Статистически достоверными из данных показателей являются. Статистическая значимость: определение, понятие, значимость, уравнения регрессии и проверка гипотез

Основные черты всякой зависимости между переменными.

Можно отметить два самых простых свойства зависимости между переменными: (a) величина зависимости и (b) надежность зависимости.

- Величина . Величину зависимости легче понять и измерить, чем надежность. Например, если любой мужчина в выборке имел значение числа лейкоцитов (WCC) выше чем любая женщина, то вы можете сказать, что зависимость между двумя переменными (Пол и WCC) очень высокая. Другими словами, вы могли бы предсказать значения одной переменной по значениям другой.

- Надежность ("истинность"). Надежность взаимозависимости - менее наглядное понятие, чем величина зависимости, однако чрезвычайно важное. Надежность зависимости непосредственно связана с репрезентативностью определенной выборки, на основе которой строятся выводы. Другими словами, надежность говорит о том, насколько вероятно, что зависимость будет вновь обнаружена (иными словами, подтвердится) на данных другой выборки, извлеченной из той же самой популяции.

Следует помнить, что конечной целью почти никогда не является изучение данной конкретной выборки значений; выборка представляет интерес лишь постольку, поскольку она дает информацию обо всей популяции. Если исследование удовлетворяет некоторым специальным критериям, то надежность найденных зависимостей между переменными выборки можно количественно оценить и представить с помощью стандартной статистической меры.

Величина зависимости и надежность представляют две различные характеристики зависимостей между переменными. Тем не менее, нельзя сказать, что они совершенно независимы. Чем больше величина зависимости (связи) между переменными в выборке обычного объема, тем более она надежна (см. следующий раздел).

Статистическая значимость результата (p-уровень) представляет собой оцененную меру уверенности в его "истинности" (в смысле "репрезентативности выборки"). Выражаясь более технически, p-уровень – это показатель, находящийся в убывающей зависимости от надежности результата. Более высокий p-уровень соответствует более низкому уровню доверия к найденной в выборке зависимости между переменными. Именно, p-уровень представляет собой вероятность ошибки, связанной с распространением наблюдаемого результата на всю популяцию.

Например, p-уровень = 0.05 (т.е. 1/20) показывает, что имеется 5% вероятность, что найденная в выборке связь между переменными является лишь случайной особенностью данной выборки. Во многих исследованиях p-уровень 0.05 рассматривается как "приемлемая граница" уровня ошибки.

Не существует никакого способа избежать произвола при принятии решения о том, какой уровень значимости следует действительно считать "значимым". Выбор определенного уровня значимости, выше которого результаты отвергаются как ложные, является достаточно произвольным.



На практике окончательное решение обычно зависит от того, был ли результат предсказан априори (т.е. до проведения опыта) или обнаружен апостериорно в результате многих анализов и сравнений, выполненных с множеством данных, а также на традиции, имеющейся в данной области исследований.

Обычно во многих областях результат p .05 является приемлемой границей статистической значимости, однако следует помнить, что этот уровень все еще включает довольно большую вероятность ошибки (5%).

Результаты, значимые на уровне p .01 обычно рассматриваются как статистически значимые, а результаты с уровнем p .005 или p . 001 как высоко значимые. Однако следует понимать, что данная классификация уровней значимости достаточно произвольна и является всего лишь неформальным соглашением, принятым на основе практического опыта в той или иной области исследования .

Понятно, что чем большее число анализов будет проведено с совокупностью собранных данных, тем большее число значимых (на выбранном уровне) результатов будет обнаружено чисто случайно.

Некоторые статистические методы, включающие много сравнений, и, таким образом, имеющие значительный шанс повторить такого рода ошибки, производят специальную корректировку или поправку на общее число сравнений. Тем не менее, многие статистические методы (особенно простые методы разведочного анализа данных) не предлагают какого-либо способа решения данной проблемы.

Если связь между переменными "объективно" слабая, то не существует иного способа проверить такую зависимость кроме как исследовать выборку большого объема. Даже если выборка совершенно репрезентативна, эффект не будет статистически значимым, если выборка мала. Аналогично, если зависимость "объективно" очень сильная, тогда она может быть обнаружена с высокой степенью значимости даже на очень маленькой выборке.

Чем слабее зависимость между переменными, тем большего объема требуется выборка, чтобы значимо ее обнаружить.

Разработано много различных мер взаимосвязи между переменными. Выбор определенной меры в конкретном исследовании зависит от числа переменных, используемых шкал измерения, природы зависимостей и т.д.

