Інтегрування правильних раціональних дробів прикладів. Інтегрування найпростіших (елементарних) дробів

Як я вже зазначав, в інтегральному обчисленні немає зручної формули для інтегрування дробу. І тому спостерігається сумна тенденція: чим «навороченіший» дріб, тим важче знайти від нього інтеграл. У зв'язку з цим доводиться вдаватися до різних хитрощів, про які я зараз і розповім. Підготовлені читачі можуть одразу скористатися змістом:

  • Метод підведення під знак диференціалу для найпростіших дробів

Метод штучного перетворення чисельника

Приклад 1

До речі, розглянутий інтеграл можна вирішити і шляхом заміни змінної, позначаючи , але запис рішення вийде значно довшим.

Приклад 2

Знайти невизначений інтеграл. Виконати перевірку.

Це приклад для самостійного рішення. Слід зазначити, що тут метод заміни змінної не пройде.

Увага, важливо! Приклади №№1,2 є типовими та зустрічаються часто. У тому числі подібні інтеграли нерідко виникають у ході вирішення інших інтегралів, зокрема при інтегруванні ірраціональних функцій (коренів).

Розглянутий прийом працює і у випадку, якщо старший ступінь чисельника, більший за старший ступінь знаменника.

Приклад 3

Знайти невизначений інтеграл. Виконати перевірку.

Починаємо підбирати чисельник.

Алгоритм підбору чисельника приблизно такий:

1) У чисельнику мені потрібно організувати, але там. Що робити? Покладаю в дужки і множу на : .

2) Тепер намагаюся розкрити ці дужки, що вийде? . Хмм ... вже краще, але ніякої двійки при спочатку в чисельнику немає. Що робити? Потрібно домножити на:

3) Знову розкриваю дужки: . А ось і перший успіх! Потрібний вийшов! Але проблема в тому, що з'явився зайвий доданок. Що робити? Щоб вираз не змінилося, я зобов'язаний додати до своєї конструкції те саме:
. Жити полегшало. А чи не можна ще раз у чисельнику організувати?

4) Можна. Пробуємо: . Розкриваємо дужки другого доданку:
. Вибачте, але в мене взагалі було на попередньому кроці, а не. Що робити? Потрібно домножити другий доданок на:

5) Знову для перевірки розкриваю дужки у другому доданку:
. Ось тепер нормально: отримано із остаточної конструкції пункту 3! Але знову є маленьке «але», з'явилося зайве доданок, отже, я повинен додати до свого виразу:

Якщо все виконано правильно, то при розкритті всіх дужок у нас має вийти вихідний чисельник підінтегральної функції. Перевіряємо:
Гуд.

Таким чином:

Готово. В останньому доданку я застосував метод підведення функції під диференціал.

Якщо знайти похідну від відповіді та привести вираз до спільному знаменнику, то в нас вийде точно вихідна підінтегральна функція . Розглянутий метод розкладання на суму – є не що інше, як зворотна діядо приведення висловлювання до спільного знаменника.

Алгоритм підбору чисельника в подібних прикладах краще виконувати на чернетці. За деяких навичок виходитиме і подумки. Пригадую рекордний випадок, коли я виконував підбір для 11-го ступеня, і розкладання чисельника зайняло майже два рядки Верда.

Приклад 4

Знайти невизначений інтеграл. Виконати перевірку.

Це приклад самостійного рішення.

Метод підведення під знак диференціалу для найпростіших дробів

Переходимо до розгляду такого типу дробів.
, , , (коефіцієнти і не дорівнюють нулю).

Насправді пара випадків з арксинусом та арктангенсом вже прослизала на уроці Метод заміни змінної у невизначеному інтегралі. Вирішуються такі приклади способом підведення функції під знак диференціала та подальшим інтегруванням за допомогою таблиці. Ось ще типові приклади з довгим та високим логарифмом:

Приклад 5

Приклад 6

Тут доцільно взяти до рук таблицю інтегралів і простежити, за якими формулами якздійснюється перетворення. Зверніть увагу, як і навіщовиділяються квадрати у даних прикладах. Зокрема, у прикладі 6 спочатку необхідно подати знаменник у вигляді потім підвести під знак диференціалу. А зробити це все потрібно для того, щоб скористатися стандартною табличною формулою .

Та що дивитися, спробуйте самостійно вирішити приклади №№7,8, тим більше вони досить короткі:

Приклад 7

Приклад 8

Знайти невизначений інтеграл:

Якщо Вам вдасться виконати ще й перевірку даних прикладів, великий респект – Ваші навички диференціювання на висоті.

Метод виділення повного квадрата

Інтеграли виду, (Коефіцієнти і не дорівнюють нулю) вирішуються методом виділення повного квадрата, який вже фігурував на уроці Геометричні перетворення графіків.

