1 і 2 чудові межі прикладів рішень. Чудові межі. Приклади рішень

Тепер зі спокійною душею переходимо до розгляду чудових меж.
має вигляд.

Замість змінної х можуть бути різні функції, головне, щоб вони прагнули до 0.

Необхідно обчислити межу

Як видно, ця межадуже схожий на перший чудовий, але це не зовсім так. Взагалі, якщо Ви помічаєте в межі sin, то треба відразу подумати про те, чи можливе застосування першої чудової межі.

Згідно з нашим правилом №1 підставимо замість хнуль:

Отримуємо невизначеність.

Тепер спробуємо самостійно організувати перший чудова межа. Для цього проведемо нехитру комбінацію:

Таким чином ми організовуємо чисельник та знаменник так, щоб виділити 7х. Ось уже і виявилася знайома чудова межа. Бажано при рішенні виділяти його:

Підставимо рішення першого чудового прикладуі отримуємо:

Спрощуємо дріб:

Відповідь: 7/3.

Як бачите, все дуже просто.

Має вигляд , де e = 2,718281828 ... - Це ірраціональне число.

Замість змінної х можуть бути різні функції, головне, щоб вони прагнули до .

Необхідно обчислити межу

Тут ми бачимо наявність ступеня під знаком межі, отже можливе застосування другої чудової межі.

Як завжди скористаємося правилом №1 – підставимо замість х:

Видно, що з х основу ступеня , а показник – 4x > , тобто. отримуємо невизначеність виду:

Скористаємося другою чудовою межею для розкриття нашої невизначеності, але спочатку треба її організувати. Як видно - треба домогтися присутності в показнику, для чого зведемо основу в ступінь 3х, і одночасно в ступінь 1/3x, щоб вираз не змінювався:

Не забуваємо виділяти нашу чудову межу:

Ось такі справді чудові межі!
Якщо у вас залишилися якісь питання щодо першому та другому чудовим межам, то сміливо задавайте їх у коментарях.
Всім наскільки можна відповімо.

Також ви можете порозумітися з педагогом з цієї теми.
Ми раді запропонувати Вам послуги підбору кваліфікованого репетитора у Вашому місті. Наші партнери оперативно підберуть для вас хорошого викладача на вигідних для вас умовах.

Мало інформації? - Ви можете!

Можна писати математичні обчислення у блокнотах. У блокноти з логотипом (http://www.blocnot.ru) індивідуальним писати набагато приємніше.

Першим чудовим межею називають таку рівність:

\begin(equation)\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1 \end(equation)

Так як при $ \ alpha \ to (0) $ маємо $ \ sin \ alpha \ to (0) $, то кажуть, що перша чудова межа розкриває невизначеність виду $ \ frac (0) (0) $. Взагалі кажучи, у формулі (1) замість змінної $\alpha$ під знаком синуса і в знаменнику може бути розташоване будь-яке вираження, - аби виконувалися дві умови:

  1. Висловлювання під знаком синуса й у знаменнику одночасно прагнуть нуля, тобто. є невизначеність виду $\frac(0)(0)$.
  2. Вирази під знаком синуса і знаменнику збігаються.

Часто використовуються також наслідки з першої чудової межі:

\begin(equation) \lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0) )\frac(\arcsin\alpha)(\alpha)=1 \end(equation) \begin(equation) \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1 \end(equation)

На цій сторінці вирішено одинадцять прикладів. Приклад №1 присвячений доказу формул (2)-(4). Приклади №2, №3, №4 та №5 містять рішення з докладними коментарями. Приклади №6-10 містять рішення практично без коментарів, бо докладні пояснення було надано у попередніх прикладах. При вирішенні використовуються деякі тригонометричні формули, які можна знайти.

Зауважу, що наявність тригонометричних функційразом із невизначеністю $\frac (0) (0)$ ще означає обов'язкове застосування першої чудової межі. Іноді буває досить простих тригонометричних перетворень, наприклад, див.