Большинство этих мер, тем не менее, подчиняются общему принципу: они пытаются оценить наблюдаемую зависимость, сравнивая ее с "максимальной мыслимой зависимостью" между рассматриваемыми переменными. Говоря технически, обычный способ выполнить такие оценки заключается в том, чтобы посмотреть, как варьируются значения переменных и затем подсчитать, какую часть всей имеющейся вариации можно объяснить наличием "общей" ("совместной") вариации двух (или более) переменных.

Значимость зависит в основном от объема выборки. Как уже объяснялось, в очень больших выборках даже очень слабые зависимости между переменными будут значимыми, в то время как в малых выборках даже очень сильные зависимости не являются надежными.

Таким образом, для того чтобы определить уровень статистической значимости, нужна функция, которая представляла бы зависимость между "величиной" и "значимостью" зависимости между переменными для каждого объема выборки.

Такая функция указала бы точно "насколько вероятно получить зависимость данной величины (или больше) в выборке данного объема, в предположении, что в популяции такой зависимости нет". Другими словами, эта функция давала бы уровень значимости
(p -уровень), и, следовательно, вероятность ошибочно отклонить предположение об отсутствии данной зависимости в популяции.

Эта "альтернативная" гипотеза (состоящая в том, что нет зависимости в популяции) обычно называется нулевой гипотезой .

Было бы идеально, если бы функция, вычисляющая вероятность ошибки, была линейной и имела только различные наклоны для разных объемов выборки. К сожалению, эта функция существенно более сложная и не всегда точно одна и та же. Тем не менее, в большинстве случаев ее форма известна, и ее можно использовать для определения уровней значимости при исследовании выборок заданного размера. Большинство этих функций связано с классом распределений, называемым нормальным .

Задачей статистического исследования является выявление закономерностей, лежащих в природе исследуемых явлений. Показатели и средние величины должны служить отображением действительности, для чего необходимо определять степень их достоверности. Правильное отображение выборочной совокупностью генеральной совокупности называется репрезентативностью. Мерой точности и достоверности выборочных статистических величин являются средние ошибки представительности (репрезентативности), которые зависят от численности выборки и степени разнообразия выборочной совокупности по исследуемому признаку.

Поэтому для определения степени достоверности результатов статистического исследования необходимо для каждой относительной и средней величины вычислить соответствующую среднюю ошибку. Средняя ошибка показателя m p вычисляется по формуле:

При числе наблюдений менее 30, где

P - величина показателя в процентах, промилле и т.д.

q - дополнение этого показателя до 100, если он в процентах, до 1000, если % 0 и т.д. (т.е. q = 100–P, 1000–P и т.д.)

Например, известно, что в районе в течение года заболело дизентерией 224 человека. Численность населения ― 33000. Показатель заболеваемости дизентерией на

Средняя ошибка этого показателя

Для решения вопроса о степени достоверности показателя определяют доверительный коэффициент (t), который равен отношению показателя к его средней ошибке, т.е.

В нашем примере

Чем выше t, тем больше степень достоверности. При t=1, вероятность достоверности показателя равна 68,3%, при t=2 ― 95,5%, при t=3 ― 99,7%. В медико-статистических исследованиях обычно используют доверительную вероятность (надежность), равную 95,5%–99,0%, а в наиболее ответственных случаях – 99,7%. Таким образом в нашем примере показатель заболеваемости достоверен.

При числе наблюдений менее 30, значение критерия определяется по таблице Стьюдента. Если полученная величина будет выше или равна табличной ― показатель достоверен. Если ниже ― не достоверен.

При необходимости сравнения двух однородных показателей достоверность их различий определяется по формуле:

(от большего числа отнимают меньшее),

где P 1 –P 2 ― разность двух сравниваемых показателей,

средняя ошибка разности двух показателей.

Например, в районе Б в течении года заболело дизентерией 270 человек. Население района ― 45000. Отсюда заболеваемость дизентерией:

т.е. показатель заболеваемости достоверен.

Как видно, заболеваемость в районе Б ниже, чем в районе А. Определяем по формуле достоверность разницы двух показателей:

При наличии большого числа наблюдений (более 30) разность показателей является статистически достоверной, если t = 2 или больше. Таким образом, в нашем примере заболеваемость в районе А достоверно выше, т.к. доверительный коэффициент (t) больше 2.

Зная величину средней ошибки показателя, можно определить доверительные границы этого показателя в зависимости от влияния причин случайного характера. Доверительные границы определяются по формуле:

P ― показатель;

m ― его средняя ошибка;

t ― доверительный коэффициент выбирается в зависимости от требуемой величины надежности: t=1 соответствует надежности результата в 68,3% случаев, t=2 – 95,5%, t=2,6 – 99%, t=3 – 99,7%, t=3,3 – 99,9Величина называется предельной ошибкой.