Насправді такі інтеграли зводяться до одного з чотирьох табличних інтегралів, які ми щойно розглянули. А досягається це за допомогою знайомих формул скороченого множення:

Формули застосовуються саме у такому напрямі, тобто, ідея методу у тому, щоб у знаменнику штучно організувати висловлювання або , та був перетворити їх у .

Приклад 9

Знайти невизначений інтеграл

Це найпростіший приклад, в якому при доданку – одиничний коефіцієнт(а не якесь число чи мінус).

Дивимося на знаменник, тут вся справа явно зведеться. Починаємо перетворення знаменника:

Очевидно, що потрібно додавати 4. І щоб вираз не змінилося – цю ж четвірку і віднімати:

Тепер можна застосувати формулу:

Після того, як перетворення закінчено ЗАВЖДИбажано виконати зворотний хід: все нормально, помилок немає.

Чистове оформленнярозглянутого прикладу має виглядати приблизно так:

Готово. Підведенням «халявної» складної функціїпід знак диференціалу: , в принципі, можна було знехтувати

Приклад 10

Знайти невизначений інтеграл:

Це приклад для самостійного рішення, відповідь наприкінці уроку

Приклад 11

Знайти невизначений інтеграл:

Що робити, коли перед знаходиться мінус? У цьому випадку, необхідно винести мінус за дужки і розмістити доданки в необхідному нам порядку: . Константу(«двійку» в даному випадку) не чіпаємо!

Тепер у дужках додаємо одиначку. Аналізуючи вираз, приходимо до висновку, що і за дужкою потрібно один - додати:

Тут вийшла формула, застосовуємо:

ЗАВЖДИвиконуємо на чернетці перевірку:
, Що і потрібно перевірити.

Чистове оформлення прикладу виглядає приблизно так:

Ускладнюємо завдання

Приклад 12

Знайти невизначений інтеграл:

Тут при доданку вже не одиничний коефіцієнт, а «п'ятірка».

(1) Якщо знаходиться константа, то її відразу виносимо за дужки.

(2) І взагалі цю константу завжди краще винести за межі інтеграла, щоб вона не заважала під ногами.

(3) Очевидно, що все зведеться до формули . Треба розібратися в доданку, а саме, отримати «двійку»

(4) Ага, . Значить, до виразу додаємо, і цей же дріб віднімаємо.

(5) Тепер виділяємо повний квадрат. У загальному випадкутакож треба обчислити, але тут у нас вимальовується формула довгого логарифму , і дію виконувати немає сенсу, чому – стане ясно трохи нижче.

(6) Власне, можна застосувати формулу , Тільки замість «ікс» у нас, що не скасовує справедливість табличного інтеграла. Строго кажучи, пропущено один крок – перед інтегруванням функцію слід підвести під знак диференціала: Але, як я вже неодноразово наголошував, цим часто нехтують.

(7) У відповіді під коренем бажано розкрити всі дужки назад:

Важко? Це ще найскладніше в інтегральному обчисленні. Хоча приклади, що розглядаються, не так складні, скільки вимагають хорошої техніки обчислень.

Приклад 13

Знайти невизначений інтеграл:

Це приклад самостійного рішення. Відповідь наприкінці уроку.

Існують інтеграли з корінням у знаменнику, які за допомогою заміни зводяться до інтегралів розглянутого типу, про них можна прочитати у статті Складні інтегралиале вона розрахована на дуже підготовлених студентів.

Підведення чисельника під знак диференціалу

Це заключна частина уроку, проте інтеграли такого типу зустрічаються досить часто! Якщо накопичилася втома, може, воно краще завтра почитати? ;)

Інтеграли, які ми розглядатимемо, схожі на інтеграли попереднього параграфа, вони мають вигляд: або (Коефіцієнти , і не дорівнюють нулю).

Тобто, у чисельнику у нас з'явилася лінійна функція. Як вирішувати такі інтеграли?

Все вищевикладене у попередніх пунктах дозволяє нам сформулювати основні правила інтегрування раціонального дробу.

1. Якщо раціональний дріб неправильний, то його подають у вигляді суми багаточлена та правильного раціонального дробу (див. п. 2).

Цим самим інтегрування неправильного раціонального дробу зводять до інтегрування багаточлена та правильного раціонального дробу.

2. Розкладають знаменник правильного дробу на множники.

3. Правильний раціональний дріб розкладають на суму найпростіших дробів. Цим самим інтегрування правильного раціонального дробу зводять до інтегрування найпростіших дробів.

Розглянемо приклади.

Приклад 1. Знайти.

Рішення. Під інтегралом стоїть неправильний раціональний дріб. Виділяючи цілу частину, отримаємо

Отже,

Помічаючи, що , розкладемо правильний раціональний дріб

на найпростіші дроби:

(Див. формулу (18)). Тому

Таким чином, остаточно маємо

Приклад 2. Знайти

Рішення. Під інтегралом стоїть правильний раціональний дріб.

