Таблиця тригонометричних функцій від 0 до 360. Cинус, косинус, тангенс та котангенс - все, що потрібно знати на ОДЕ та ОДЕ

Вивчення тригонометрії ми почнемо з прямокутного трикутника. Визначимо, що таке синус та косинус, а також тангенс та котангенс гострого кута. Це є основи тригонометрії.

Нагадаємо, що прямий кут- це кут, що дорівнює 90 градусів. Іншими словами, половина розгорнутого кута.

Гострий кут- менше 90 градусів.

Тупий кут- більший за 90 градусів. Стосовно такого кута «тупий» - не образа, а математичний термін:-)

Намалюємо прямокутний трикутник. Прямий кут зазвичай позначається. Звернімо увагу, що сторона, що лежить навпроти кута, позначається тією ж літерою, лише маленькою. Так, сторона, що лежить навпроти кута A, позначається .

Кут позначається відповідною грецькою літерою.

Гіпотенузапрямокутного трикутника - це сторона, що лежить навпроти прямого кута.

Катети- Сторони, що лежать навпроти гострих кутів.

Катет, що лежить навпроти кута, називається протилежним(По відношенню до кута). Інший катет, який лежить на одній із сторін кута, називається прилеглим.

Сінусгострого кута в прямокутному трикутнику - це відношення протилежного катета до гіпотенузи:

Косінусгострого кута у прямокутному трикутнику - відношення прилеглого катета до гіпотенузи:

Тангенсгострого кута в прямокутному трикутнику - відношення протилежного катета до прилеглого:

Інше (рівносильне) визначення: тангенсом гострого кута називається відношення синуса кута до його косинусу:

Котангенсгострого кута в прямокутному трикутнику - відношення прилеглого катета до протилежного (або, що те саме, відношення косинуса до синуса):

Зверніть увагу на основні співвідношення для синуса, косинуса, тангенсу та котангенсу, які наведені нижче. Вони стануть у нагоді нам при вирішенні завдань.

Давайте доведемо деякі з них.

Добре, ми дали визначення та записали формули. А навіщо потрібні синус, косинус, тангенс і котангенс?

Ми знаємо, що сума кутів будь-якого трикутника дорівнює.

Знаємо співвідношення між сторонамипрямокутний трикутник. Це теорема Піфагора: .

Виходить, знаючи два кути в трикутнику, можна знайти третій. Знаючи дві сторони прямокутного трикутника, можна знайти третю. Значить, для кутів – своє співвідношення, для сторін – своє. А що робити, якщо у прямокутному трикутнику відомий один кут (крім прямого) та одна сторона, а знайти треба інші сторони?

З цим і зіткнулися люди в минулому, складаючи карти місцевості та зоряного неба. Адже не завжди можна безпосередньо виміряти усі сторони трикутника.

Синус, косинус та тангенс - їх ще називають тригонометричними функціями кута- дають співвідношення між сторонамиі кутамитрикутник. Знаючи кут, можна знайти всі його тригонометричні функції за спеціальними таблицями. А знаючи синуси, косинуси та тангенси кутів трикутника та одну з його сторін, можна знайти інші.

Ми також намалюємо таблицю значень синуса, косинуса, тангенсу та котангенсу для «хороших» кутів від до .

Зверніть увагу на два червоні прочерки в таблиці. При відповідних значеннях кутів тангенс та котангенс не існують.

Розберемо кілька завдань із тригонометрії з Банку завдань ФІПД.

1. У трикутнику кут дорівнює . Знайдіть .

Завдання вирішується за чотири секунди.

Оскільки , .

2 . У трикутнику кут дорівнює , , . Знайдіть .

Знайдемо за теоремою Піфагора.

Завдання вирішено.

Часто в задачах зустрічаються трикутники з кутами або з кутами і . Основні співвідношення для них запам'ятовуйте напам'ять!

Для трикутника з кутами і катет, що лежить навпроти кута, дорівнює половині гіпотенузи.

Трикутник з кутами і рівнобедрений. У ньому гіпотенуза в раз більше катета.

Ми розглянули завдання розв'язання прямокутних трикутників - тобто перебування невідомих сторін чи кутів. Але це не все! У варіантах ЄДІз математики безліч завдань, де фігурує синус, косинус, тангенс чи котангенс зовнішнього кута трикутника. Про це – у наступній статті.