Например, в районе Б показатель заболеваемости дизентерией с точностью до 99,7 9 % может колебаться в связи со случайными факторами в пределах т.е. от 49,1 до 70,9 .

Статистика давно уже стала неотъемлемой частью жизни. С ней люди сталкиваются всюду. На основе статистики делаются выводы о том, где и какие заболевания распространены, что более востребовано в конкретном регионе или среди определенного слоя населения. На основываются даже построения политических программ кандидатов в органы власти. Ими же пользуются и торговые сети при закупке товаров, а производители руководствуются этими данными в своих предложениях.

Статистика играет важную роль в жизни общества и влияет на каждого его отдельного члена даже в мелочах. Например, если по , большинство людей предпочитают темные цвета в одежде в конкретном городе или регионе, то найти яркий желтый плащ с цветочным принтом в местных торговых точках будет крайне затруднительно. Но из каких величин складываются эти данные, оказывающие такое влияние? К примеру, что представляет собой «статистическая значимость»? Что именно понимается под этим определением?

Что это?

Статистика как наука складывается из сочетания разных величин и понятий. Одним из них и является понятие «статистическая значимость». Так называется значение переменных величин, вероятность появления других показателей в которых ничтожно мала.

К примеру, 9 из 10 человек надевают на ноги резиновую обувь во время утренней прогулки за грибами в осенний лес после дождливой ночи. Вероятность того что в какой-то момент 8 из них обуются в парусиновые мокасины - ничтожно мала. Таким образом, в данном конкретном примере число 9 является величиной, которая и называется «статистическая значимость».

Соответственно, если развивать далее приведенный практический пример, обувные магазины закупают к концу летнего сезона резиновые сапожки в большом количестве, чем в другое время года. Так, величина статистического значения оказывает влияние на обычную жизнь.

Разумеется, в сложных подсчетах, допустим, при прогнозе распространения вирусов, учитывается большое число переменных. Но сама суть определения значимого показателя статистических данных - аналогична, вне зависимости от сложности подсчетов и количества непостоянных величин.

Как вычисляют?

Используются при вычислении значения показателя «статистическая значимость» уравнения. То есть можно утверждать, что в этом случае все решает математика. Самым простым вариантом вычисления является цепь математических действий, в которой участвуют следующие параметры:

  • два типа результатов, полученных при опросах или изучении объективных данных, к примеру, сумм на которые совершаются покупки, обозначаемые а и b;
  • показатель для обеих групп - n;
  • значение доли объединенной выборки - p;
  • понятие «стандартная ошибка» - SE.

Следующим этапом определяется общий тестовый показатель - t, его значение сравнивается с числом 1,96. 1,96 - это усредненное значение, передающее диапазон в 95 %, согласно функции t-распределения Стьюдента.

Часто возникает вопрос о том, в чем отличие значений n и p. Этот нюанс просто прояснить при помощи примера. Допустим, вычисляется статистическая значимость лояльности к какому-либо товару или бренду мужчин и женщин.

В этом случае за буквенными обозначениями будет стоять следующее:

  • n - число опрошенных;
  • p - число довольных продуктом.

Численность опрошенных женщин в этом случае будет обозначено, как n1. Соответственно, мужчин - n2. То же значение будут иметь цифры «1» и «2» у символа p.

Сравнение тестового показателя с усредненными значениями расчетных таблиц Стьюдента и становится тем, что называется «статистическая значимость».

Что понимается под проверкой?

Результаты любого математического вычисления всегда можно проверить, этому учат детей еще в начальных классах. Логично предположить, что раз статистические показатели определяются при помощи цепи вычислений, то и проверяются.

Однако проверка статистической значимости - не только математика. Статистика имеет дело с большим количеством переменных величин и различных вероятностей, далеко не всегда поддающихся расчету. То есть если вернутся к приведенному в начале статьи примеру с резиновой обувью, то логичное построение статистических данных, на которые станут опираться закупщики товаров для магазинов, может быть нарушено сухой и жаркой погодой, которая не типична для осени. В результате этого явления число людей, приобретающих резиновые сапоги, снизится, а торговые точки потерпят убытки. Предусмотреть погодную аномалию математическая формула, разумеется, не в состоянии. Этот момент называется - «ошибка».

Вот как раз вероятность таких ошибок и учитывает проверка уровня вычисленной значимости. В ней учитываются как вычисленные показатели, так и принятые уровни значимости, а также величины, условно называемые гипотезами.

