До чого дорівнює абсолютний показник заломлення n середовища. Закон заломлення світла. Абсолютний та відносний показники (коефіцієнти) заломлення. Повне внутрішнє відображення

Лабораторна робота

Заломлення світла. Вимірювання показника заломлення рідини

за допомогою рефрактометра

Мета роботи: поглиблення уявлень про явище заломлення світла; вивчення методики вимірювання показника заломлення рідких середовищ; вивчення принципу роботи із рефрактометром.

Устаткування: рефрактометр, розчини. кухонної солі, піпетка, м'яка тканина для протирання оптичних деталей приладів.

Теорія

Закони відображення та заломлення світла. Показник заломлення.

На межі поділу середовищ світло змінює напрямок свого поширення. Частина світлової енергії повертається у середу, тобто. відбувається відбиття світла. Якщо друге середовище прозоре, то частина світла за певних умов проходить через межу розділу середовищ, змінюючи при цьому, як правило, напрямок поширення. Це явище називається заломленням світла (Рис. 1).

Мал. 1. Відображення та заломлення світла на плоскій межі розділу двох середовищ.

Напрямок відбитого та заломленого променів при проходженні світла через плоску межу розділу двох прозорих середовищ визначаються законами відбиття та заломлення світла.

Закон відображення світла.Відбитий промінь лежить у одній площині з падаючим променем і нормаллю, відновленої до площині розділу середовищ у точці падіння. Кут падіння дорівнює кутувідображення .

Закон заломлення світла.Заломлений промінь лежить в одній площині з падаючим променем і нормаллю, відновленою до площини поділу середовищ у точці падіння. Відношення синуса кута падіння α до синуса кута заломлення β є величина стала для даних двох середовищ, звана відносним показником заломлення другого середовища по відношенню до першої:

Відносний показник заломлення двох середовищ дорівнює відношенню швидкості поширення світла в першому середовищіv 1 до швидкості світла в другому середовищіv 2:

Якщо світло йде з вакууму в середу, то показник заломлення середовища щодо вакууму називається абсолютним показником заломлення цього середовища і дорівнює відношенню швидкості світла у вакуумі здо швидкості світла в даному середовищі:

Абсолютні показники заломлення завжди більше одиниці; для повітря nприйнято за одиницю.

Відносний показник заломлення двох середовищ можна виразити через їх абсолютні показники n 1 і n 2 :

Визначення показника заломлення рідини

Для швидкого та зручного визначення показника заломлення рідин існує спеціальні оптичні прилади – рефрактометри, основною частиною яких є дві призми (рис. 2): допоміжна Пр. 1та вимірювальна Пр.2.У зазор між призмами наливається рідина, що досліджується.

При вимірюваннях показників можуть бути використані два методи: метод ковзного променя (для прозорих рідин) та метод повного внутрішнього відбиття (для темних, каламутних та пофарбованих розчинів). У цьому роботі використовується перший їх.

У методі ковзного променя світло від зовнішнього джерела проходить крізь межу призми Пр.1,розсіюється на її матовій поверхні АСі далі через шар досліджуваної рідини проникає у призму Пр.2.Матова поверхня стає джерелом променів усіх напрямків, тому вона може спостерігатися крізь межу ЕF призми Пр.2.Проте грань АСможна спостерігати крізь ЕFтільки під кутом, великим деякого граничного мінімального кута i. Величина цього кута однозначно пов'язана з показником заломлення рідини, що знаходиться між призмами, що й стане основною ідеєю конструкції рефрактометра.

Розглянемо проходження світла через межу ЕFнижньої вимірювальної призми Пр.2.Як видно із рис. 2, застосовуючи двічі закон заломлення світла, можна отримати два співвідношення:

Вирішуючи цю систему рівнянь, неважко дійти висновку, що показник заломлення рідини

залежить від чотирьох величин: Q, r, r 1 і i. Проте чи всі вони незалежні. Так наприклад,

r+ s= R , (4)

де R - заломлюючий кут призми Пр.2. Крім того, задавши куту Qмаксимальне значення 90°, з рівняння (1) отримаємо:

Але максимальному значенню кута r , як це видно із рис. 2 та співвідношень (3) і (4), відповідають мінімальні значення кутів i і r 1 , тобто. i min і r min .