Приклад №1

Довести, що $\lim_(\alpha\to(0))\frac(\tg\alpha)(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arcsin\alpha )(\alpha)=1$, $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$.

а) Так як $ \ tg \ alpha = \ frac (\ sin \ alpha) (\ cos \ alpha) $, то:

$$ \lim_(\alpha\to(0))\frac(\tg(\alpha))(\alpha)=\left|\frac(0)(0)\right| =\lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) $$

Оскільки $\lim_(\alpha\to(0))\cos(0)=1$ і $\lim_(\alpha\to(0))\frac(\sin\alpha)(\alpha)=1$ , то:

$$ \lim_(\alpha\to(0))\frac(\sin(\alpha))(\alpha\cos(\alpha)) =\frac(\displaystyle\lim_(\alpha\to(0)) \frac(\sin(\alpha))(\alpha))(\displaystyle\lim_(\alpha\to(0))\cos(\alpha)) =\frac(1)(1) =1. $$

б) Зробимо заміну $ \ alpha = \ sin (y) $. Оскільки $\sin(0)=0$, то з умови $\alpha\to(0)$ маємо $y\to(0)$. Крім того, існує околиця нуля, в якій $\arcsin\alpha=\arcsin(\sin(y))=y$, тому:

$$ \lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\sin(y)) =\lim_(y\to(0))\frac(1)(\frac(\sin(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\sin(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arcsin\alpha)(\alpha)=1$ доведено.

в) Зробимо заміну $ alpha = tg (y) $. Оскільки $\tg(0)=0$, то умови $\alpha\to(0)$ і $y\to(0)$ еквівалентні. Крім того, існує околиця нуля, в якій $\arctg\alpha=\arctg\tg(y))=y$, тому, спираючись на результати пункту а), матимемо:

$$ \lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=\left|\frac(0)(0)\right| =\lim_(y\to(0))\frac(y)(\tg(y)) =\lim_(y\to(0))\frac(1)(\frac(\tg(y))( y)) =\frac(1)(\displaystyle\lim_(y\to(0))\frac(\tg(y))(y)) =\frac(1)(1) =1. $$

Рівність $\lim_(\alpha\to(0))\frac(\arctg\alpha)(\alpha)=1$ доведено.

Рівності а), б), в) часто використовуються поряд із першою чудовою межею.

Приклад №2

Обчислити межу $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)( x+7))$.

Оскільки $\lim_(x\to(2))\frac(x^2-4)(x+7)=\frac(2^2-4)(2+7)=0$ і $\lim_( x\to(2))\sin\left(\frac(x^2-4)(x+7)\right)=\sin(0)=0$, тобто. і чисельник і знаменник дробу одночасно прагнуть нулю, то тут маємо справу з невизначеністю виду $\frac(0)(0)$, тобто. виконано. Крім того, видно, що вирази під знаком синуса і в знаменнику збігаються (тобто виконано і):

Отже, обидві умови, перелічені на початку сторінки, виконані. На цьому випливає, що застосовна формула , тобто. $\lim_(x\to(2)) \frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x+ 7)) = 1 $.

Відповідь: $\lim_(x\to(2))\frac(\sin\left(\frac(x^2-4)(x+7)\right))(\frac(x^2-4)(x +7)) = 1 $.

Приклад №3

Знайти $\lim_(x\to(0))\frac(\sin(9x))(x)$.