Что такое уровень значимости?

Понятие «уровень» входит в основные критерии статистической значимости. Используется оно в прикладной и практической статистике. Это своего рода величина, учитывающая вероятность возможных отклонений или ошибок.

Уровень основывается на выявлении различий в готовых выборках, позволяет установить их существенность либо же, наоборот, случайность. У этого понятия есть не только цифровые значения, но и их своеобразные расшифровки. Они объясняют то, как нужно понимать значение, а сам уровень определяется сравнением результата с усредненным индексом, это и выявляет степень достоверности различий.

Таким образом, можно представить понятие уровня просто - это показатель допустимой, вероятной погрешности или же ошибки в сделанных из полученных статистических данных выводах.

Какие уровни значимости используются?

Статистическая значимость коэффициентов вероятности допущенной ошибки на практике отталкивается от трех базовых уровней.

Первым уровнем считается порог, при котором значение равно 5 %. То есть вероятность погрешности не превышает уровня значимости в 5 %. Это означает, что уверенность в безупречности и безошибочности выводов, сделанных на основе данных статистических исследований, составляет 95 %.

Вторым уровнем является порог в 1 %. Соответственно, эта цифра означает, что руководствоваться полученными при статистических расчетах данными можно с уверенностью в 99 %.

Третий уровень - 0,1 %. При таком значении вероятность наличия ошибки равна доле процента, то есть погрешности практически исключаются.

Что такое гипотеза в статистике?

Ошибки как понятие разделяются по двум направлениям, касающимся принятия или же отклонения нулевой гипотезы. Гипотеза - это понятие, за которым скрывается, согласно определению, набор иных данных или же утверждений. То есть описание вероятностного распределения чего-либо, относящегося к предмету статистического учета.

Гипотез при простых расчетах бывает две - нулевая и альтернативная. Разница между ними в том, что нулевая гипотеза берет за основу представление об отсутствии принципиальных отличий между участвующими в определении статистической значимости выборками, а альтернативная ей полностью противоположна. То есть альтернативная гипотеза основана на наличии весомой разницы в данных выборок.

Какими бывают ошибки?

Ошибки как понятие в статистике находятся в прямой зависимости от принятия за истинную той или иной гипотезы. Их можно разделить на два направления или же типа:

  • первый тип обусловлен принятием нулевой гипотезы, оказавшейся неверной;
  • второй - вызван следованием альтернативной.

Первый тип ошибок называется ложноположительным и встречается достаточно часто во всех сферах, где используются статистические данные. Соответственно, ошибка второго типа называется ложноотрицательной.

Для чего нужна регрессия в статистике?

Статистическая значимость регрессии в том, что с ее помощью можно установить, насколько соответствует реальности вычисленная на основе данных модель различных зависимостей; позволяет выявить достаточность или же нехватку факторов для учета и выводов.

Определяется регрессивное значение с помощью сравнения результатов с перечисленными в таблицах Фишера данными. Или же при помощи дисперсионного анализа. Важное значение показатели регрессии имеют при сложных статистических исследованиях и расчетах, в которых участвует большое количество переменных величин, случайных данных и вероятных изменений.

Сегодня это действительно слишком просто: вы можете подойти к компьютеру и практически без знания того, что вы делаете, создавать разумное и бессмыслицу с поистине изумительной быстротой. (Дж. Бокс)

Основные термины и понятия медицинской статистики

В данной статье мы приведем некоторые ключевые понятия статистики, актуальные при проведении медицинских исследований. Более подробно термины разбираются в соответствующих статьях.

Вариация

Определение. Степень рассеяния данных (значений признака) по области значений

Вероятность

Определение . Вероятность(probability) - степень возможности проявления какого - либо определённого события в тех или иных условиях.

Пример. Поясним определение термина на предложении «Вероятность выздоровления при применении лекарственного препарата Aримидекс равна 70%». Событием является «выздоровление больного», условием «больной принимает Аримидекс», степенью возможности - 70% (грубо говоря, из 100 человек, принимающих Аримидекс, выздоравливают 70).

Кумулятивная вероятность

Определение. Кумулятивная вероятность выживания (Cumulative Probability of surviving) в момент времени t - это то же самое, что доля выживших пациентов к этому моменту времени.

Пример. Если говорится, что кумулятивная вероятность выживания после проведения пятилетнего курса лечения равна 0.7, то это значит, что из рассматриваемой группы пациентов в живых осталось 70% от начального количества, а 30% умерло. Другими словами, из каждой сотни человек 30 умерло в течение первых 5 лет.