Таким чином, показник заломлення рідини для випадку "ковзаючих" променів пов'язаний тільки з кутом. i. При цьому існує мінімальне значення кута i, коли грань АСще спостерігається, т. е. у зору вона здається дзеркально білої. Для менших кутів спостереження грань не видно, й у зору це місце здається чорним. Оскільки зорова труба приладу захоплює порівняно широку кутову зону, то поле зору одночасно спостерігаються світлий і чорний ділянки, межа між якими відповідає мінімальному куту спостереження і однозначно пов'язана з показником заломлення рідини. Використовуючи остаточну розрахункову формулу:

(її висновок опущений) та ряд рідин з відомими показниками заломлення, можна проградуювати прилад, тобто встановити однозначну відповідність між показниками заломлення рідин та кутами i min . Усі наведені формули виведені для променів однієї довжини хвилі.

Світло різних довжин хвиль переломлюватиметься з урахуванням дисперсії призми. Таким чином, при освітленні призми білим світлом межа розділу буде розмита та забарвлена ​​в різні кольори внаслідок дисперсії. Тому в кожному рефрактометрі є компенсатор, який дає змогу усунути результат дисперсії. Він може складатися з однієї або двох призм прямого зору – призм Амічі. Кожна призма Амічі складається з трьох скляних призм з різними показниками заломлення та різною дисперсією, наприклад, крайні призми виготовлені з кронгласу, а середня – з флінтгласу (кронглас та флінтглас – сорти скла). Поворотом призми компенсатора за допомогою спеціального пристрою добиваються різкого без забарвлення зображення межі розділу, положення якої відповідає значенню показника заломлення жовтої лінії натрію λ =5893 Å (призми розраховані так, щоб промені з довжиною хвилі 5893 Å не відчували в них відхилення).

Промені, що пройшли компенсатор, потрапляють в об'єктив зорової труби, далі через призму, що звертає, проходять через окуляр зорової труби в око спостерігача. Схематичний перебіг променів показано на рис. 3.

Шкала рефрактометра відградуйована у значеннях показника заломлення та концентрації розчину сахарози у воді та розташована у фокальній площині окуляра.

експериментальна частина

Завдання 1. Перевірка рефрактометра.

Спрямуйте світло за допомогою дзеркала на допоміжну призму рефрактометра. Піднявши допоміжну призму, нанесіть піпеткою кілька крапель дистильованої води на вимірювальну призму. Опустивши допоміжну призму, досягайте найкращої освітленості поля зору та встановіть окуляр на чітку видимість перехрестя та шкали показників заломлення. Повертаючи камеру вимірювальної призми, отримайте в полі зору межу світла та тіні. Обертаючи головку компенсатора, досягніть усунення забарвлення межі світла і тіні. Поєднайте межу світла та тіні з точкою перехрестя та виміряйте показник заломлення води n ізм . Якщо рефрактометр справний, то для дистильованої води має вийти значення n 0 = 1,333, якщо показання відрізняються від цього значення, потрібно визначити виправлення Δn= n ізм - 1333, яку потім слід враховувати при подальшій роботі з рефрактометром. Поправки внесіть до таблиці 1.

Таблиця 1.

n 0

n ізм

Δ n

Н 2 Про

Завдання 2. Визначення показника заломлення рідини.

    Визначте показники заломлення розчинів відомих концентрацій із урахуванням знайденої поправки.

Таблиця 2.

З, про. %

n ізм

n іст

    Побудуйте графік залежності показника заломлення розчинів кухонної солі від концентрації за отриманими результатами. Зробіть висновок про перебіг залежності n від; зробіть висновки щодо точності вимірювань на рефрактометрі.

    Візьміть розчин солі невідомої концентрації З x , визначте його показник заломлення та за графіком знайдіть концентрацію розчину.

    Заберіть робоче місце, обережно протріть призми рефрактометрів вологою чистою ганчірочкою.

Контрольні питання

    Відображення та заломлення світла.

    Абсолютний та відносний показникизаломлення середовища.

    Принцип роботи рефрактометрів. Метод ковзного променя.

    Схематичний перебіг променів у призмі. Навіщо необхідні призми компенсатора?

Поширення, відображення та заломлення світла

Природа світла – електромагнітна. Одним із доказів цього є збіг величин швидкостей електромагнітних хвиль та світла у вакуумі.

У однорідному середовищі світло поширюється прямолінійно. Це твердження називається законом прямолінійного поширення світла. Досвідченим доказом цього закону є різкі тіні, що даються точковими джерелами світла.

Геометричну лінію, що вказує напрямок поширення світла, називають світловим променем. В ізотропному середовищі світлові промені спрямовані перпендикулярно до хвильового фронту.

Геометричне місце точок середовища, що коливаються в однаковій фазі, називають хвильовою поверхнею, а безліч точок, до яких дійшло коливання на даний момент часу, - фронтом хвилі. Залежно від виду фронту хвилі розрізняють плоскі та сферичні хвилі.

