенсивностями Х ь Х 2 ,..., X N образует простейший поток с интенсивностью

X=Y,^i при условии, что складываемые потоки оказывают более или

менее одинаково малое влияние на суммарный поток. На практике суммарный поток близок к простейшему при N > 5. Значит, при суммировании независимых простейших потоков суммарный поток будет простейшим при любом значении N.

  • 2. Вероятностное разрежение потока. Вероятностное (но не детерминированное ) разрежение простейшего потока заявок, при котором любая заявка случайным образом с некоторой вероятностью р исключается из потока независимо от того, исключены другие заявки или нет, приводит к образованию простейшего потока с интенсивностью X* = рХ, где X - интенсивность исходного потока. Поток исключенных заявок с интенсивностью X** = (1 - р)Х - тоже простейший поток.
  • 3. Эффективность. Если обслуживающие каналы (приборы) рассчитаны на простейший поток заявок с интенсивностью X, то обслуживание других типов потоков (с той же интенсивностью) будет обеспечено с не меньшей эффективностью.
  • 4. Простота. Предположение о простейшем потоке заявок позволяет для многих математических моделей получить в явном виде зависимости показателей СМО от параметров. Наибольшее число аналитических результатов получено для простейшего потока заявок.

Анализ моделей с потоками заявок, отличными от простейших, обычно усложняет математические выкладки и не всегда позволяет получить аналитическое решение в явном виде. Свое название «простейший» поток получил именно благодаря этой особенности.

Заявки могут иметь разные права на начало обслуживания. В этом случае говорят, что заявки неоднородные. Преимущества одних потоков заявок перед другими на начало обслуживания задаются приоритетами.

Важной характеристикой входного потока является коэффициент вариации

где т инт - математическое ожидание длины интервала; о - среднее квадратическое отклонение длины интервала х инт (случайной величины) .

Для простейшего потока (а =-, т = -) имеем v = 1. Для большинства

реальных потоков 0

Каналы (приборы) обслуживания. Основная характеристика канала - длительность обслуживания.

Длительность обслуживания - время нахождения заявки в приборе - в общем случае величина случайная. В случае неоднородной нагрузки СМО длительности обслуживания заявок разных классов могут различаться законами распределений или только средними значениями. При этом обычно предполагается независимость длительностей обслуживания заявок каждого класса.

Часто практики полагают длительность обслуживания заявок распределенной по экспоненциальному закону, что существенно упрощает аналитические выкладки. Это обусловлено тем, что процессы, протекающие в системах с экспоненциальным распределением интервалов времени, являются марковскими процессами:

где ц - интенсивность обслуживания, здесь р = _--; т 0 бсл - матема-

тическое ожидание времени обслуживания.

Кроме экспоненциального распределения встречаются /с-распре- деление Эрланга, гиперэкспоненциальное, треугольное и некоторые другие. Это нас не должно смущать, так как показано, что значение критериев эффективности СМО мало зависит от вида закона распределения времени обслуживания.

При исследовании СМО выпадает из рассмотрения сущность обслуживания, качество обслуживания.

Каналы могут быть абсолютно надежными, т.е. не выходить из строя. Вернее, так может быть принято при исследовании. Каналы могут обладать конечной надежностью. В этом случае модель СМО значительно сложнее.

Эффективность СМО зависит не только от параметров входных потоков и каналов обслуживания, но также и от того, в какой последовательности обслуживаются поступающие заявки, т.е. от способов управления потоками заявок при их входе в систему и направлении на обслуживание.

Способы управления потоками заявок определяются дисциплинами:

  • буферизации;
  • обслуживания.

Дисциплины буферизации и обслуживания могут быть классифицированы по следующим признакам:

  • наличие приоритетов между заявками разных классов;
  • способ вытеснения заявок из очереди (для дисциплин буферизации) и назначения заявок на обслуживание (для дисциплин обслуживания);
  • правило вытеснения или выбора заявок на обслуживание;
  • возможность изменения приоритетов.

Вариант классификации дисциплин буферизации (постановки в очередь) в соответствии с перечисленными признаками представлен на рис. 2.2.

В зависимости от наличия или отсутствия приоритетов между заявками разных классов все дисциплины буферизации могут быть разбиты на две группы: бесприоритетные и приоритетные.

По способу вытеснения заявок из накопителя можно выделить следующие классы дисциплин буферизации:

  • без вытеснения заявок - заявки, поступившие в систему и заставшие накопитель полностью заполненным, теряются;
  • с вытеснением заявки данного класса, т.е. такого же класса, что и поступившая заявка;
  • с вытеснением заявки из класса самого низкого приоритета;
  • с вытеснением заявки из группы классов низких приоритетов.

Рис. 2.2.