Время до события

Определение. Время до события - это время, выраженное в некоторых единицах, прошедшее с некоторого начального момента времени до наступления некоторого события.

Пояснение. В качестве единиц времени в медицинских исследованиях выступают дни, месяцы и годы.

Типичные примеры начальных моментов времени:

    начало наблюдения за пациентом

    проведение хирургического лечения

Типичные примеры рассматриваемых событий:

    прогрессирование болезни

    возникновение рецидива

    смерть пациента

Выборка

Определение. Часть популяции, полученная путем отбора.

По результатам анализа выборки делают выводы о всей популяции, что правомерно только в случае, если отбор был случайным. Поскольку случайный отбор из популяции осуществить практически невозможно, следует стремиться к тому, чтобы выборка была по крайней мере репрезентативна по отношению к популяции.

Зависимые и независимые выборки

Определение. Выборки, в которые объекты исследования набирались независимо друг от друга. Альтернатива независимым выборкам - зависимые (связные, парные) выборки.

Гипотеза

Двусторонняя и односторонняя гипотезы

Сначала поясним применение термина гипотеза в статистике.

Цель большинства исследований - проверка истинности некоторого утверждения. Целью тестирования лекарственных препараторов чаще всего является проверка гипотезы, что одно лекарство эффективнее другого (например, Аримидекс эффективнее Тамоксифена).

Для предания строгости исследования, проверяемое утверждение выражают математически. Например, если А - это количество лет, которое проживёт пациент, принимающий Аримидекс, а Т -это количество лет, которое проживёт пациент, принимающий Тамоксифен, то проверяемую гипотезу можно записать как А>Т.

Определение. Гипотеза называется двусторонней (2-sided), если она состоит в равенстве двух величин.

Пример двусторонней гипотезы: A=T.

Определение. Гипотеза называется односторонней (1-sided),если она состоит в неравенстве двух величин.

Примеры односторонних гипотез:

Дихотомические (бинарные) данные

Определение. Данные, выражаемые только двумя допустимыми альтернативными значениями

Пример: Пациент «здоров» - «болен». Отек "есть" - "нет".

Доверительный интервал

Определение. Доверительный интервал (confidence interval) для некоторой величины - это диапазон вокруг значения величины, в котором находится истинное значение этой величины (с определенным уровнем доверия).

Пример. Пусть исследуемой величиной является количество пациентов в год. В среднем их количество равно 500, а 95% -доверительный интервал - (350, 900). Это означает, что, скорее всего (с вероятностью 95%), в течение года в клинику обратятся не менее 350 и не более 900 человек.

Обозначение. Очень часто используются сокращение: ДИ 95 % (CI 95%) - это доверительный интервал с уровнем доверия 95%.

Достоверность, статистическая значимость (P - уровень)

Определение. Статистическая значимость результата - это мера уверенности в его "истинности".

Любое исследование проходит на основе лишь части объектов. Исследование эффективности лекарственного препарата проводится на основе не вообще всех больных на планете, а лишь некоторой группы пациентов (провести анализ на основе всех больных просто невозможно).

Предположим, что в результате анализа был сделан некоторый вывод (например, использование в качестве адекватной терапии препарата Аримидекс в 2 раза эффективнее, чем препарата Тамоксифен).

Вопрос, который необходимо при этом задавать: "Насколько можно доверять этому результату?".

Представьте, что мы проводили исследование на основе только двух пациентов. Конечно же, в этом случае к результатам нужно относиться с опасением. Если же были обследовано большое количество больных (численное значение «большого количества» зависит от ситуации), то сделанным выводам уже можно доверять.

Так вот, степень доверия и определяется значением p-уровня (p-value).

Более высокий p- уровень соответствует более низкому уровню доверия к результатам, полученным при анализе выборки. Например, p- уровень, равный 0.05 (5%) показывает, что сделанный при анализе некоторой группы вывод является лишь случайной особенностью этих объектов с вероятностью только 5%.

Другими словами, с очень большой вероятностью (95%) вывод можно распространить на все объекты.

Во многих исследованиях 5% рассматривается как приемлемое значение p-уровня. Это значит, что если, например, p= 0.01, то результатам доверять можно, а если p=0.06, то нельзя.

Исследование

Проспективное исследование - это исследование, в котором выборки выделяются на основе исходного фактора, а в выборках анализируется некоторый результирующий фактор.

Ретроспективное исследование - это исследование, в котором выборки выделяются на основе результирующего фактора, а в выборках анализируется некоторый исходный фактор.