Для пояснення процесу поширення світла використовують загальний принципхвильової теорії про переміщення фронту хвилі у просторі, запропонований голландським фізиком Х.Гюйгенсом. Згідно з принципом Гюйгенса кожна точка середовища, до якої доходить світлове збудження, є центром вторинних сферичних хвиль, що поширюються також зі швидкістю світла. Поверхня, що огинає фронти цих вторинних хвиль, дає положення фронту хвилі, що дійсно розповсюджується в цей момент часу.

Необхідно розрізняти світлові пучки та світлові промені. Світловий пучок – це частина світлової хвилі, яка переносить світлову енергію у заданому напрямку. При заміні світлового пучка описуючим його світловим променем останній потрібно брати збігаються з віссю досить вузького, але має при цьому кінцеву ширину (розміри поперечного перерізу значно більше за довжину хвилі), світлового пучка.

Розрізняють розбіжні, схожі та квазіпаралельні світлові пучки. Часто використовують терміни пучок світлових променів чи навіть світлові промені, розуміючи під цим сукупність світлових променів, що описують реальний світловий пучок.

Швидкість світла у вакуумі c = 3108 м/с є універсальною константою і не залежить від частоти. Вперше експериментально швидкість світла було визначено астрономічним методом датським ученим О.Ремером. Точніше швидкість світла виміряв А.Майкельсон.

У речовині швидкість світла менша, ніж у вакуумі. Відношення швидкості світла у вакуумі до його швидкості у цьому середовищі називають абсолютним показником заломлення середовища:

де з – швидкість світла у вакуумі, v – швидкість світла у цьому середовищі. Абсолютні показники заломлення всіх речовин більше одиниці.

При поширенні світла у середовищі він поглинається і розсіюється, але в межі поділу середовищ – відбивається і заломлюється.

Закон відбиття світла: промінь, що падає, промінь відбитий і перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать в одній площині; кут відбиття g дорівнює куту падіння a (рис. 1). Цей закон збігається із законом відображення хвиль будь-якої природи і може бути отриманий як наслідок принципу Гюйгенса.

Закон заломлення світла: падаючий промінь, заломлений промінь та перпендикуляр до межі розділу двох середовищ, відновлений у точці падіння променя, лежать в одній площині; відношення синуса кута падіння до синуса кута заломлення для даної частоти світла є постійна величина, звана відносним показником заломлення другого середовища відносно першої:

Експериментально встановлений закон заломлення світла пояснюється виходячи з принципу Гюйгенса. Відповідно до хвильових уявлень заломлення є наслідком зміни швидкості поширення хвиль при переході з одного середовища в інше, а фізичний сенс відносного показника заломлення – це відношення швидкості поширення хвиль у першому середовищі v1 до швидкості їх поширення у другому середовищі

Для середовищ з абсолютними показниками заломлення n1 і n2 відносний показник заломлення другого середовища щодо першої дорівнює відношенню абсолютного показника заломлення другого середовища до абсолютного показника заломлення першого середовища:

Те середовище, яке має великий показник заломлення, називається оптично більш щільним, швидкість поширення світла в ньому менша. Якщо світло переходить з оптично більш щільного середовища в оптично менш щільне, то при деякому куті падіння a0 кут заломлення має стати рівним p/2. Інтенсивність заломленого променя у разі стає дорівнює нулю. Світло, що падає на межу розділу двох середовищ, повністю відбивається від неї.

Кут падіння a0, при якому настає повне внутрішнє відбиття світла, називається граничним кутом повного внутрішнього відбиття. За всіх кутів падіння, рівних і великих a0, відбувається повне відбиття світла.

Величина граничного кута виходить із співвідношення Якщо n2 = 1 (вакуум), то

2 Показник заломлення речовини - величина, що дорівнює відношенню фазових швидкостей світла (електромагнітних хвиль) у вакуумі та в даному середовищі. Також про показник заломлення говорять для будь-яких інших хвиль, наприклад, звукових.

Показник заломлення залежить від властивостей речовини і довжини хвилі випромінювання, для деяких речовин показник заломлення досить сильно змінюється при зміні частоти електромагнітних хвиль від низьких частот до оптичних і далі, а також може різкіше змінюватися в певних областях частотної шкали. За умовчанням зазвичай мають на увазі оптичний діапазон або діапазон, що визначається контекстом.

Існують оптично анізотропні речовини, у яких показник заломлення залежить від напряму та поляризації світла. Такі речовини досить поширені, зокрема, це всі кристали з досить низькою симетрією кристалічних ґрат, а також речовини, піддані механічній деформації.