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях (які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор "повернувся" щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом (один градус) називають центральний кут в колі, що спирається на кругову дугу, рівну частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, на малюнку зображено кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжинідуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все вірно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилежний;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (у нашому прикладі, це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все вірно. Крім того, нам відомо, що - це радіус одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно, ! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координаті! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося в даному прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні.

У другому випадку, тобто радіус-вектор зробить три повні обороти і зупиниться в положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Не існує;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Не існує

Не існує

Не існує

Не існує

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синусу для всіх трьох заходівкута (), а також значення тангенсу кута ст. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному виглядікоординати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, оскільки координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

1.

Можна зауважити, що. Адже ми знаємо, що відповідає повному обороту початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

2. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Ми знаємо, що відповідає двом повним оборотам початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

Синус та косинус - це табличні значення. Згадуємо їх значення та отримуємо:

Таким чином, потрібна точка має координати.

3. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Зобразимо приклад на малюнку:

Радіус утворює з віссю кути, рівні та. Знаючи, що табличні значення косинуса та синуса рівні, і визначивши, що косинус тут набуває від'ємне значення, А синус позитивне, маємо:

Докладніше такі приклади розбираються щодо формул приведення тригонометричних функцій у темі .

Таким чином, потрібна точка має координати.

4.

Кут повороту радіуса вектора (за умовою)

Для визначення відповідних знаків синуса та косинуса побудуємо одиничне коло та кут:

Як можна побачити, значення, тобто позитивно, а значення, тобто – негативно. Знаючи табличні значення відповідних тригонометричних функцій, отримуємо, що:

Підставимо отримані значення в нашу формулу і знайдемо координати:

Таким чином, потрібна точка має координати.

5. Для вирішення цього завдання скористаємося формулами у загальному вигляді, де

Координати центру кола (у нашому прикладі,

Радіус кола (за умовою,)

Кут повороту векторного радіуса (за умовою,).

Підставимо всі значення у формулу та отримаємо:

та - табличні значення. Згадуємо та підставляємо їх у формулу:

Таким чином, потрібна точка має координати.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута - це ставлення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).

Таблиця основних тригонометричних функцій для кутів 0, 30, 45, 60, 90, … градусів

З тригонометричних визначень функцій $\sin$, $\cos$, $\tan$ і $\cot$ можна дізнатися їх значення для кутів $0$ і $90$ градусів:

$\sin⁡0°=0$, $\cos0°=1$, $\tan 0°=0$, $\cot 0°$ не визначається;

$ \ sin90 ° = 1 $, $ \ cos90 ° = 0 $, $ \ cot90 ° = 0 $, $ \ tan 90 ° $ не визначається.

У шкільному курсі геометрії щодо прямокутних трикутників знаходять тригонометричні функції кутів $0°$, $30°$, $45°$, $60°$ і $90°$.

Знайдені значення тригонометричних функцій для зазначених кутів у градусах і радіанах відповідно ($0$, $\frac(\pi)(6)$, $\frac(\pi)(4)$, $\frac(\pi)(3) $, $\frac(\pi)(2)$) для зручності запам'ятовування та використання заносять до таблиці, яку називають тригонометричною таблицею, таблицею основних значень тригонометричних функційі т.п.

При використанні формул приведення тригонометрична таблиця може бути розширена до кута $360°$ і відповідно $2\pi$ радіан:

Застосовуючи властивості періодичності тригонометричних функцій, кожен кут, який відрізнятиметься від вже відомого на $360°, можна розрахувати і записати в таблицю. Наприклад, тригонометрична функція для кута $0°$ матиме таке ж значення і для кута $0°+360°$, і для кута $0°+2 \cdot 360°$, і для кута $0°+3 \cdot 360°$ і т.д.

За допомогою тригонометричної таблиці можна визначити значення всіх кутів одиничного кола.

У шкільному курсі геометрії передбачається запам'ятовування основних значень тригонометричних функцій, зібраних у тригонометричній таблиці, для зручності розв'язання тригонометричних завдань.

Використання таблиці

У таблиці достатньо знайти необхідну тригонометричну функцію та значення кута чи радіан, для яких цю функцію потрібно обчислити. На перетині рядка з функцією та стовпця зі значенням отримаємо шукане значення тригонометричної функції заданого аргументу.

На малюнку можна побачити, як знайти значення $\cos⁡60°$, яке дорівнює $\frac(1)(2)$.