Пример. Исходный фактор - беременная женщина моложе/старше 20 лет. Результирующий фактор - ребёнок легче/тяжелее 2,5 кг. Анализируем, зависит ли вес ребёнка от возраста матери.

Если мы набираем 2 выборки, в одной - матери моложе 20 лет, в другой - старше, а затем анализируем массу детей в каждой группе, то это проспективное исследование.

Если мы набираем 2 выборки, в одной - матери, родившие детей легче 2,5 кг, в другой - тяжелее, а затем анализируем возраст матерей в каждой группе, то это ретроспективное исследование (естественно, такое исследование можно провести, только когда опыт закончен, т.е. все дети родились).

Исход

Определение. Клинически значимое явление, лабораторный показатель или признак, который служит объектом интереса исследователя. При проведении клинических испытаний исходы служат критериями оценки эффективности лечебного или профилактического воздействия.

Клиническая эпидемиология

Определение. Наука, позволяющая осуществлять прогнозирование того или иного исхода для каждого конкретного больного на основании изучения клинического течения болезни в аналогичных случаях с использованием строгих научных методов изучения больных для обеспечения точности прогнозов.

Когорта

Определение. Группа участников исследования, объединенных каким-либо общим признаком в момент ее формирования и исследуемых на протяжении длительного периода времени.

Контроль

Контроль исторический

Определение. Контрольная группа, сформированная и обследованная в период, предшествующий исследованию.

Контроль параллельный

Определение. Контрольная группа, формируемая одновременно с формированием основной группы.

Корреляция

Определение. Статистическая связь двух признаков (количественных или порядковых), показывающая, что большему значению одного признака в определенной части случаев соответствует большее - в случае положительной (прямой) корреляции - значение другого признака или меньшее значение - в случае отрицательной (обратной) корреляции.

Пример. Между уровнем тромбоцитов и лейкоцитов в крови пациента обнаружена значимая корреляция. Коэффициент корреляции равен 0,76.

Коэффициент риска (КР)

Определение. Коэффициент риска (hazard ratio) - это отношение вероятности наступления некоторого («нехорошего») события для первой группы объектов к вероятности наступления этого же события для второй группы объектов.

Пример. Если вероятность появления рака лёгких у некурящих равна 20%, а у курильщиков - 100%, то КР будет равен одной пятой. В этом примере первой группой объектов являются некурящие люди, второй группой - курящие, а в качестве «нехорошего» события рассматривается возникновение рака лёгких.

Очевидно, что:

1) если КР=1, то вероятность наступления события в группах одинаковая

2) если КР>1, то событие чаще происходит с объектами из первой группы, чем из второй

3) если КР<1, то событие чаще происходит с объектами из второй группы, чем из первой

Мета-анализ

Определение. С татистический анализ, обобщающий результаты нескольких исследований, исследующих одну и ту же проблему (обычно эффективность методов лечения, профилактики, диагностики). Объединение исследований обеспечивает большую выборку для анализа и большую статистическую мощность объединяемых исследований. Используется для повышения доказательности или уверенности в заключении об эффективности исследуемого метода.

Метод Каплана - Мейера (Множительные оценки Каплана - Мейера)

Этот метод был придуман статистиками Е.Л.Капланом и Полем Мейером.

Метод используется для вычисления различных величин, связанных с временем наблюдения за пациентом. Примеры таких величин:

    вероятность выздоровления в течении одного года при применении лекарственного препарата

    шанс возникновения рецидива после операции в течении трёх лет после операции

    кумулятивная вероятность выживания в течение пяти лет среди пациентов с раком простаты при ампутации органа

Поясним преимущества использования метода Каплана - Мейера.

Значение величин при «обычном» анализе (не использующем метод Каплана-Мейера) рассчитываются на основе разбиения рассматриваемого временного интервала на промежутки.

Например, если мы исследуем вероятность смерти пациента в течение 5 лет, то временной интервал может быть разделён как на 5 частей (менее 1 года, 1-2 года, 2-3 года, 3-4 года, 4-5 лет), так и на 10 (по полгода каждый), или на другое количество интервалов. Результаты же при разных разбиениях получатся разные.

Выбор наиболее подходящего разбиения - непростая задача.

Оценки значений величин, полученных по методу Каплана- Мейера не зависят от разбиения времени наблюдения на интервалы, а зависят только от времени жизни каждого отдельного пациента.

Поэтому исследователю проще проводить анализ, да и результаты нередко оказываются качественней результатов «обычного» анализа.

Кривая Каплана -Мейера (Kaplan - Meier curve)- это график кривой выживаемости, полученной по методу Каплана-Мейера.