Показник заломлення можна виразити як корінь із твору магнітної та діелектричних проникностей середовища

(треба при цьому враховувати, що значення магнітної проникності і показника абсолютної діелектричної проникності для діапазону частот, що цікавить - наприклад, оптичного, можуть дуже сильно відрізнятися від статичного значення цих величин).

Для вимірювання коефіцієнта заломлення використовують ручні та автоматичні рефрактометри. При використанні рефрактометра для визначення концентрації цукру в водному розчиніприлад називають сахариметр.

Відношення синуса кута падіння () променя до синуса кута заломлення () при переході променя з середовища A до середовища B називається відносним показником заломлення для цієї пари середовищ.

Величина nє відносний показник заломлення середовища по відношенню до середовища А, аn" = 1/nє відносний показник заломлення середовища А по відношенню до середовища В.

Ця величина, за інших рівних умов, зазвичай менше одиниці при переході променя з середовища більш щільного в середовище менш щільне, і більше одиниці при переході променя з середовища менш щільного в середовище більш щільного (наприклад, з газу або вакууму в рідину або тверде тіло ). Є винятки з цього правила, і тому прийнято називати середовище оптично більш менш щільним, ніж інше (не плутати з оптичною щільністю як мірою непрозорості середовища).

Промінь, що падає з безповітряного простору на поверхню якого-небудь середовища, переломлюється сильніше, ніж при падінні на неї з іншого середовища А; показник заломлення променя, що падає на середовище безповітряного простору, називається його абсолютним показником заломлення або просто показником заломлення даного середовища, це і є показник заломлення, визначення якого дано на початку статті. Показник заломлення будь-якого газу, в тому числі повітря, за звичайних умов набагато менше, ніж показники заломлення рідин або твердих тіл, тому приблизно (і з порівняно непоганою точністю) про абсолютний показник заломлення можна судити за показником заломлення щодо повітря.

Мал. 3. Принцип дії інтерференційного рефрактометра. Промінь світла поділяють так, щоб дві його частини пройшли через кювети довжиною l заповнені речовинами з різними показниками заломлення. На виході з кювет промені набувають певної різниці ходу і, будучи зведені разом, дають на екрані картину інтерференційних максимумів і мінімумів з порядками (схематично показано праворуч). Різниця показників заломлення Dn = n2 -n1 = kl / 2, де - довжина хвилі світла.

Рефрактометри називаються прилади, що служать для вимірювання показника заломлення речовин. Принцип дії рефрактометра ґрунтується на явищі повного відображення. Якщо на межу розділу двох середовищ з показниками заломлення і з середовища більш оптично щільною падає розсіяний пучок світла, то починаючи з деякого кута падіння, промені не входять у друге середовище, а повністю відбиваються від межі розділу в першому середовищі. Цей кут називається граничним кутом повного відбиття. На рис.1 показано поведінку променів при падінні деяку струму цієї поверхні. Промінь йде під граничним кутом. З закону заломлення можна визначити: , (оскільки).

Величина граничного кута залежить від відносного показника заломлення двох середовищ. Якщо промені, відбиті від поверхні, направити на лінзу, що збирає, то у фокальній площині лінзи можна бачити межу світла і півтіні, причому, положення цієї межі залежить від величини граничного кута, а отже, і від показника заломлення. Зміна показника заломлення однієї із середовищ тягне у себе зміна становища кордону розділу. Кордон розділу світла і тіні може бути індикатором щодо показника заломлення, що й використовується в рефрактометрах.

Цей метод визначення показника заломлення називається методом повного відображення

Крім методу повного відбиття в рефрактометрах використовується метод ковзного променя.

У цьому методі розсіяний пучок світла потрапляє на кордон із середовища менш оптично щільного під всілякими кутами (рис. 2). Променю ковзному поверхнею (), відповідає - граничний кут заломлення (промінь на рис.2). Якщо на шляху променів (), заломлених на поверхні, поставити лінзу, то у фокальній площині лінзи ми також побачимо різку межу світла та тіні. Оскільки умови, що визначають величину граничного кута, в обох методах однакові, те й положення межі розділу збігається. Обидва методи рівноцінні, але метод повного відображення дозволяє вимірювати показник заломлення непрозорих речовин.

Хід променів у

У рефрактометрі використовується джерело 3 білого світла. Внаслідок дисперсії при проходженні світлом призм 1 і 2 межа світла та тіні виявляється забарвленою. Щоб уникнути цього перед об'єктивом зорової труби поміщають компенсатор 4. Він складається з двох однакових призм, кожна з яких склеєна з трьох призм, що маютьрізним показникомзаломлення. Призми підбирають так, щоб монохроматичний промінь із довжиною хвилі

= 589,3 мкм.