Аналогічно використовується розширена тригонометрична таблиця. Перевагою її використання є, як згадувалося, обчислення тригонометричної функції практично будь-якого кута. Наприклад, легко можна знайти значення $ tan 1380 ° = tan (1 380 ° -360 °) = tan (1 020 ° -360 °) = tan (660 ° -360 °) = tan300 ° $:

Таблиці Брадіса основних тригонометричних функцій

Можливість розрахунку тригонометричної функції будь-якого значення кута для цілого значення градусів і цілого значення хвилин дає використання таблиць Брадіса. Наприклад, знайти значення $\cos⁡34°7"$. Таблиці розділені на 2 частини: таблицю значень $\sin$ і $\cos$ і таблицю значень $\tan$ і $\cot$.

Таблиці Брадіса дозволяють отримати наближене значення тригонометричних функцій з точністю до 4-х знаків після десяткової коми.

Використання таблиць Брадіса

Використовуючи таблиці Брадіса для синусів, знайдемо $\sin⁡17°42"$. Для цього в стовпці зліва таблиці синусів і косінусів знаходимо значення градусів – $17°$, а у верхньому рядку знаходимо значення хвилин – $42"$. На їх перетині отримуємо потрібне значення:

$ \ sin17 ° 42 "= 0,304 $.

Для знаходження значення $\sin17°44"$ потрібно скористатися поправкою у правій частині таблиці. даному випадкудо значення $42"$, яке є в таблиці, потрібно додати поправку для $2"$, що дорівнює $0,0006$. Отримаємо:

$ \ sin17 ° 44" = 0,304 +0,0006 = 0,3046 $.

Для знаходження значення $\sin17°47"$ також користуємося поправкою у правій частині таблиці, тільки в цьому випадку за основу беремо значення $\sin17°48"$ і забираємо поправку для $1"$:

$ \ sin17 ° 47" = 0,3057-0,0003 = 0,3054 $.

При розрахунку косінусів виконуємо аналогічні дії, але градуси дивимося у правому стовпці, а хвилини – у нижній колонці таблиці. Наприклад, $ \ cos20 ° = 0,9397 $.

Для значень тангенсу до $90°$ та котангенсу малого кута поправок немає. Наприклад, знайдемо $\tan 78°37"$, який за таблицею дорівнює $4,967$.

У статті ми повністю розберемося, як виглядає таблиця тригонометричних значень, синуса, косинуса, тангенсу та котангенсу. Розглянемо основне значення тригонометричних функцій, від кута 0,30,45,60,90,...,360 градусів. І подивимося як користуватись даними таблицями у обчисленні значення тригонометричних функцій.
Першою розглянемо таблицю косинуса, синуса, тангенсу та котангенсувід кута в 0, 30, 45, 60, 90, .. градусів. Визначення даних величин дають визначити значення функцій кутів 0 і 90 градусів:

sin 0 0 =0, cos 0 0 = 1. tg 00 = 0, котангенс від 00 буде невизначеним
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс від 90 0 буде невизначеним

Якщо взяти прямокутні трикутники кути яких від 30 до 90 градусів. Отримаємо:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Зобразимо всі отримані значення як тригонометричної таблиці:

Таблиця синусів, косінусів, тангенсів та котангенсів!

Якщо використовувати формулу приведення, то наша таблиця збільшиться, додадуться значення для кутів до 360 градусів. Виглядатиме вона як:

Також виходячи з властивостей періодичності таблицю можна збільшити, якщо замінимо кути на 0 0 +360 0 *z .... 330 0 +360 0 *z, в якому z є цілим числом. У цій таблиці можна визначити значення всіх кутів, відповідними точками в єдиному колі.

Розберемо наочно використовувати таблицю у рішенні.
Все дуже просто. Оскільки необхідне значення лежить у точці перетину необхідних нам осередків. Наприклад візьмемо cos кута 60 градусів, у таблиці це буде виглядати як:

У підсумковій таблиці основних значень тригонометричних функцій діємо так само. Але в цій таблиці можна дізнатися скільки складе тангенс від кута в 1020 градусів, він = -√3 Перевіримо 1020 0 = 300 0 +360 0 *2. Знайдемо за таблицею.

Таблиця Брадіса. Для синуса, косинуса, тангенсу та котангенсу.

Таблиці Брадіса поділені на кілька частин, складаються з таблиць косинуса та синуса, тангенсу та котангенсу - яка поділена на дві частини (tg кута до 90 градусів і ctg малих кутів).

Синус та косинус



tg кута з 00 закінчуючи 760, ctg кута з 140 закінчуючи 900.



tg до 900 та ctg малих кутів.


Розберемося як користуватися таблицями Брадіса у вирішенні завдань.