Модель Кокса

Эта модель была придумана сэром Дэвидом Роксби Коксом (р.1924), известным английским статистиком, автором более 300 статей и книг.

Модель Кокса используется в ситуациях, когда исследуемые при анализе выживаемости величины зависят от функций времени. Например, вероятность возникновения рецидива через t лет (t=1,2,…), может зависеть от логарифма времени log(t).

Важным достоинством метода, предложенного Коксом, является применимость этого метода в большом количестве ситуаций (модель не накладывает жестких ограничений на природу или форму распределения вероятностей).

На основе модели Кокса можно проводить анализ (называемый анализом Кокса (Cox analysis)), результатом проведения которого является значение коэффициента риска и доверительного интервала для коэффициента риска.

Непараметрические методы статистики

Определение. Класс статистических методов, которые используются главным образом для анализа количественных данных, не образующих нормальное распределение, а также для анализа качественных данных.

Пример. Для выявления значимости различий систолического давления пациентов в зависимости от типа лечения воспользуемся непараметрическим критерием Манна-Уитни.

Признак (переменная)

Определение. Х арактеристика объекта исследования (наблюдения). Различают качественные и количественные признаки.

Рандомизация

Определение. Способ случайного распределения объектов исследования в основную и контрольную группы с использованием специальных средств (таблиц или счетчика случайных чисел, подбрасывания монеты и других способов случайного назначения номера группы включаемому наблюдению). С помощью рандомизации сводятся к минимуму различия между группами по известным и неизвестным признакам, потенциально влияющим на изучаемый исход.

Риск

Атрибутивный - дополнительный риск возникновения неблагоприятного исхода (например, заболевания) в связи с наличием определенной характеристики (фактора риска) у объекта исследования. Это часть риска развития болезни, которая связана с данным фактором риска, объясняется им и может быть устранена, если этот фактор риска устранить.

Относительный риск - отношение риска возникновения неблагоприятного состояния в одной группе к риску этого состояния в другой группе. Используется в проспективных и наблюдательных исследованиях, когда группы формируются заранее, а возникновение исследуемого состояния ещё не произошло.

Скользящий экзамен

Определение. Метод проверки устойчивости, надежности, работоспособности (валидности) статистической модели путем поочередного удаления наблюдений и пересчета модели. Чем более сходны полученные модели, тем более устойчива, надежна модель.

Событие

Определение. Клинический исход, наблюдаемый в исследовании, например возникновение осложнения, рецидива, наступление выздоровления, смерти.

Стратификация

Определение. М етод формирования выборки, при котором совокупность всех участников, соответствующих критериям включения в исследование, сначала разделяется на группы (страты) на основе одной или нескольких характеристик (обычно пола, возраста), потенциально влияющих на изучаемый исход, а затем из каждой из этих групп (страт) независимо проводится набор участников в экспериментальную и контрольную группы. Это позволяет исследователю соблюдать баланс важных характеристик между экспериментальной и контрольной группами.

Таблица сопряженности

Определение. Таблица абсолютных частот (количества) наблюдений, столбцы которой соответствуют значениям одного признака, а строки - значениям другого признака (в случае двумерной таблицы сопряженности). Значения абсолютных частот располагаются в клетках на пересечении рядов и колонок.

Приведем пример таблицы сопряженности. Операция на аневризме была сделана 194 пациентам. Известен показатель выраженности отека у пациентов перед операцией.

Отек\ Исход

нет отека 20 6 26
умеренный отек 27 15 42
выраженный отек 8 21 29
m j 55 42 194

Таким образом, из 26 пациентов, не имеющих отека, после операции выжило 20 пациентов, умерло - 6 пациентов. Из 42 пациентов, имеющих умеренный отек выжило 27 пациентов, умерло - 15 и т.д.

Критерий хи-квадрат для таблиц сопряженности

Для определения значимости (достоверности) различий одного признака в зависимости от другого (например, исхода операции в зависимости от выраженности отека) применяется критерий хи-квадрат для таблиц сопряженности:


Шанс

Пусть вероятность некоторого события равна p. Тогда вероятность того, что событие не произойдёт равна 1-p.

Например, если вероятность того, что больной останется жив спустя пять лет равна 0.8 (80%), то вероятность того, что он за этот временной промежуток умрёт равна 0.2 (20%).

Определение. Шанс - это отношение вероятности того, что события произойдёт к вероятности того, что событие не произойдёт.

Пример. В нашем примере (про больного) шанс равен 4, так как 0.8/0.2=4

Таким образом, вероятность выздоровления в 4 раза больше вероятности смерти.