Дисциплины буферизации могут использовать следующие правила вытеснения заявок из накопителя:

  • случайное вытеснение;
  • вытеснение последней заявки, т.е. поступившей в систему позже всех;
  • вытеснение «долгой» заявки, т.е. находящейся в накопителе дольше всех поступивших ранее заявок.

На рис. 2.3 представлена классификация дисциплин обслуживания заявок в соответствии с теми же признаками, что и для дисциплин буферизации.

Иногда емкость накопителя в моделях полагают неограниченной, хотя в реальной системе она ограничена. Такое допущение оправдано, когда вероятность потери заявки в реальной системе из-за переполнения емкости накопителя меньше 10 _3 . В этом случае дисциплина практически не влияет на показатели обслуживания заявок.

В зависимости от наличия или отсутствия приоритетов между заявками разных классов все дисциплины обслуживания, как и дисциплины буферизации, могут быть разбиты на две группы: бесприоритет- ные и приоритетные.

По способу назначения заявок на обслуживание дисциплины обслуживания могут быть разделены на дисциплины:

  • одиночного режима;
  • группового режима;
  • комбинированного режима.

Рис. 2.3.

В дисциплинах обслуживания одиночного режима каждый раз на обслуживание назначается только одна заявка, для чего очереди просматриваются после окончания обслуживания предыдущей заявки.

В дисциплинах обслуживания группового режима каждый раз на обслуживание назначается группа заявок одной очереди, для чего просмотр очередей выполняется только после обслуживания всех заявок ранее назначенной группы. Вновь назначенная группа заявок может включать в себя все заявки данной очереди. Заявки назначенной на обслуживание группы последовательно выбираются из очереди и обслуживаются прибором, после чего на обслуживание назначается следующая группа заявок другой очереди в соответствии с заданной дисциплиной обслуживания.

Комбинированный режим - комбинация одиночного и группового режимов, когда часть очередей заявок обрабатывается в одиночном режиме, а другая часть - в групповом.

Дисциплины обслуживания могут использовать следующие правила выбора заявок на обслуживание.

Бесприоритетные (заявки не имеют привилегий на досрочное обслуживание - захват ресурсов):

  • обслуживание в порядке поступления FIFO (first in -first out, первый вошел - первый вышел);
  • обслуживание в обратном порядке - заявка выбирается из очереди в режиме LIFO (last in - first out, последний вошел - первый вышел);
  • обслуживание в случайном порядке - заявка выбирается из очереди в режиме RAND (random - случайным образом);
  • обслуживание в циклическом порядке - заявки выбираются в процессе циклического опроса накопителей в последовательности 1, 2,Н СН - количество накопителей), после чего указанная последовательность повторяется;

Приоритетные (заявки имеют привилегии на досрочное обслуживание - захват ресурсов):

  • с относительными приоритетами - если в процессе текущего обслуживания заявки в систему поступают заявки с более высокими приоритетами, то обслуживание текущей даже бесприоритетной заявки не прерывается, а поступившие заявки направляются в очередь; относительные приоритеты играют роль только в момент окончания текущего обслуживания заявки при выборе из очереди новой заявки на обслуживание.
  • с абсолютными приоритетами - при поступлении заявки с высоким приоритетом обслуживание заявки с низким приоритетом прерывается и на обслуживание направляется поступившая заявка; прерванная заявка может быть возвращена в очередь или удалена из системы; если заявка возвращена в очередь, то ее дальнейшее обслуживание может быть выполнено с прерванного места или заново;
  • со смешанными приоритетами - строгие ограничения на время ожидания в очереди на обслуживание отдельных заявок требуют присвоения им абсолютных приоритетов; вследствие этого время ожидания заявок с низкими приоритетами может оказаться недопустимо большим, хотя отдельные заявки имеют запас по времени ожидания; для выполнения ограничений по всем видам заявок можно наряду с абсолютными приоритетами некоторым заявкам присвоить относительные приоритеты, а остальные обслуживать в бесприоритетном режиме;
  • с чередующимися приоритетами - аналогом относительных приоритетов, приоритет учитывается только в моменты завершения текущего обслуживания группы заявок одной очереди и назначения новой группы на обслуживание;
  • обслуживание по расписанию - заявки разных классов (находящиеся в разных накопителях) выбираются на обслуживание согласно некоторому расписанию, задающему последовательность опроса очередей заявок, например в случае трех классов заявок (накопителей) расписание может иметь вид {2, 1, 3, 3, 1, 2} или {1, 2, 3, 3, 2, 1}.

В компьютерных системах ИМ, как правило, по умолчанию реализуется дисциплина FIFO. Однако они имеют инструментальные средства, которые предоставляют пользователю возможность организовать нужные ему дисциплины обслуживания, в том числе и по расписанию.

