Объяснение сложных уравнений. Урок математики на тему "решение сложных уравнений нового вида"

Цели и задачи:

Образовательные:

  1. Рассмотреть способ решения “сложных” уравнений вида: (х + 3):8 = 5 и вывести алгоритм действия для их решения.
  2. Совершенствовать вычислительные навыки.

Развивающие:

  1. Развивать умение анализировать, рассуждать, объяснять способ действия уравнений вида: (х + 3):8 = 5.

Воспитательные:

  1. Формировать умение работать в паре (выслушивать мнение товарища, обсуждать проблему, приходить к единому мнению).

Здоровьесберегающие:

  1. Учить заботиться о своём здоровье.

Оборудование:

  1. Мультимедийный проектор и экран;
  2. Компьютер;
  3. Презентация;
  4. Памятка-опора;
  5. Задания на карточках.

Ход урока:

I. Организационный момент.

– Прозвенел звонок. Проверьте готовность к уроку математики. Все готовы.

А давайте убедимся в этом!

– БЛИЦ: Как найти неизвестное слагаемое? (вычитаемое, уменьшаемое, делимое, делитель, множитель).

– Молодцы! Садитесь. Мы смело можем начать работу. Откройте тетради. Запишите число, классная работа.

II. Актуализация опорных знаний.

1) – Я предлагаю вам выполнить разминку. Внимание на экран!

(Приложение 1. Презентация – Слайд 1 ).

100 ∙ 29
32 ∙ 20
4800: 2
а ∙ 15
9000 – в
с: 317
х ∙ 80 = 640
к: 50 = 500
с + 90 = 34+56

– Разделите данные записи на группы. Кто разделил на 2? На 3 группы?

Обсуждение!! ! По какому принципу делил …. , а …..?

– Назови числовые выражения. Назови буквенные. Остальные? (Уравнения.)

(Слайд 2)

– Найдите значения числовых выражений.
– Найдите значения буквенных выражений, если

а = 0 , в = 1, с = 317

– Среди уравнений найдите “лишнее”. Докажи!
– Найдите корень 1 уравнения, 2 уравнения. (Простые.)
– Что необходимо сделать сначала, чтобы решить сложное уравнение такого вида? (Упростить.) – Как? (Выполнить действие.) Какое?
– Упростите уравнение. Найдите корень.

III. Тема, задачи.

– Кто хочет научиться решать сложные уравнения нового вида? Поднимите руку! Молодцы! Это значит, вы не боитесь трудностей и готовы к новым открытиям!
– Тема нашего урока “Решение “сложных” уравнений нового вида”.

(Поскольку понятие “сложное” уравнение условное, я заключила его в кавычки.)

– Определим учебные задачи:

1. Научиться решать сложные уравнения нового вида.
2. Составить алгоритм решения. (Алгоритм – порядок, последовательность действий.)
3. Учиться комментировать решение уравнений.
4. Совершенствовать вычислительные навыки.

Физкультминутка 1.

IV. Работа по теме. Постановка проблемы. Открытие нового.

1) Из № 488. Учебник.

– Я хочу вам предложить сейчас снова побывать исследователями.

□ + 30 = 50 Эта запись на доске!

– Прочитайте выражение. 1 слаг. 2 слаг. Значение суммы.

– Это уравнение? Почему?

– Вставьте в “окошко” выражение

□ + 30 = 50 – Как назовём запись? (Слож. ур.) – Похоже оно на то, которое уже умеем решать? – Почему?

– Попробуйте найти способ решения этого уравнения. ОБРАТИТЕ ВНИМАНИЕ, я не случайно подписала компоненты действия! Оформите без проверки!

2) Объяснение: – Чем (каким компонентом) является в данной сумме буквенное выражение 4 ∙ х (это 1 слагаемое).

Значит, 1 слагаемое – это буквенное выражение 4 ∙ х и оно неизвестно!

Правило не меняется! Как найти неизвестное 1 слаг.?

4 ∙ х
= 50 – 30 – Умеете решать?

3) – Откройте учебник с. 149 № 488. Прочитайте, как рассуждал Миша.

V. Выведение алгоритма. Закрепление нового.

1) Решите уравнение: (х + 3) : 8 = 5 1 к доске.

Задание! – Попробуйте определить последовательность!

2) Выведение алгоритма.

– Как ты понял что, компоненты будут называться: делимое, делитель, значение частного.