(Довжина хвилі жовтої лінії натрію) не відчував після проходження компенсатора відхилення. Промені з іншими довжинами хвиль відхиляються призмами у різних напрямках. Переміщуючи призми компенсатора за допомогою спеціальної рукоятки, домагаються того, щоб межа світла і темряви стала більш чіткою.

Промені світла, пройшовши компенсатор, потрапляють в об'єктив 6 зорової труби. Зображення межі розділу світло – тінь у окуляр 7 зорової труби. Одночасно в окуляр розглядається шкала 8. Так як граничний кут заломлення та граничний кут повного відображення залежать від показника заломлення рідини, то на шкалі рефрактометра одразу нанесено значення цього показника заломлення.

Оптична система рефрактометра містить поворотну призму 5. Вона дозволяє розташувати вісь зорової труби перпендикулярно призмам 1 і 2, що робить спостереження більш зручним.

Оптика одна із старих розділів фізики. З часів античної Греції багатьох філософів цікавили закони руху та поширення світла в різних прозорих матеріалах, таких як вода, скло, алмаз і повітря. У цій статті розглянуто явище заломлення світла, акцентовано увагу на показнику заломлення повітря.

Ефект заломлення світлового променя Кожен у своєму житті стикався сотні разів із проявом цього ефекту, коли дивився на дно водойми або на склянку з водою з поміщеним у неї якимось предметом. При цьому водоймище здавалося не таким глибоким, яким воно було насправді, а предмети в склянці з водою виглядали деформованими або зламаними.Явище заломлення полягає в зламі його прямолінійної траєкторії, коли він перетинає поверхню розділу двох прозорих матеріалів. Узагальнення велика кількістьданих експериментів, початку XVII:

століття голландець Віллеброрд Снелл отримав математичний вираз, який точно описував це явище. Цей вираз прийнято записувати в

Тут n 1 , n 2 - абсолютні показники заломлення світла у відповідному матеріалі, θ 1 і θ 2 - кути між падаючим і заломленим променями і перпендикуляром до площини розділу середовищ, проведений через точку перетину променя і цієї площини.

Ця формула зветься закону Снелла або Снелла-Декарта (саме француз записав її у представленому вигляді, голландець же використовував не синуси, а одиниці довжини).

Крім цієї формули, явище заломлення описується ще одним законом, який має геометричний характер. Він полягає в тому, що зазначений перпендикуляр до площини і два промені (заломлений і падаючий) лежать в одній площині.

Абсолютний показник заломлення

Ця величина входить у формулу Снелла, та її значення грає важливу роль. Математично показнику заломлення n відповідає формула:

Символ c – це швидкість електромагнітних хвиль у вакуумі. Вона становить приблизно 3*108 м/с. Величина v - це швидкість руху світла серед. Таким чином, показник заломлення відображає величину уповільнення світла в середовищі безповітряного простору.

З формули вище випливає два важливі висновки:

  • величина n завжди більше 1 (для вакууму вона дорівнює одиниці);
  • це безрозмірна величина.

Наприклад, показник заломлення повітря дорівнює 1,00029, а води він становить 1,33.

Показник заломлення не є постійною величиною для конкретного середовища. Він залежить від температури. Більше того, для кожної частоти електромагнітної хвилівін має значення. Так, наведені вище цифри відповідають температурі 20 o C та жовтій частині видимого спектру (довжина хвилі – близько 580-590 нм).

Залежність величини n від частоти світла проявляється у розкладанні білого світла призмою на низку кольорів, і навіть у освіті веселки на небі під час зливи.

Показник заломлення світла у повітрі

Вище було наведено його значення (1,00029). Оскільки показник заломлення повітря відрізняється лише четвертому знаку після коми від нуля, то вирішення практичних завдань його вважатимуться рівним одиниці. Невелика відмінність n для повітря від одиниці говорить про те, що світло практично не сповільнюється молекулами повітря, що пов'язане з відносно невисокою щільністю. Так, середнє значення щільності повітря 1,225 кг/м 3 , тобто він більш ніж у 800 разів легший за прісну воду.

Повітря – це оптично нещільне середовище. Сам процес уповільнення швидкості світла в матеріалі носить квантовий характер і пов'язаний з актами поглинання та випромінювання фотонів атомами речовини.

Зміна складу повітря (наприклад, підвищення вмісту в ньому водяної пари) та зміна температури призводять до істотним змінампоказника заломлення. Яскравим прикладомє ефект міражу в пустелі, який виникає через відмінність показників заломлення повітряних шарів з різними температурами.