Оскільки $\lim_(x\to(0))\sin(9x)=0$ і $\lim_(x\to(0))x=0$, ми маємо справу з невизначеністю виду $\frac(0 ) (0) $, тобто. виконано. Проте вирази під знаком синуса і знаменнику не збігаються. Тут потрібно підігнати вираз у знаменнику під необхідну форму. Нам необхідно, щоб у знаменнику розташувався вираз $9x$ - тоді стане істинним. По суті, нам не вистачає множника $9$ у знаменнику, який не так вже й складно ввести, - просто домножити вираз у знаменнику на $9$. Природно, що для компенсації домноження на $9$ доведеться відразу на $9$ і розділити:

$$ \lim_(x\to(0))\frac(\sin(9x))(x)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\sin(9x))(9x\cdot\frac(1)(9)) =9\lim_(x\to(0))\frac(\sin (9x))(9x) $$

Тепер вирази у знаменнику та під знаком синуса збіглися. Обидві умови для межі $\lim_(x\to(0))\frac(\sin(9x))(9x)$ виконані. Отже, $\lim_(x\to(0))\frac(\sin(9x))(9x)=1$. А це означає, що:

$$ 9\lim_(x\to(0))\frac(\sin(9x))(9x)=9cdot(1)=9. $$

Відповідь: $\lim_(x\to(0))\frac(\sin(9x))(x)=9$.

Приклад №4

Знайти $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))$.

Оскільки $\lim_(x\to(0))\sin(5x)=0$ і $\lim_(x\to(0))\tg(8x)=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак форма першої чудової межі порушена. Чисельник, що містить $\sin(5x)$, вимагає наявності у знаменнику $5x$. У цій ситуації найпростіше розділити чисельник на $5x$, - і відразу на $5x$ домножити. Крім того, проробимо аналогічну операцію і зі знаменником, домноживши та розділивши $\tg(8x)$ на $8x$:

$$\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x) )$$

Скорочуючи на $x$ і виносячи константу $\frac(5)(8)$ за знак межі, отримаємо:

$$ \lim_(x\to(0))\frac(\frac(\sin(5x))(5x)\cdot(5x))(\frac(\tg(8x))(8x)\cdot(8x )) =\frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))( 8x)) $$

Зверніть увагу, що $\lim_(x\to(0))\frac(\sin(5x))(5x)$ повністю задовольняє вимогам для першої чудової межі. Для відшукання $\lim_(x\to(0))\frac(\tg(8x))(8x)$ застосовна формула :

$$ \frac(5)(8)\cdot\lim_(x\to(0))\frac(\frac(\sin(5x))(5x))(\frac(\tg(8x))(8x )) =\frac(5)(8)\cdot\frac(\displaystyle\lim_(x\to(0))\frac(\sin(5x))(5x))(\displaystyle\lim_(x\to (0))\frac(\tg(8x))(8x)) =\frac(5)(8)\cdot\frac(1)(1) =\frac(5)(8). $$

Відповідь: $\lim_(x\to(0))\frac(\sin(5x))(\tg(8x))=\frac(5)(8)$.

Приклад №5

Знайти $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)$.

Оскільки $\lim_(x\to(0))(\cos(5x)-\cos^3(5x))=1-1=0$ (нагадаю, що $\cos(0)=1$) і $\lim_(x\to(0))x^2=0$, ми маємо справу з невизначеністю виду $\frac(0)(0)$. Однак, щоб застосувати першу чудову межу, слід позбутися косинуса в чисельнику, перейшовши до синусів (щоб потім застосувати формулу) або тангенсів (щоб потім застосувати формулу). Зробити це можна таким перетворенням:

$$\cos(5x)-\cos^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)$$ $$\cos(5x)-\cos ^3(5x)=\cos(5x)\cdot\left(1-\cos^2(5x)\right)=\cos(5x)\cdot\sin^2(5x).$$

Повернемося до межі:

$$ \lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\cos(5x)\cdot\sin^2(5x))(x^2) =\lim_(x\to(0))\left(\cos (5x)\cdot\frac(\sin^2(5x))(x^2)\right) $$