Поступающие в СМО заявки делят на классы. В СМО, представляющей собой абстрактную математическую модель, заявки относятся к разным классам в том случае, если они в моделируемой реальной системе различаются хотя бы одним из следующих признаков:

  • длительностью обслуживания;
  • приоритетами.

Если заявки не различаются длительностью обслуживания и приоритетами, они могут быть представлены заявками одного класса, в том числе и при поступлении от разных источников.

Для математического описания дисциплин обслуживания со смешанными приоритетами используется матрица приоритетов, представляющая собой квадратную матрицу Q = (q, ;), i,j - 1,..., Я, Я - число классов заявок, поступающих в систему.

Элемент q (j матрицы задает приоритет заявок класса i по отношению к заявкам класса; и может принимать следующие значения:

  • 0 - нет приоритета;
  • 1 - приоритет относительный;
  • 2 - приоритет абсолютный.

Элементы матрицы приоритетов должны удовлетворять следующим требованиям:

  • q n = 0, так как между заявками одного и того же класса не могут быть установлены приоритеты;
  • если q (j = 1 или 2, то q ^ = 0, так как если заявки класса i имеют приоритет к заявкам класса j, то последние не могут иметь приоритет к заявкам класса i (i,j = 1, ..., Я).

В зависимости от возможности изменения приоритетов в процессе функционирования системы приоритетные дисциплины буферизации и обслуживания делятся на два класса:

  • 1) со статическими приоритетами, которые не изменяются со временем;
  • 2) с динамическими приоритетами, которые могут изменяться в процессе функционирования системы в зависимости от разных факторов, например при достижении некоторого критического значения длины очереди заявок какого-либо класса, не имеющего приоритета или обладающего низким приоритетом, ему может быть предоставлен более высокий приоритет.

В компьютерных системах ИМ обязательно имеется единственный элемент (объект), через который, и только через него, вводятся заявки в модель. По умолчанию все вводимые заявки бесприоритетные. Но есть возможности присвоения приоритетов в последовательности 1, 2, ..., в том числе и в ходе выполнения модели, т.е. в динамике.

Выходящий поток - это поток обслуженных заявок, покидающих СМО. В реальных системах заявки проходят через несколько СМО: транзитная связь, производственный конвейер и т.п. В этом случае выходящий поток является входящим потоком для следующей СМО.

Входящий поток первой СМО, пройдя через последующие СМО, искажается, и это затрудняет аналитическое моделирование. Однако следует иметь в виду, что при простейшем входном потоке и экспоненциальном обслуживании (т.е. в марковских системах) выходной поток тоже простейший. Если время обслуживания имеет не экспоненциальное распределение, то выходящий поток не только не простейший, но и не рекуррентный.

Заметим, что интервалы времени между заявками выходящего потока - это не то же самое, что интервалы обслуживания. Ведь может оказаться, что после окончания очередного обслуживания СМО какое-то время простаивает из-за отсутствия заявок. В этом случае интервал выходящего потока состоит из времени незанятости СМО и интервала обслуживания первой пришедшей после простоя заявки.

В СМО кроме выходящего потока обслуженных заявок может быть и поток необслуженных заявок. Если в такую СМО поступает рекуррентный поток, а обслуживание - экспоненциальное, то и поток необслуженных заявок - рекуррентный.

Очереди свободных каналов. В многоканальных СМО могут образовываться очереди свободных каналов. Количество свободных каналов - величина случайная. Исследователя могут интересовать различные характеристики этой случайной величины. Обычно это среднее число каналов, занятых обслуживанием за интервал исследования, и их коэффициенты загрузки.

Как мы уже отмечали ранее, в реальных объектах заявки последовательно проходят обслуживание в нескольких СМО.

Конечное множество последовательно взаимосвязанных СМО, обрабатывающих циркулирующие в них заявки, называется сетью массового обслуживания (СеМО ) (рис. 2.4, а).


Рис. 2.4.

СеМО называют также многофазными СМО.

Пример построения ИМ СеМО мы рассмотрим позже.

Основными элементами СеМО являются узлы (У) и источники (генераторы) заявок (Г).

Узел сети - это система массового обслуживания.

Источник - генератор заявок, поступающих в сеть и требующих определенных этапов обслуживания в узлах сети.

Для упрощенного изображения СеМО используется граф.

Граф СеМО - ориентированный граф (орграф), вершины которого соответствуют узлам СеМО, а дуги отображают переходы заявок между узлами (рис. 2.4, б).

Итак, мы рассмотрели основные понятия СМО. Но при разработке компьютерных систем ИМ и их совершенствовании также непременно используется огромный творческий потенциал, содержащийся на настоящее время в аналитическом моделировании СМО.

Для лучшего восприятия этого творческого потенциала в первом приближении остановимся на классификации моделей СМО.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.