Кордон розділу скло - повітря

Скло є набагато більш щільним середовищем, ніж повітря. Його абсолютний показникзаломлення лежить у межах від 1,5 до 1,66 залежно від сорту скла. Якщо взяти середнє значення 1,55, тоді заломлення променя на межі повітря – скло можна розрахувати за формулою:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1,55.

Розмір n 21 називається відносним показником заломлення повітря - скло. Якщо промінь виходить зі скла в повітря, тоді слід користуватися наступною формулою:

sin(θ 1)/sin(θ 2) = n 2 /n 1 = n 21 = 1/1,55 = 0,645.

Якщо кут заломленого променя в останньому випадку дорівнюватиме 90 o тоді йому відповідний, називається критичним. Для кордону скло - повітря він дорівнює:

θ 1 = arcsin(0,645) = 40,17 o .

Якщо промінь падатиме на кордон скло - повітря з більшими кутами, ніж 40,17 o , то він відобразиться повністю назад у скло. Це так і називається " повне внутрішнє відбиток " .

Критичний кут існує тільки при русі променя із щільного середовища (зі скла в повітря, але не навпаки).

Урок 25/III-1 Поширення світла у різних середовищах. Заломлення світла межі розділу двох середовищ.

    Вивчення нового матеріалу.

Досі ми розглядали поширення світла в одному середовищі, як завжди – у повітрі. Світло може поширюватися в різних середовищах: переходити з одного середовища до іншого; у точках падіння промені не лише відбиваються від поверхні, а й частково проходять через неї. Такі переходи викликають чимало гарних та цікавих явищ.

Зміна напряму поширення світла, що проходить через кордон двох середовищ, називають заломленням світла.

Частина світлового променя, падаючого межу розділу двох прозорих середовищ, відбивається, а частина перетворюється на іншу середу. При цьому напрям світлового променя, який перейшов в інше середовище, змінюється. Тому явище називається заломленням, а промінь – заломленим.

1 - падаючий промінь

2 - відбитий промінь

3 – заломлений промінь α β

ГО 1 – межа поділу двох середовищ

MN - перпендикуляр ПРО 1

Кут, утворений променем та перпендикуляром до межі розділу двох середовищ, опущеним у точку падіння променя, називається кутом заломлення γ (гама).

Світло у вакуумі поширюється зі швидкістю 300 000 км/с. У будь-якому середовищі швидкість світла завжди менша, ніж у вакуумі. Тому при переході світла з одного середовища до іншого, його швидкість зменшується і це є причиною заломлення світла. Чим менше швидкість поширення світла в даному середовищі, тим більшою оптичною щільністю має це середовище. Так, наприклад, повітря має більше оптичну щільність, ніж вакуум, тому що в повітрі швидкість світла дещо менша, ніж у вакуумі. Оптична щільність води більша, ніж оптична щільність повітря, оскільки швидкість світла у повітрі більша, ніж у воді.

Чим більше відрізняються оптичні щільності двох середовищ, тим більше світло переломлюється на межі їх розділу. Чим більше змінюється швидкість світла межі розділу двох середовищ, тим більше воно заломлюється.

Для кожної прозорої речовини існує така важлива фізична характеристикаяк показник заломлення світла n.Він показує, у скільки разів швидкість світла в цій речовині менша, ніж у вакуумі.

Показник заломлення світла

Речовина

Речовина

Речовина

Кам'яна сіль

Скіпідар

Кедрова олія

Спирт етиловий

Гліцерин

Плексиглас

Скло (легке)

Сірковуглець

Співвідношення значень кута падіння та кута заломлення залежить від оптичної щільності кожної із середовища. Якщо промінь світла переходить із середовища з меншою оптичною щільністю в середовище з більшою оптичною щільністю, то кут заломлення буде меншим, ніж кут падіння. Якщо промінь світла переходить із середовища з більшою оптичною щільністю, то кут заломлення буде меншим, ніж кут падіння. Якщо промінь світла переходить із середовища з більшою оптичною щільністю в середовище з меншою оптичною щільністю, то кут заломлення більше, ніж кут падіння.

Тобто якщо n 1 γ; якщо n 1 >n 2 то α<γ.

Закон заломлення світла :

    Промінь, що падає, промінь заломлений і перпендикуляр до межі розділу двох середовищ у точці падіння променя, лежать в одній площині.

    Співвідношення кута падіння та кута заломлення визначаються формулою.

де - синус кута падіння, - синус кута заломлення.

Значення синусів та тангенсів для кутів 0 – 900

Градуси

Градуси

Градуси

Закон заломлення світла вперше сформулював голландський астроном і математик В. Снеліус близько 1626, професор Лейденського університету (1613).