Дроб $\frac(\sin^2(5x))(x^2)$ вже близька до тієї форми, що потрібно для першої чудової межі. Трохи попрацюємо з дробом $\frac(\sin^2(5x))(x^2)$, підганяючи її під першу чудову межу (врахуйте, що вирази в чисельнику і під синусом повинні збігтися):

$$\frac(\sin^2(5x))(x^2)=\frac(\sin^2(5x))(25x^2\cdot\frac(1)(25))=25\cdot\ frac(\sin^2(5x))(25x^2)=25\cdot\left(\frac(\sin(5x))(5x)\right)^2$$

Повернемося до межі:

$$ \lim_(x\to(0))\left(\cos(5x)\cdot\frac(\sin^2(5x))(x^2)\right) =\lim_(x\to(0) ))\left(25\cos(5x)\cdot\left(\frac(\sin(5x))(5x)\right)^2\right)=\=25\cdot\lim_(x\to( 0))\cos(5x)\cdot\lim_(x\to(0))\left(\frac(\sin(5x))(5x)\right)^2 =25\cdot(1)\cdot( 1 ^ 2) = 25. $$

Відповідь: $\lim_(x\to(0))\frac(\cos(5x)-\cos^3(5x))(x^2)=25$.

Приклад №6

Знайти межу $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))$.

Оскільки $\lim_(x\to(0))(1-\cos(6x))=0$ і $\lim_(x\to(0))(1-\cos(2x))=0$, ми маємо справу з невизначеністю $\frac(0)(0)$. Розкриємо її за допомогою першої чудової межі. Для цього перейдемо від косинусів до синусів. Оскільки $1-\cos(2\alpha)=2\sin^2(\alpha)$, то:

$$1-\cos(6x)=2\sin^2(3x);\;1-\cos(2x)=2\sin^2(x).$$

Переходячи в заданій межі до синусів, матимемо:

$$ \lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(2\sin^2(3x))(2\sin^2(x)) =\lim_(x\to(0))\frac(\sin^ 2(3x))(\sin^2(x))=\\ =\lim_(x\to(0))\frac(\frac(\sin^2(3x))((3x)^2)\ cdot(3x)^2)(\frac(\sin^2(x))(x^2)\cdot(x^2)) =\lim_(x\to(0))\frac(\left(\) frac(\sin(3x))(3x)\right)^2\cdot(9x^2))(\left(\frac(\sin(x))(x)\right)^2\cdot(x^ 2)) =9\cdot\frac(\displaystyle\lim_(x\to(0))\left(\frac(\sin(3x))(3x)\right)^2)(\displaystyle\lim_(x \to(0))\left(\frac(\sin(x))(x)\right)^2) =9cdot\frac(1^2)(1^2) =9. $$

Відповідь: $\lim_(x\to(0))\frac(1-\cos(6x))(1-\cos(2x))=9$.

Приклад №7

Обчислити межу $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)$ за умови $\alpha\neq\ beta $.

Детальні пояснення були дані раніше, тут просто відзначимо, що знову є невизначеність $\frac(0)(0)$. Перейдемо від косинусів до синусів, використовуючи формулу

$$\cos\alpha-\cos\beta=-2\sin\frac(\alpha+\beta)(2)\cdot\sin\frac(\alpha-\beta)(2).$$

Використовуючи вказану формулу, отримаємо:

$$ \lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\left|\frac(0)( 0) \right| =\lim_(x\to(0))\frac(-2\sin\frac(\alpha(x)+\beta(x))(2)\cdot\sin\frac(\alpha(x)-\ beta(x))(2))(x^2)=\\=-2\cdot\lim_(x\to(0))\frac(\sin\left(x\cdot\frac(\alpha+\beta) )(2)\right)\cdot\sin\left(x\cdot\frac(\alpha-beta)(2)\right))(x^2) =-2\cdot\lim_(x\to( 0))\left(\frac(\sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x)\cdot\frac(\sin\left(x\cdot\frac) (\alpha-\beta)(2)\right))(x)\right)=\\ =-2\cdot\lim_(x\to(0))\left(\frac(\sin\left(x) \cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\frac(\alpha+\beta)(2)\cdot\frac (\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2))\cdot\frac(\alpha- \beta)(2)\right)=\\=-\frac((\alpha+\beta)\cdot(\alpha-\beta))(2)\lim_(x\to(0))\frac(\ sin\left(x\cdot\frac(\alpha+\beta)(2)\right))(x\cdot\frac(\alpha+\beta)(2))\cdot\lim_(x\to(0)) \frac(\sin\left(x\cdot\frac(\alpha-\beta)(2)\right))(x\cdot\frac(\alpha-\beta)(2)) =-\frac(\ alpha^2-\beta^2)(2)\cdot(1)\cdot(1) =\frac(\beta^2-\alpha^2)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\cos(\alpha(x))-\cos(\beta(x)))(x^2)=\frac(\beta^2-\ alpha^2) (2) $.