– Деление какое по счёту 1-ое или последнее? = С чего же начать?

3). Алгоритм (Слайд 3) .

  1. Определю последнее действие и назову компоненты.
  2. Определю неизвестный компонент и вспомню правило его нахождения.
  3. Запишу новое уравнение и упрощу.
  4. Решу простое уравнение.

4) Чтение памятки для комментирования.

5). № 489. Учебник. Комментирование.

Физкультминутка 2 (для глаз).

6). Коллективная работа. Работа в парах.

1) (у– 5) ∙ 4 = 28
2) 3 ∙ а – 7 = 14
3) (24 + d) : 8 = 7
4) 63: (14 – х) = 7

Заполни таблицу самоконтроля!

Уравнение. 1 2 3 4
Решение.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Вы сидите в ресторане и листаете меню. Все блюда выглядят такими вкусными, что вы не знаете, что выбрать. Может, заказать их все?

Наверняка вы сталкивались с такими проблемами. Если не в еде, то в чём-то ещё. Мы тратим огромное количество времени и энергии на то, чтобы сделать выбор между одинаково привлекательными вариантами. Но, с другой стороны, варианты не могут быть одинаковыми, ведь каждый из них привлекателен по-своему.

Сделав выбор, вы встаёте перед новым выбором. Это бесконечная череда важных решений, которые и страх неверного выбора. Эти три метода помогут вам эффективнее принимать решения на всех уровнях жизни.

Заводите привычки, чтобы избежать бытовых решений

Смысл в том, что если вы заведёте привычку есть на обед салат, то вам не придётся решать, что заказать в кафе.

Вырабатывая привычки, которые касаются таких простых бытовых дел, вы сохраняете энергию для принятия более сложных и важных решений. Кроме того, если вы привыкнете завтракать салатом, вам не придётся тратить силу воли на то, чтобы вместо салата не съесть что-нибудь жирное и жареное.

Но это касается предсказуемых дел. А что насчёт неожиданных решений?

«Если - то»: метод для непредсказуемых решений

Например, кто-то постоянно прерывает вашу речь и вы не уверены, как отреагировать на это и стоит ли вообще реагировать. Согласно методу «если - то», вы решаете: если он прервёт вас ещё два раза, то вы сделаете ему вежливое замечание, а если это не подействует, то в более грубой форме.

Эти два метода помогают принять большую часть решений, которые встают перед нами каждый день. Но, когда дело доходит до вопросов стратегического планирования, например, как ответить на угрозу конкурентов, в какие продукты вложить больше средств, где можно сократить бюджет, они бессильны.

Это решения, которые могут задерживаться на неделю, месяц или даже год, тормозя развитие компании. С ними не справиться с помощью привычки, и метод «если - то» здесь тоже не подойдёт. Как правило, на такие вопросы нет чёткого и правильного ответа.

Часто руководящий состав затягивает принятие таких решений. Он собирает информацию, взвешивает все за и против, продолжает выжидать и наблюдать за обстановкой, надеясь, что появится что-то, что укажет на верное решение.

А если допустить, что правильного ответа не существует, поможет ли это принять решение быстро?

Представьте, что вам нужно принять решение в следующие 15 минут. Не завтра, не на следующей неделе, когда вы соберёте достаточно информации, и не через месяц, когда переговорите со всеми, кто имеет отношение к проблеме.

У вас есть четверть часа на то, чтобы принять решение. Действуйте.

Это и есть третий способ, который помогает принимать сложные решения, касающиеся долгосрочного планирования.

Используйте время

Если вы исследовали проблему и поняли, что варианты её решения одинаково привлекательны, допустите, что правильного ответа не существует, установите себе временной лимит и просто выберите любой вариант. Если проверка одного из решений требует минимальных вложений, выбирайте его и проверяйте. Но если такой возможности нет, то выбирайте любое и как можно скорее: время, которое вы потратите на бесполезные размышления, можно использовать лучшим образом.

Конечно, вы можете не согласиться: «Если я подожду, может появиться верный ответ». Может, но, во-первых, вы тратите драгоценное время, ожидая прояснения ситуации. Во-вторых, ожидание заставляет вас медлить и откладывать другие решения, связанные с этим, снижает продуктивность и замедляет развитие компании.