Для XVI століття оптика була ультрасучасною наукою. Зі скляної кулі, наповненої водою, якою користувалися як лінзою, виникло збільшувальне скло. А з нього винайшли підзорну трубу та мікроскоп. На той час Нідерландам були потрібні підзорні труби для розгляду берега і своєчасно втекти від ворогів. Саме оптика забезпечила успіх та надійність навігації. Тому в Нідерландах дуже багато вчених цікавилося саме оптикою. Голландець Скель Ван Ройєн (Снеліус) спостерігав, як тонкий промінь світла відбивався в дзеркалі. Він вимірював кут падіння та кут відображення і встановив: кут відображення дорівнює куту падіння. Йому належать закони відображення світла. Він вивів закон заломлення світла.

Розглянемо закон заломлення світла.

У ньому - відносний показник заломлення другої середовища щодо першої, у разі, коли другий має велику оптичну щільність. Якщо світло заломлюється і проходить із середовище з меншою оптичною щільністю, тоді α< γ, тогда

Якщо першим середовищем є вакуум, то n 1 =1 .

Цей показник називають абсолютним показником заломлення другого середовища:

де - швидкість світла у вакуумі, швидкість світла у цьому середовищі.

Наслідком заломлення світла в атмосфері Землі є той факт, що ми бачимо Сонце і зірки трохи вищі за їх реальне становище. Заломленням світла можна пояснити виникнення міражів, веселки… Явище заломлення світла є основою принципу чисельних оптичних пристроїв: мікроскопа, телескопа, фотоапарата.

Світло за своєю природою поширюється у різних середовищах із різними швидкостями. Чим щільніше середовище, тим нижча швидкість поширення у ній світла. Була встановлена ​​відповідна міра, що стосується як щільності матеріалу, так і швидкості поширення світла в цьому матеріалі. Цей захід назвали показником заломлення. Для будь-якого матеріалу показник заломлення вимірюється щодо швидкості розповсюдження світла у вакуумі (вакуум часто називають вільним простором). Наступна формула описує це ставлення.

Що показник заломлення матеріалу, то він щільніше. Коли промінь світла проникає з одного матеріалу до іншого (з іншим показником заломлення), кут заломлення відрізнятиметься від кута падіння. Промінь світла, що проникає в середу з меншим показником заломлення, виходитиме з кутом, більшим від кута падіння. Промінь світла, що проникає в середу з великим показником заломлення, виходитиме з кутом, меншим від кута падіння. Це показано на рис. 3.5.

Мал. 3.5.а. Промінь, що проходить із середовища з високим N 1 у середу з низьким N 2
Мал. 3.5.б. Промінь, що проходить із середовища з низьким N 1 у середу з високим N 2

В даному випадку 1 є кутом падіння, а 2 - кутом заломлення. Нижче перераховані деякі типові показники заломлення.

Цікаво відзначити, що для рентгенівських променів показник заломлення скла завжди менше, ніж для повітря, тому вони при проходженні з повітря в скло відхиляють убік від перпендикуляра, а не перпендикуляра, як світлові промені.

У курсі фізики 8 класу ви познайомилися з явищем спотворення світла. Тепер ви знаєте, що світло є електромагнітні хвилі певного діапазону частот. Спираючись на знання про природу світла, ви зможете зрозуміти фізичну причину заломлення та пояснити багато інших пов'язаних з ним світлових явищ.

Мал. 141. Переходячи з одного середовища в інше, промінь заломлюється, тобто змінює напрямок поширення

Відповідно до закону заломлення світла (рис. 141):

  • промені падаючий, заломлений і перпендикуляр, проведений до межі розділу двох середовищ у точці падіння променя, лежать в одній площині; відношення синуса кута падіння до синуса кута заломлення є постійна величина для даних двох середовищ

де n 21 - відносний показник заломлення другого середовища щодо першої.

Якщо промінь переходить у якесь середовище з вакууму, то

де n – абсолютний показник заломлення (або просто показник заломлення) другого середовища. І тут першою «середовищем» є вакуум, абсолютний показник якого прийнято за одиницю.

Закон заломлення світла був відкритий досвідченим шляхом голландським ученим Віллебордом Снелліусом в 1621 р. Закон був сформульований в трактаті з оптики, який знайшли в паперах вченого після його смерті.