Приклад №8

Знайти межу $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)$.

Оскільки $\lim_(x\to(0))(\tg(x)-\sin(x))=0$ (нагадаю, що $\sin(0)=\tg(0)=0$) і $\lim_(x\to(0))x^3=0$, то тут ми маємо справу з невизначеністю виду $\frac(0)(0)$. Розкриємо її так:

$$ \lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\left|\frac(0)(0)\right| =\lim_(x\to(0))\frac(\frac(\sin(x))(\cos(x))-\sin(x))(x^3) =\lim_(x\to( 0))\frac(\sin(x)\cdot\left(\frac(1)(\cos(x))-1\right))(x^3) =\lim_(x\to(0)) \frac(\sin(x)\cdot\left(1-\cos(x)\right))(x^3\cdot\cos(x))=\\ =\lim_(x\to(0)) \frac(\sin(x)\cdot(2)\sin^2\frac(x)(2))(x^3\cdot\cos(x)) =\frac(1)(2)\cdot\ lim_(x\to(0))\left(\frac(\sin(x))(x)\cdot\left(\frac(\sin\frac(x)(2))(\frac(x)( 2))\right)^2\cdot\frac(1)(\cos(x))\right) =\frac(1)(2)\cdot(1)\cdot(1^2)\cdot(1 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to(0))\frac(\tg(x)-\sin(x))(x^3)=\frac(1)(2)$.

Приклад №9

Знайти межу $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))$.

Оскільки $\lim_(x\to(3))(1-\cos(x-3))=0$ і $\lim_(x\to(3))(x-3)\tg\frac(x -3) (2) = 0 $, то є невизначеність виду $ \ frac (0) (0) $. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to 0$). Найпростіше ввести змінну $t=x-3$. Однак задля зручності подальших перетворень (цю вигоду можна помітити під час наведеного нижче рішення) варто зробити таку заміну: $t=\frac(x-3)(2)$. Зазначу, що обидві заміни застосовуються в даному випадку, просто друга заміна дозволить менше працювати з дробами. Оскільки $x\to(3)$, то $t\to(0)$.

$$ \lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=\left|\frac (0)(0)\right| =\left|\begin(aligned)&t=\frac(x-3)(2);\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\cos(2t))(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(2\sin^ 2t)(2t\cdot\tg(t)) =\lim_(t\to(0))\frac(\sin^2t)(t\cdot\tg(t))=\\ =\lim_(t\ to(0))\frac(\sin^2t)(t\cdot\frac(\sin(t))(\cos(t))) =\lim_(t\to(0))\frac(\sin (t)\cos(t))(t) =\lim_(t\to(0))\left(\frac(\sin(t))(t)\cdot\cos(t)\right) =\ lim_(t\to(0))\frac(\sin(t))(t)\cdot\lim_(t\to(0))\cos(t) =1\cdot(1) =1. $$

Відповідь: $\lim_(x\to(3))\frac(1-\cos(x-3))((x-3)\tg\frac(x-3)(2))=1$.

Приклад №10

Знайти межу $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2 ) $.