Попробуйте прямо сейчас. Если у вас есть вопрос, решение которого вы долго откладывали, дайте себе три минуты и сделайте это. Если подобных у вас слишком много, напишите список и установите время на каждое решение.

Вот увидите, с каждым принятым решением вы будете чувствовать себя немного лучше, снизится беспокойство, вы ощутите, что двигаетесь вперёд.

Итак, вы выбираете лёгкий салат. Это был правильный выбор? Кто знает… По крайней мере вы поели, а не сидите голодным над меню с блюдами.

Как научиться решать простые и сложные уравнения

Уважаемые родители!

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для многих смежных дисциплин. В послешкольной жизни реальной необходимостью становится непрерывное образование, что требует базовой общешкольной подготовки, в том числе и математической.

В начальной школе закладываются не только знания по основным темам, но и развивается логическое мышление, воображение и пространственные представления, а также формируется интерес к данному предмету.

Соблюдая принцип преемственности, мы сделаем упор на важнейшую тему, а именно «Взаимосвязь компонентов действий при решении составных уравнений».

С помощью данного урока можно без труда научиться решать усложненные уравнения. На уроке вы подробно познакомитесь с пошаговой инструкцией решения усложненных уравнений.

Многих, родителей ставит в тупик вопрос - как же заставить детей научиться решать простые и сложные уравнения. Если уравнения простые - это еще пол беды, но ведь бывают и сложные - например интегральные. Кстати, для сведения, есть и такие уравнения, над решением которых бьются лучшие умы нашей планеты и за решение которых выдаются очень весомые денежные премии. Например, если вспомнить Перельмана и невостребованную им денежную премию в размере нескольких миллионов.

Однако вернемся для начала к простым математическим уравнениям и повторим виды уравнений и названия компонентов. Небольшая разминка:

_________________________________________________________________________

РАЗМИНКА

Найди лишнее число в каждом столбике:

2) Какого слова не хватает в каждом столбике?

3) Соедините слова из первого столбика со словами из 2 столбика.

«Уравнение» «Равенство»

4) Как вы объясните, что такое «равенство»?

5) А «уравнение»? Это равенство? Что в нем особенного?

слагаемое сумма

уменьшаемое разность

вычитаемое произведение

множитель равенство

делимое

уравнение

Вывод: Уравнение - это равенство с переменной, значение которой надо найти.

_______________________________________________________________________

Предлагаю каждой группе написать на листке фломастером уравнения: (на доску)

1 группе - с неизвестным слагаемым;

2 группе - с неизвестным уменьшаемым;

3 группе - с неизвестным вычитаемым;

4 группе - с неизвестным делителем;

5 группе - с неизвестным делимым;

6 группе - с неизвестным множителем.

1 группа х + 8 = 15

2 группа х - 8 = 7

3 группа 48 - х = 36

4 группа 540: х = 9

5 группа х: 15 = 9

6 группа х * 10 = 360

Один из группы должен на математическом языке прочитать свое уравнение и прокомментировать их решение, т. е. проговорить выполняемую операцию с известными компонентами действий (алгоритм).

Вывод: Умеем решать простые уравнения всех видов по алгоритму, читать и записывать буквенные выражения.

Предлагаю решить задачу, в которой появляется новый тип уравнений.

Вывод: Познакомились с решением уравнений, в одной из частей которых содержится числовое выражение, значение которого надо найти и получить простое уравнение.

________________________________________________________________________

Рассмотрим еще один вариант уравнения, решение которого сводится к решению цепочки простых уравнений. Вот один из введения составных уравнений.

а + в * с (х - у) : 3 2 * d + (m - n)

Являются ли уравнениями записи?

Почему?

Как называют такие действия?

Прочитайте их, называя последнее действие:

Нет. Это не уравнения, т. к. в уравнении должен быть знак «=».

Выражения

а + в * с - сумма числа а и произведения чисел в и с;

(х - у) : 3 - частное разности чисел х и у;

2 * d + (m - n) - сумма удвоенного числа d и разности чисел m и n.

Предлагаю каждому записать на математическом языке предложение:

Произведение разности чисел х и 4 и числа 3 равно 15.

ВЫВОД: Возникшая проблемная ситуация мотивирует постановку цели урока: научиться решать уравнения в которых неизвестный компонент является выражением. Такие уравнения являются составными уравнениями.