Розкладаючи її на найпростіші дроби (див. формулу (16)), отримаємо

«Математик так само, як художник чи поет, створює візерунки. І якщо його візерунки більш стійкі, лише тому, що вони складені з ідей... Візерунки математика так само, як візерунки художника або поета, повинні бути прекрасні; ідеї так само, як кольори або слова повинні відповідати один одному. Краса є першою вимогою: у світі немає місця для некрасивої математики».

Г.Х.Харді

У першому розділі зазначалося, що існують первісні досить прості функції, які вже не можна виразити через елементарні функції. У зв'язку з цим, велике практичне значення набувають ті класи функцій, про які можна точно сказати, що їх первісні - елементарні функції. До такого класу функцій відносяться раціональні функції, що являють собою відношення двох алгебраїчних багаточленів До інтегрування раціональних дробівнаводять багато завдань. Тому дуже важливо вміти інтегрувати такі функції.

2.1.1. Дробно-раціональні функції

Раціональним дробом(або дробово-раціональною функцією)називається відношення двох алгебраїчних багаточленів:

де і – багаточлени.

Нагадаємо, що багаточленом (поліномом, цілою раціональною функцією ) n-го ступеняназивається функція виду

де – дійсні числа. Наприклад,

- багаточлен першого ступеня;

- багаточлен четвертого ступеня і т.д.

Раціональний дріб (2.1.1) називається правильноюякщо ступінь нижче ступеня, тобто. n<m, в іншому випадку дріб називається неправильною.

Будь-який неправильний дріб можна подати у вигляді суми багаточлена (цілої частини) та правильного дробу (дрібної частини).Виділення цілої та дробової частин неправильного дробу можна проводити за правилом поділу багаточленів «кутом».

Приклад 2.1.1.Виділити цілу та дробову частини наступних неправильних раціональних дробів:

а) , б) .

Рішення . а) Використовуючи алгоритм розподілу «куточком», отримуємо

Таким чином, отримуємо

.

б) Тут також використовуємо алгоритм поділу «куточком»:

В результаті, отримуємо

.

Підведемо підсумки. Невизначений інтеграл від раціонального дробу в загальному випадку можна уявити сумою інтегралів від багаточлена та від правильного раціонального дробу. Знаходження первісних від многочленів не становить труднощів. Тому надалі розглядатимемо переважно правильні раціональні дроби.

2.1.2. Найпростіші раціональні дроби та їх інтегрування

Серед правильних раціональних дробів виділяють чотири типи, які відносять до найпростішим (елементарним) раціональним дробам:

3) ,

4) ,

де - ціле число, , тобто. квадратний тричлен не має дійсних коренів.

Інтегрування найпростіших дробів 1-го та 2-го типу не становить великих труднощів:

, (2.1.3)

. (2.1.4)

Розглянемо тепер інтегрування найпростіших дробів 3-го типу, а дроби 4-го типу не розглядатимемо.

Почнемо з інтегралів виду

.

Цей інтеграл зазвичай обчислюють шляхом виділення повного квадрата в знаменнику. В результаті виходить табличний інтеграл наступного виду

або .

Приклад 2.1.2.Знайти інтеграли:

а) , б) .

Рішення . а) Виділимо із квадратного тричлена повний квадрат:

Звідси знаходимо

б) Виділивши із квадратного тричлена повний квадрат, отримуємо:

Таким чином,

.

Для знаходження інтегралу

можна виділити в чисельнику похідну знаменника і розкласти інтеграл у сумі двох інтегралів: перший їх підстановкою зводиться до вигляду

,

а другий - до розглянутого вище.

Приклад 2.1.3.Знайти інтеграли:

.

Рішення . Зауважимо, що . Виділимо в чисельнику похідну знаменника:

Перший інтеграл обчислюється за допомогою підстановки :

У другому інтегралі виділимо повний квадрат у знаменнику

Остаточно, отримуємо

2.1.3. Розкладання правильного раціонального дробу
на суму найпростіших дробів

Будь-який правильний раціональний дріб можна уявити єдиним чином у вигляді суми найпростіших дробів. Для цього знаменник слід розкласти на множники. З вищої алгебри відомо, що кожен багаточлен із дійсними коефіцієнтами

Тут ми наводимо докладні рішення трьох прикладів інтегрування наступних раціональних дробів:
, , .

Приклад 1

Обчислити інтеграл:
.

Рішення

Тут під знаком інтеграла стоїть раціональна функція, оскільки підінтегральний вираз є дробом із багаточленів. Ступінь багаточлена знаменника ( 3 ) менше ступеня багаточлена чисельника ( 4 ). Тому спочатку необхідно виділити цілу частину дробу.