Знову маємо справу з невизначеністю $\frac(0)(0)$. Перед тим, як переходити до її розкриття, зручно зробити заміну змінною таким чином, щоб нова змінна прямувала до нуля (зверніть увагу, що у формулах змінна $\alpha\to(0)$). Найпростіше ввести змінну $t=\frac(\pi)(2)-x$. Оскільки $x\to\frac(\pi)(2)$, то $t\to(0)$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) =\left|\frac(0)(0)\right| =\left|\begin(aligned)&t=\frac(\pi)(2)-x;\&t\to(0)\end(aligned)\right| =\lim_(t\to(0))\frac(1-\sin\left(\frac(\pi)(2)-t\right))(t^2) =\lim_(t\to(0) ))\frac(1-\cos(t))(t^2)=\\ =\lim_(t\to(0))\frac(2\sin^2\frac(t)(2))( t^2) =2\lim_(t\to(0))\frac(\sin^2\frac(t)(2))(t^2) =2\lim_(t\to(0))\ frac(\sin^2\frac(t)(2))(\frac(t^2)(4)\cdot(4)) =\frac(1)(2)\cdot\lim_(t\to( 0))\left(\frac(\sin\frac(t)(2))(\frac(t)(2))\right)^2 =\frac(1)(2)\cdot(1^2 ) = frac(1)(2). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\left(\frac(\pi)(2)-x\right)^2) = frac (1) (2) $.

Приклад №11

Знайти межі $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)$, $\lim_(x\to\frac(2\) pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)$.

У цьому випадку нам не доведеться використовувати першу чудову межу. Зверніть увагу: як у першому, так і в другому межах присутні лише тригонометричні функції та числа. Найчастіше в таких прикладах вдається спростити вираз, розташоване під знаком межі. При цьому після згаданого спрощення та скорочення деяких співмножників невизначеність зникає. Я навів цей приклад лише з однією метою: показати, що наявність тригонометричних функцій під знаком межі зовсім не обов'язково означає застосування першої чудової межі.

Оскільки $\lim_(x\to\frac(\pi)(2))(1-\sin(x))=0$ (нагадаю, що $\sin\frac(\pi)(2)=1$ ) і $\lim_(x\to\frac(\pi)(2))\cos^2x=0$ (нагадаю, що $\cos\frac(\pi)(2)=0$), то ми маємо справу з невизначеністю виду $ frac (0) (0) $. Однак це зовсім не означає, що нам потрібно використовувати першу чудову межу. Для розкриття невизначеності досить врахувати, що $\cos^2x=1-\sin^2x$:

$$ \lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x) =\left|\frac(0)(0)\right| =\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(1-\sin^2x) =\lim_(x\to\frac(\pi)( 2))\frac(1-\sin(x))((1-\sin(x))(1+\sin(x))) =\lim_(x\to\frac(\pi)(2) )\frac(1)(1+\sin(x)) = frac(1)(1+1) = frac(1)(2). $$

Аналогічний спосіб рішення є й у ґраті Демидовича (№475). Що ж до другої межі, те як і попередніх прикладах цього розділу, ми маємо невизначеність виду $\frac(0)(0)$. Чому вона виникає? Вона виникає тому, що $ \ tg \ frac (2 \ pi) (3) = - \ sqrt (3) $ і $ 2 \ cos \ frac (2 \ pi) (3) = -1 $. Використовуємо ці значення з метою перетворення виразів у чисельнику та у знаменнику. Мета наших дій: записати суму в чисельнику та знаменнику у вигляді твору. До речі, часто в межах аналогічного виду зручна заміна змінної, зроблена з таким розрахунком, щоб нова змінна прямувала до нуля (див., наприклад, приклади №9 або №10 на цій сторінці). Однак у даному прикладів заміні сенсу немає, хоча за бажання заміну змінної $t=x-\frac(2\pi)(3)$ нескладно здійснити.