__________________________________________________________________________

А может нам помогут уже изученные виды уравнений? (алгоритмы)

На какое из известных уравнений похоже наше уравнение? Х * а = в

ОЧЕНЬ ВАЖНЫЙ ВОПРОС : Чем является выражение в левой части - суммой, разностью, произведением или частным?

(х - 4) * 3 = 15 (Произведением)

Почему? (т.к. последнее действие - умножение)

Вывод: Такие уравнения еще не рассматривались. Но можно решить, если на выражение х - 4 наложить карточку (у - игрек), и получится уравнение, которое легко можно решить, используя простой алгоритм нахождения неизвестного компонента.

При решении составных уравнений необходимо на каждом шаге осуществлять выбор действия на автоматизированном уровне, комментируя, называя компоненты действия.

Упростить часть

Нет

Да

(у - 5) * 4 = 28
у - 5 = 28: 4
у - 5 = 7
у = 5 +7
у = 12
(12 - 5) * 4 = 28
28 = 28 (и)

Вывод: В классах с разной подготовкой эта работа может быть организована по-разному. В более подготовленных классах даже для первичного закрепления могут быть использованы выражения, в которых не два, а три и более действий, но их решение требует большего числа шагов с каждым шагом упрощая уравнение, до тех пор пока не получится простое уравнение. И каждый раз можно наблюдать, как меняется неизвестный компонент действий.

_____________________________________________________________________________

ЗАКЛЮЧЕНИЕ:

Когда речь идёт о чём-нибудь очень простом, понятном, мы часто говорим: «Дело ясно, как дважды два — четыре!».

А ведь прежде чем додуматься до того, что дважды два — четыре, людям пришлось учиться много, много тысяч лет.

Многие правила из школьных учебников арифметики и геометрии были известны древним грекам две с лишним тысячи лет назад.

Всюду, где надо что-то считать, измерять, сравнивать, без математики не обойтись.

Трудно представить, как жили бы люди, если бы не умели считать, измерять, сравнивать. Этому учит математика.

Сегодня Вы окунулись в школьную жизнь, побывали в роли учеников и я предлагаю Вам, уважаемые родители, оценить свои умения по шкале.

Мои умения

Дата и оценка

Компоненты действий.

Составление уравнения с неизвестным компонентом.

Чтение и запись выражений.

Находить корень уравнения в простом уравнении.

Находить корень уравнения, в одной из частей которых содержится числовое выражение.

Находить корень уравнения, в которых неизвестный компонент действия является выражением.

Линейные уравнения. Решение, примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Линейные уравнения.

Линейные уравнения - не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся?)

Обычно линейное уравнение определяется, как уравнение вида:

ax + b = 0 где а и b – любые числа.

2х + 7 = 0. Здесь а=2, b=7

0,1х - 2,3 = 0 Здесь а=0,1, b=-2,3

12х + 1/2 = 0 Здесь а=12, b=1/2

Ничего сложного, правда? Особенно, если не замечать слова: "где а и b – любые числа" ... А если заметить, да неосторожно задуматься?) Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение:

Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное:

Что напрягает и подрывает доверие к математике, да...) Особенно на экзаменах. А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать. В этом уроке.

Как узнать линейное уравнение по внешнему виду? Это, смотря какой внешний вид.) Фишка в том, что линейными уравнениями называются не только уравнения вида ax + b = 0 , но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. А кто ж его знает, сводится оно, или нет?)

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное , это важно! А деление на число, или дробь числовая – это пожалуйста! Например:

Это линейное уравнение. Здесь есть дроби, но нет иксов в квадрате, в кубе и т.д., и нет иксов в знаменателях, т.е. нет деления на икс . А вот уравнение

нельзя назвать линейным. Здесь иксы все в первой степени, но есть деление на выражение с иксом . После упрощений и преобразований может получиться и линейное уравнение, и квадратное, и всё, что угодно.

Получается, что узнать линейное уравнение в каком-нибудь замудрёном примере нельзя, пока его почти не решишь. Это огорчает. Но в заданиях, как правило, не спрашивают о виде уравнения, правда? В заданиях велят уравнения решать. Это радует.)

Решение линейных уравнений. Примеры.

Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом. Имеет смысл по ссылке сходить, правда?) Тем более, там тоже примеры решения линейных уравнений имеются.

Для начала рассмотрим самый простой пример. Безо всяких подводных камней. Пусть нам нужно решить вот такое уравнение.