1. Виділимо цілу частину дробу. Ділимо x 4 на x 3 - 6 x 2 + 11 x - 6:

Звідси
.

2. Розкладемо знаменник дробу на множники. Для цього потрібно розв'язати кубічне рівняння:
.
6
1, 2, 3, 6, -1, -2, -3, -6 .
Підставимо x = 1 :
.

1 . Ділимо на x - 1 :

Звідси
.
Вирішуємо квадратне рівняння.
.
Коріння рівняння: , .
Тоді
.

3. Розкладемо дріб на найпростіші.

.

Отже, ми знайшли:
.
Інтегруємо.

Відповідь

Приклад 2

Обчислити інтеграл:
.

Рішення

Тут у чисельнику дробу - багаточлен нульового ступеня ( 1 = x 0). У знаменнику - багаточлен третього ступеня. Оскільки 0 < 3 , то дріб правильний. Розкладемо її на найпростіші дроби.

1. Розкладемо знаменник дробу на множники. Для цього потрібно вирішити рівняння третього ступеня:
.
Припустимо, що воно має хоча б одне ціле коріння. Тоді він є дільником числа 3 (Члена без x). Тобто цілий корінь може бути одним із чисел:
1, 3, -1, -3 .
Підставимо x = 1 :
.

Отже, ми знайшли один корінь x = 1 . Ділимо x 3 + 2 x - 3на x - 1 :

Отже,
.

Вирішуємо квадратне рівняння:
x 2+x+3=0.
Знаходимо дискримінант: D = 1 2 - 4 · 3 = -11. Оскільки D< 0 , то рівняння не має дійсних коренів. Таким чином, ми отримали розкладання знаменника на множники:
.

2.
.
(x - 1) (x 2 + x + 3):
(2.1) .
Підставимо x = 1 . Тоді x - 1 = 0 ,
.

Підставимо в (2.1) x = 0 :
1 = 3 A - C;
.

Прирівняємо в (2.1) коефіцієнти при x 2 :
;
0 = A + B;
.


.

3. Інтегруємо.
(2.2) .
Для обчислення другого інтеграла, виділимо в чисельнику похідну знаменника та наведемо знаменник до суми квадратів.

;
;
.

Обчислюємо I 2 .


.
Оскільки рівняння x 2+x+3=0не має дійсних коренів, то x 2 + x + 3 > 0. Тому знак модуля можна опустити.

Поставляємо в (2.2) :
.

Відповідь

Приклад 3

Обчислити інтеграл:
.

Рішення

Тут під знаком інтеграла стоїть дріб із багаточленів. Тому підінтегральний вираз є раціональною функцією. Ступінь многочлена в чисельнику дорівнює 3 . Ступінь многочлена знаменника дробу дорівнює 4 . Оскільки 3 < 4 , то дріб правильний. Тому її можна розкладати на найпростіші дроби. Але для цього потрібно розкласти знаменник на множники.

1. Розкладемо знаменник дробу на множники. Для цього потрібно вирішити рівняння четвертого ступеня:
.
Припустимо, що воно має хоча б одне ціле коріння. Тоді він є дільником числа 2 (Члена без x). Тобто цілий корінь може бути одним із чисел:
1, 2, -1, -2 .
Підставимо x = -1 :
.

Отже, ми знайшли один корінь x = -1 . Ділимо на x - (-1) = x + 1:


Отже,
.

Тепер потрібно вирішити рівняння третього ступеня:
.
Якщо припустити, що це рівняння має ціле коріння, він є дільником числа 2 (Члена без x). Тобто цілий корінь може бути одним із чисел:
1, 2, -1, -2 .
Підставимо x = -1 :
.

Отже, ми знайшли ще один корінь x = -1 . Можна було б, як і в попередньому випадку, поділити багаточлен на , але ми згрупуємо члени:
.

Оскільки рівняння x 2 + 2 = 0 не має дійсних коренів, то ми отримали розкладання знаменника на множники:
.

2. Розкладемо дріб на найпростіші. Шукаємо розкладання у вигляді:
.
Звільняємося від знаменника дробу, множимо на (x + 1) 2 (x 2 + 2):
(3.1) .
Підставимо x = -1 . Тоді x + 1 = 0 ,
.

Продиференціюємо (3.1) :

;

.
Підставимо x = -1 та врахуємо, що x + 1 = 0 :
;
; .

Підставимо в (3.1) x = 0 :
0 = 2 A + 2 B + D;
.

Прирівняємо в (3.1) коефіцієнти при x 3 :
;
1 = B + C;
.

Отже, ми знайшли розкладання на найпростіші дроби:
.

3. Інтегруємо.


.

Схожі статті

2022 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.