$$ \lim_(x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1) =\lim_(x\ to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cdot\left(\cos(x)+\frac(1)(2)\right )) =\lim_(x\to\frac(2\pi)(3))\frac(\tg(x)-\tg\frac(2\pi)(3))(2\cdot\left(\) cos(x)-\cos\frac(2\pi)(3)\right))=\\ =\lim_(x\to\frac(2\pi)(3))\frac(\frac(\sin) \left(x-\frac(2\pi)(3)\right))(\cos(x)\cos\frac(2\pi)(3)))(-4\sin\frac(x+\frac) (2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2)) =\lim_(x\to\frac(2\pi)(3 ))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac(x+\frac(2\pi)(3))(2)\ sin\frac(x-\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3)) =\\ =\lim_(x\to\frac (2\pi)(3))\frac(2\sin\frac(x-\frac(2\pi)(3))(2)\cos\frac(x-frac(2\pi)(3) ))(2))(-4\sin\frac(x+\frac(2\pi)(3))(2)\sin\frac(x-\frac(2\pi)(3))(2) \cos(x)\cos\frac(2\pi)(3)) =\lim_(x\to\frac(2\pi)(3))\frac(\cos\frac(x-\frac(2) \pi)(3))(2))(-2\sin\frac(x+\frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi)(3 ))=\\ =\frac(1)(-2\cdot\frac(\sqrt(3))(2)\cdot\left(-\frac(1)(2)\right)\cdot\left( -\frac(1)(2)\right)) =-\frac(4)(\sqrt(3)). $$

Як бачите, нам не довелося застосовувати першу чудову межу. Звичайно, за бажання це можна зробити (див. примітку нижче), але потреби в цьому немає.

Яким буде рішення з використанням першої чудової межі? показати\сховати

При використанні першої чудової межі отримаємо:

$$ \lim_(x\to\frac(2\pi)(3))\frac(\sin\left(x-\frac(2\pi)(3)\right))(-4\sin\frac (x+\frac(2\pi)(3))(2)\sin\frac(x-frac(2\pi)(3))(2)\cos(x)\cos\frac(2\pi )(3))=\\ =\lim_(x\to\frac(2\pi)(3))\left(\frac(\sin\left(x-frac(2\pi)(3)\) right))(x-\frac(2\pi)(3))\cdot\frac(1)(\frac(\sin\frac(x-frac(2\pi)(3))(2)) (\frac(x-\frac(2\pi)(3))(2)))\cdot\frac(1)(-2\sin\frac(x+\frac(2\pi)(3))( 2)\cos(x)\cos\frac(2\pi)(3))\right) =1cdot(1)cdotfrac(1)(-2cdotfrac(sqrt(3)) )(2)\cdot\left(-\frac(1)(2)\right)\cdot\left(-\frac(1)(2)\right)) =-\frac(4)(\sqrt( 3)). $$

Відповідь: $\lim_(x\to\frac(\pi)(2))\frac(1-\sin(x))(\cos^2x)=\frac(1)(2)$, $\lim_( x\to\frac(2\pi)(3))\frac(\tg(x)+\sqrt(3))(2\cos(x)+1)=-\frac(4)(\sqrt( 3)) $.

Ця стаття: «Друга чудова межа» присвячена розкриттю в межах невизначеностей виду:

$ \bigg[\frac(\infty)(\infty)\bigg]^\infty $ і $^\infty $.

Так само такі невизначеності можна розкривати за допомогою логарифмування показово-ступеневої функції, але це вже інший метод рішення, про який буде висвітлено в іншій статті.