Знайдемо позначення sin (позначення в стовпці з лівого краю) 42 хвилини (позначення знаходиться на верхньому рядку). Шляхом перетину шукаємо позначення, воно = 0,3040.

Величини хвилин вказані з проміжком у шість хвилин, як бути, якщо потрібне нам значення потрапить саме в цей проміжок. Візьмемо 44 хвилини, а в таблиці є лише 42. Беремо за основу 42 і скористаємося додатковими стовпцями правій стороніберемо 2 поправку і додаємо до 0,3040 + 0,0006 отримуємо 0,3046.

При sin 47 хв беремо за основу 48 хв і віднімаємо від неї 1 поправку, тобто 0,3057 - 0,0003 = 0,3054

При обчисленні cos працюємо аналогічно sin тільки за основу беремо нижній рядок таблиці. Наприклад cos 20 0 = 0.9397

Значення tg кута до 90 0 і cot малого кута, вірні та поправок у них немає. Наприклад, визначити tg 78 0 37хв = 4,967


а ctg 20 0 13хв = 25,83

Ну, ось ми і розглянули основні тригонометричні таблиці. Сподіваємося, ця інформація була для вас вкрай корисною. Свої питання щодо таблиць, якщо вони з'явилися, обов'язково пишіть у коментарях!

Стінові відбійники - відбійна дошка для захисту стін. Перейдіть за посиланням настінні безкаркасні відбійники (http://www.spi-polymer.ru/otboyniki/) і дізнайтесь докладніше.

Довідкові дані щодо тангенсу (tg x) та котангенсу (ctg x). Геометричне визначення, характеристики, графіки, формули. Таблиця тангенсів та котангенсів, похідні, інтеграли, розкладання до лав. Вирази через комплексні змінні. Зв'язок із гіперболічними функціями.

Геометричне визначення




|BD| - Довжина дуги кола з центром у точці A .
α - кут, виражений у радіанах.

Тангенс ( tg α) - це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, рівна відношенню довжини протилежного катета |BC| до довжини прилеглого катета | AB | .

Котангенс ( ctg α) - це тригонометрична функція, яка залежить від кута між гіпотенузою і катетом прямокутного трикутника, що дорівнює відношенню довжини прилеглого катета |AB| до довжини протилежного катета | BC | .

Тангенс

Де n- ціле.

У західній літературі тангенс позначається так:
.
;
;
.

Графік функції тангенсу, y = tg x


Котангенс

Де n- ціле.

У західній літературі котангенс позначається так:
.
Також прийнято такі позначення:
;
;
.

Графік функції котангенсу, y = ctg x


Властивості тангенсу та котангенсу

Періодичність

Функції y = tg xта y = ctg xперіодичні з періодом π.

Парність

Функції тангенс та котангенс - непарні.

Області визначення та значень, зростання, спадання

Функції тангенс і котангенс безперервні у своїй області визначення (див. доказ безперервності). Основні властивості тангенсу та котангенсу представлені в таблиці ( n- ціле).

y = tg x y = ctg x
Область визначення та безперервність
Область значень -∞ < y < +∞ -∞ < y < +∞
Зростання -
Зменшення -
Екстремуми - -
Нулі, y = 0
Точки перетину з віссю ординат, x = 0 y = 0 -

Формули

Вирази через синус та косинус

; ;
; ;
;

Формули тангенсу та котангенс від суми та різниці



Інші формули легко отримати, наприклад

Твір тангенсів

Формула суми та різниці тангенсів

У цій таблиці представлені значення тангенсів та котангенсів при деяких значеннях аргументу.

Вирази через комплексні числа

Вирази через гіперболічні функції

;
;

Похідні

; .


.
Похідна n-го порядку змінної x від функції :
.
Виведення формул для тангенсу >>>; для котангенсу > > >

Інтеграли

Розкладання до лав

Щоб отримати розкладання тангенсу за ступенями x, потрібно взяти кілька членів розкладання статечний ряддля функцій sin xі cos xі розділити ці багаточлени один на одного. При цьому виходять такі формули.

При .

при .
де B n- Числа Бернуллі. Вони визначаються або з рекурентного співвідношення:
;
;
де.
Або за формулою Лапласа:


Зворотні функції

Зворотними функціямидо тангенсу і котангенсу є арктангенс і арккотангенс відповідно.

Арктангенс, arctg


, де n- ціле.

Арккотангенс, arcctg


, де n- ціле.

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.
Г. Корн, Довідник з математики для науковців та інженерів, 2012.

Схожі статті

2023 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.