Після відкриття Снелліуса декількома вченими була висунута гіпотеза про те, що заломлення світла обумовлено зміною його швидкості при переході через кордон двох середовищ. Справедливість цієї гіпотези була підтверджена теоретичними доказами, виконаними незалежно один від одного французьким математиком П'єром Ферма (1662) і голландським фізиком Християном Гюйгенсом (1690). Різними шляхами вони дійшли одного і того ж результату, довівши, що

  • відношення синуса кута падіння до синуса кута заломлення є величина постійна для даних двох середовищ, що дорівнює відношенню швидкостей світла в цих середовищах:

З рівняння (3) випливає, що якщо кут заломлення β менше кута падіння а, то світло даної частоти у другому середовищі поширюється повільніше, ніж у першій, тобто V 2

Взаємозв'язок величин, що входять до рівняння (3), послужила вагомою основою появи ще одного формулювання визначення відносного показника заломлення:

  • відносним показником заломлення другого середовища щодо першої називається фізична величина, що дорівнює відношенню швидкостей світла в цих середовищах:

n 21 = v 1 / v 2 (4)

Нехай промінь світла переходить із вакууму в якесь середовище. Замінивши в рівнянні (4) v1 швидкість світла у вакуумі з, а v 2 швидкість світла в середовищі v, отримаємо рівняння (5), що є визначенням абсолютного показника заломлення:

  • абсолютним показником заломлення середовища називається фізична величина, що дорівнює відношенню швидкості світла у вакуумі до швидкості світла в даному середовищі:

Відповідно до рівнянь (4) і (5), n 21 показує, скільки разів змінюється швидкість світла при його переході з одного середовища в інше, a n - при переході з вакууму в середу. У цьому полягає фізичний зміст показників заломлення.

Значення абсолютного показника заломлення будь-якої речовини більше одиниці (у цьому переконують дані, що містяться в таблицях фізичних довідників). Тоді, згідно з рівнянням (5), c/v > 1 і > v, тобто швидкість світла в будь-якій речовині менше швидкості світла у вакуумі.

Не наводячи строгих обгрунтувань (вони складні і громіздкі), відзначимо, що причиною зменшення швидкості світла при переході з вакууму в речовину є взаємодія світлової хвилі з атомами і молекулами речовини. Чим більша оптична щільність речовини, тим сильніша ця взаємодія, тим менша швидкість світла і тим більший показник заломлення. Таким чином, швидкість світла в середовищі та абсолютний показник заломлення визначаються властивостями цього середовища.

За числовими значеннями показників заломлення речовин можна порівнювати їх оптичні густини. Наприклад, показники заломлення різних сортівскла лежать у межах від 1,470 до 2,040, а показник заломлення води дорівнює 1,333. Значить, скло - середовище оптично щільніше, ніж вода.

Звернемося до рисунка 142, за допомогою якого можна пояснити, чому на межі двох середовищ зі зміною швидкості змінюється напрямок поширення світлової хвилі.

Мал. 142. При переході світлових хвиль з повітря у воду швидкість світла зменшується, фронт хвилі, а разом з ним та її швидкість змінюють напрямок

На малюнку зображено світлова хвиля, що переходить з повітря у воду і падаюча на межу розділу цих середовищ під кутом а. У повітрі світло поширюється зі швидкістю v 1 , а воді - з меншою швидкістю v 2 .

Першою до кордону доходить точка хвилі. За проміжок часу Δt точка В, переміщаючись у повітрі з колишньою швидкістю v 1 досягне точки В". За той же час точка А, переміщаючись у воді з меншою швидкістю v 2 , пройде меншу відстань, досягнувши тільки точки А". При цьому так званий фронт хвилі А "В" у воді виявиться повернутим на деякий кут по відношенню до фронту хвилі АВ в повітрі. А вектор швидкості (який завжди перпендикулярний до фронту хвилі і збігається з напрямом її розповсюдження) повертається, наближаючись до прямої ГО", перпендикулярної до межі розділу середовищ. При цьому кут заломлення β виявляється меншим за кут падіння α. Так відбувається заломлення світла.

З малюнка видно також, що при переході в інше середовище і поворот хвильового фронту змінюється і довжина хвилі: при переході в оптично більш щільне середовище зменшується швидкість, довжина хвилі теж зменшується (λ 2< λ 1). Это согласуется и с известной вам формулой λ = V/v, из которой следует, что при неизменной частоте v (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.

Запитання

  1. Яка з двох речовин оптично більш щільна?
  2. Як визначаються показники заломлення через швидкість світла серед?
  3. Де світло поширюється із найбільшою швидкістю?
  4. Яка фізична причина зменшення швидкості світла при його переході з вакууму в середу або з середовища з меншою оптичною щільністю в середу з більшою?
  5. Чим визначаються (тобто від чого залежать) абсолютний показник заломлення середовища та швидкість світла в ньому?
  6. Розкажіть, що ілюструє рисунок 142.

Вправа



Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.