Формула та наслідки

Формуладругої чудової межі записується наступним чином: $$ \lim_(x \to \infty) \bigg (1+\frac(1)(x)\bigg)^x = e, \text( де ) e \approx 2.718 $$

З формули випливають слідства, які дуже зручно застосовувати для вирішення прикладів з межами: $$ \lim_(x \to \infty) \bigg (1 + \frac(k)(x) \bigg)^x = e^k, \text( де ) k \in \mathbb(R) $$ $$ \lim_(x \to \infty) \bigg (1 + \frac(1)(f(x)) \bigg)^(f(x)) = e $ $ $$ \lim_(x \to 0) \bigg (1 + x \bigg)^\frac(1)(x) = e $$

Варто зауважити, що друга чудова межа можна застосовувати не завжди до показово-ступеневої функції, а лише у випадках коли основа прагне одиниці. Для цього спочатку в розумі обчислюють межу основи, а потім роблять висновки. Все це буде розглянуто у прикладах рішень.

Приклади рішень

Розглянемо приклади рішень із використанням прямої формули та її наслідків. Також розберемо випадки, у яких формула не потрібна. Достатньо записати лише готову відповідь.

Приклад 1
Знайти межу $ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) $
Рішення

Підставимо нескінченність у межу і подивимося на невизначеність: $$ \lim_(x\to\infty) \bigg(\frac(x+4)(x+3) \bigg)^(x+3) = \bigg(\frac (\infty)(\infty)\bigg)^\infty $$

Знайдемо межу основи: $$ \lim_(x\to\infty) \frac(x+4)(x+3)= \lim_(x\to\infty) \frac(x(1+\frac(4)( x)))(x(1+\frac(3)(x))) = 1 $$

Отримали підставу рівну одиниці, а це вже можна застосувати другий чудовий кордон. Для цього підганим основу функції під формулу шляхом віднімання та додавання одиниці:

$$ \lim_(x\to\infty) \bigg(1 + \frac(x+4)(x+3) - 1 \bigg)^(x+3) = \lim_(x\to\infty) \ bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = $$

Дивимося на друге слідство та записуємо відповідь:

$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$

Якщо не вдається вирішити своє завдання, то надсилайтеїї до нас. Ми надамо докладне рішення. Ви зможете ознайомитися з ходом обчислення та отримати інформацію. Це допоможе вчасно отримати залік у викладача!

Відповідь
$$ \lim_(x\to\infty) \bigg(1 + \frac(1)(x+3) \bigg)^(x+3) = e $$
Приклад 4
Вирішити межу $ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) $
Рішення

Знаходимо межу основи і бачимо, що $ \lim_(x\to\infty) \frac(3x^2+4)(3x^2-2) = 1 $, отже можна застосувати другу чудову межу. Стандартно за планом додаємо та віднімаємо одиницю з основи ступеня:

$$ \lim_(x\to \infty) \bigg (1+\frac(3x^2+4)(3x^2-2)-1 \bigg) ^(3x) = \lim_(x\to \infty ) \bigg (1+\frac(6)(3x^2-2) \bigg) ^(3x) = $$

Підганяємо дріб під формулу 2-го зауваж. межі:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(3x) = $$

Тепер підганяємо ступінь. У ступеня має бути дріб рівний знаменнику основи $ \frac(3x^2-2)(6) $. Для цього помножимо та розділимо ступінь на неї, і продовжимо вирішувати:

$$ = \lim_(x\to \infty) \bigg (1+\frac(1)(\frac(3x^2-2)(6)) \bigg) ^(\frac(3x^2-2) (6) \cdot \frac(6)(3x^2-2)\cdot 3x) = \lim_(x\to \infty) e^(\frac(18x)(3x^2-2)) = $$

Межа, розташована в ступені при $ e $ дорівнює: $ \lim_(x\to \infty) \frac(18x)(3x^2-2) = 0$. Тому продовжуючи рішення маємо:

Відповідь
$$ \lim_(x\to \infty) \bigg (\frac(3x^2+4)(3x^2-2) \bigg) ^(3x) = 1 $$

Розберемо випадки, коли завдання схоже на другу чудову межу, але вирішується без неї.

У статті: «Друга чудова межа: приклади рішень» було розібрано формулу, її наслідки та наведено часті типи завдань на цю тему.



Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.