Интерпретация значения величины.

1) Если Шанс=1, то вероятность наступления события равна вероятности того, что событие не произойдёт;

2) если Шанс >1, то вероятность наступления события больше вероятности того, что событие не произойдёт;

3) если Шанс <1, то вероятность наступления события меньше вероятности того, что событие не произойдёт.

Отношение шансов

Определение. Отношение шансов (odds ratio) - это отношение шансов для первой группы объектов к отношению шансов для второй группы объектов.

Пример. Допустим, что некоторое лечение проходят и мужчины, и женщины.

Вероятность того, что больной мужского пола останется жив спустя пять лет равна 0.6 (60%); вероятность того, что он за этот временной промежуток умрёт равна 0.4 (40%).

Аналогичные вероятности для женщин равны 0.8 и 0.2.

Отношение шансов в этом примере равно

Интерпретация значения величины.

1) Если отношение шансов =1, то шанс для первой группы равен шансу для второй группы

2) Если отношение шансов >1, то шанс для первой группы больше шанса для второй группы

3) Если отношение шансов <1, то шанс для первой группы меньше шанса для второй группы

Статистическая значимость или р-уровень значимости - основной результат проверки

статистической гипотезы. Говоря техническим языком, это вероятность получения данного

результата выборочного исследования при условии, что на самом деле для генеральной

совокупности верна нулевая статистическая гипотеза - то есть связи нет. Иначе говоря, это

вероятность того, что обнаруженная связь носит случайный характер, а не является свойством

совокупности. Именно статистическая значимость, р-уровень значимости является

количественной оценкой надежности связи: чем меньше эта вероятность, тем надежнее связь.

Предположим, при сравнении двух выборочных средних было получено значение уровня

статистической значимости р=0,05. Это значит, что проверка статистической гипотезы о

равенстве средних в генеральной совокупности показала, что если она верна, то вероятность

случайного появления обнаруженных различий составляет не более 5%. Иначе говоря, если бы

две выборки многократно извлекались из одной и той же генеральной совокупности, то в 1 из

20 случаев обнаруживалось бы такое же или большее различие между средними этих выборок.

То есть существует 5%-ная вероятность того, что обнаруженные различия носят случайный

характер, а не являются свойством совокупности.

В отношении научной гипотезы уровень статистической значимости – это количественный

показатель степени недоверия к выводу о наличии связи, вычисленный по результатам

выборочной, эмпирической проверки этой гипотезы. Чем меньше значение р-уровня, тем выше

статистическая значимость результата исследования, подтверждающего научную гипотезу.

Полезно знать, что влияет на уровень значимости. Уровень значимости при прочих равных

условиях выше (значение р-уровня меньше), если:

Величина связи (различия) больше;

Изменчивость признака (признаков) меньше;

Объем выборки (выборок) больше.

Односторонние еpи двусторонние критерии проверки значимости

Если цель исследования том, чтобы выявить различие параметров двух генеральных

совокупностей, которые соответствуют различным ее естественным условиям (условия жизни,

возраст испытуемых и т. п.), то часто неизвестно, какой из этих параметров будет больше, а

какой меньше.

Например, если интересуются вариативностью результатов в контрольной и

экспериментальной группах, то, как правило, нет уверенности в знаке различия дисперсий или

стандартных отклонений результатов, по которым оценивается вариативность. В этом случае

нулевая гипотеза состоит в том, что дисперсии равны между собой, а цель исследования -

доказать обратное, т.е. наличие различия между дисперсиями. При этом допускается, что

различие может быть любого знака. Такие гипотезы называются двусторонними.

Но иногда задача состоит в том, чтобы доказать увеличение или уменьшение параметра;

например, средний результат в экспериментальной группе выше, чем контрольной. При этом

уже не допускается, что различие может быть другого знака. Такие гипотезы называются

Односторонними.

Критерии значимости, служащие для проверки двусторонних гипотез, называются

Двусторонними, а для односторонних - односторонними.

Возникает вопрос о том, какой из критериев следует выбирать в том или ином случае. Ответ

На этот вопрос находится за пределами формальных статистических методов и полностью

Зависит от целей исследования. Ни в коем случае нельзя выбирать тот или иной критерий после

Проведения эксперимента на основе анализа экспериментальных данных, поскольку это может

Привести к неверным выводам. Если до проведения эксперимента допускается, что различие

Сравниваемых параметров может быть как положительным, так и отрицательным, то следует



Похожие статьи

© 2024 parki48.ru. Строим каркасный дом. Ландшафтный дизайн. Строительство. Фундамент.