х - 3 = 2 - 4х

Это линейное уравнение. Иксы все в первой степени, деления на икс нету. Но, собственно, нам без разницы, какое это уравнение. Нам его решать надо. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) - в правой.

Для этого нужно перенести - 4х в левую часть, со сменой знака, разумеется, а - 3 - в правую. Кстати, это и есть первое тождественное преобразование уравнений. Удивлены? Значит, по ссылке не ходили, а зря...) Получим:

х + 4х = 2 + 3

Приводим подобные, считаем:

Что нам не хватает для полного счастья? Да чтобы слева чистый икс был! Пятёрка мешает. Избавляемся от пятёрки с помощью второго тождественного преобразования уравнений. А именно - делим обе части уравнения на 5. Получаем готовый ответ:

Пример элементарный, разумеется. Это для разминки.) Не очень понятно, к чему я тут тождественные преобразования вспоминал? Ну ладно. Берём быка за рога.) Решим что-нибудь посолиднее.

Например, вот это уравнение:

С чего начнём? С иксами - влево, без иксов - вправо? Можно и так. Маленькими шажочками по длинной дороге. А можно сразу, универсальным и мощным способом. Если, конечно, в вашем арсенале имеются тождественные преобразования уравнений.

Задаю вам ключевой вопрос: что вам больше всего не нравится в этом уравнении?

95 человек из 100 ответят: дроби ! Ответ правильный. Вот и давайте от них избавимся. Поэтому начинаем сразу со второго тождественного преобразования . На что нужно умножить дробь слева, чтобы знаменатель сократился напрочь? Верно, на 3. А справа? На 4. Но математика позволяет нам умножать обе части на одно и то же число . Как выкрутимся? А умножим обе части на 12! Т.е. на общий знаменатель. Тогда и тройка сократится, и четвёрка. Не забываем, что умножать надо каждую часть целиком . Вот как выглядит первый шаг:

Раскрываем скобки:

Обратите внимание! Числитель (х+2) я взял в скобки! Это потому, что при умножении дробей, числитель умножается весь, целиком! А теперь дроби и сократить можно:

Раскрываем оставшиеся скобки:

Не пример, а сплошное удовольствие!) Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо! И применяем это преобразование:

Приводим подобные:

И делим обе части на 25, т.е. снова применяем второе преобразование:

Вот и всё. Ответ: х =0,16

Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали два (всего два!) тождественных преобразования – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Совершенно любыми. Именно поэтому я про эти тождественные преобразования всё время занудно повторяю.)

Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью тождественных преобразований до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения.

Но... Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать...) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.

Особые случаи при решении линейных уравнений.

Сюрприз первый.

Предположим, попалось вам элементарнейшее уравнение, что-нибудь, типа:

2х+3=5х+5 - 3х - 2

Слегка скучая, переносим с иксом влево, без икса - вправо... Со сменой знака, всё чин-чинарём... Получаем:

2х-5х+3х=5-2-3

Считаем, и... опаньки!!! Получаем:

Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да...) Тупик?

Спокойствие! В таких сомнительных случаях спасают самые общие правила. Как решать уравнения? Что значит решить уравнение? Это значит, найти все значения икса, которые, при подстановке в исходное уравнение, дадут нам верное равенство.

Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких иксах это получается. Какие значения икса можно подставлять в исходное уравнение, если эти иксы всё равно посокращаются в полный ноль? Ну же?)

Да!!! Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите - можете проверить.) Поподставляйте любые значения икса в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее.

Вот вам и ответ: х - любое число.

Ответ можно записать разными математическими значками, суть не меняется. Это совершенно правильный и полноценный ответ.

Сюрприз второй.

Возьмём то же элементарнейшее линейное уравнение и изменим в нём всего одно число. Вот такое будем решать:

2х+1=5х+5 - 3х - 2

После тех же самых тождественных преобразований мы получим нечто интригующее:

Вот так. Решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред - вполне веское основание для правильного решения уравнения.)

Опять соображаем, исходя из общих правил. Какие иксы, при подстановке в исходное уравнение, дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё посократится, останется бред.)

Вот вам и ответ: решений нет.

Это тоже вполне полноценный ответ. В математике такие ответы частенько встречаются.

Вот так. Сейчас, надеюсь, пропажа иксов в процессе решения любого (не только линейного) уравнения вас нисколько не смутит. Дело уже знакомое.)

Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.