Як рахувати математичне очікування. Математичне очікування – це розподіл ймовірностей випадкової величини

Теорія ймовірності – особливий розділ математики, який вивчають лише студенти вищих навчальних закладів. Ви любите розрахунки та формули? Вас не лякають перспективи знайомства з нормальним розподілом, ентропією ансамблю, математичним очікуванням та дисперсією дискретною випадкової величини? Тоді цей предмет вам буде дуже цікавим. Давайте познайомимося з кількома найважливішими базовими поняттямицього розділу науки.

Згадаймо основи

Навіть якщо ви пам'ятаєте самі прості поняттятеорії ймовірності, не нехтуйте першими абзацами статті. Справа в тому, що без чіткого розуміння основ ви не зможете працювати з формулами, що розглядаються далі.

Отже, відбувається деяке випадкова подія, якийсь експеримент. Через війну вироблених дій ми можемо отримати кілька результатів - одні зустрічаються частіше, інші - рідше. Імовірність події - це відношення кількості реально отриманих наслідків одного типу до загальному числуможливих. Тільки знаючи класичне визначення даного поняття, ви зможете приступити до вивчення математичного очікуваннята дисперсії безперервних випадкових величин.

Середнє арифметичне

Ще в школі на уроках математики ви починали працювати із середнім арифметичним. Це поняття широко використовується в теорії ймовірності, і тому його не можна обминути. Головним для нас зараз є те, що ми зіткнемося з ним у формулах математичного очікування та дисперсії випадкової величини.

Ми маємо послідовність чисел і хочемо знайти середнє арифметичне. Все, що від нас вимагається - підсумувати все існуюче та розділити на кількість елементів у послідовності. Нехай ми маємо числа від 1 до 9. Сума елементів дорівнюватиме 45, і це значення ми розділимо на 9. Відповідь: - 5.

Дисперсія

Говорячи науковою мовою, дисперсія – це середній квадрат відхилень отриманих значень ознаки від середньої арифметичної. Позначається одна заголовною латинською літерою D. Що потрібно, щоб її розрахувати? Для кожного елемента послідовності порахуємо різницю між наявним числом та середнім арифметичним і зведемо у квадрат. Значень вийде рівно стільки, скільки може бути результатів у події, що ми розглядаємо. Далі ми підсумовуємо все отримане та ділимо на кількість елементів у послідовності. Якщо у нас можливі п'ять наслідків, то ділимо на п'ять.

У дисперсії є й властивості, які потрібно запам'ятати, щоб застосовувати під час вирішення завдань. Наприклад, зі збільшенням випадкової величини у X разів, дисперсія збільшується у X у квадраті разів (т. е. X*X). Вона ніколи не буває менше нуля і не залежить від зсуву значень на рівне значенняу більшу чи меншу сторону. Крім того, для незалежних випробуваньдисперсія суми дорівнює сумі дисперсій.

Тепер нам обов'язково слід розглянути приклади дисперсії дискретної випадкової величини та математичного очікування.

Припустимо, що ми провели 21 експеримент та отримали 7 різних результатів. Кожен із них ми спостерігали, відповідно, 1,2,2,3,4,4 та 5 разів. Чому дорівнюватиме дисперсія?

Спочатку порахуємо середнє арифметичне: сума елементів, зрозуміло, дорівнює 21. Ділимо її на 7, отримуючи 3. Тепер із кожного числа вихідної послідовності віднімемо 3, кожне значення зведемо в квадрат, а результати складемо разом. Вийде 12. Тепер нам залишається розділити число на кількість елементів, і, начебто, все. Але є проблема! Давайте її обговоримо.

Залежність кількості експериментів

Виявляється, при розрахунку дисперсії у знаменнику може стояти одне з двох чисел: або N або N-1. Тут N - це число проведених експериментів або число елементів у послідовності (що, по суті, те саме). Від чого залежить?

Якщо кількість випробувань вимірюється сотнями, ми повинні ставити в знаменник N. Якщо одиницями, то N-1. Кордон вчені вирішили провести досить символічно: на сьогоднішній день вона проходить за цифрою 30. Якщо експериментів ми провели менше 30, то ділити суму будемо на N-1, а якщо більше – то на N.

Завдання

Давайте повернемося до нашого прикладу розв'язання задачі на дисперсію та математичне очікування. Ми отримали проміжне число 12, яке потрібно було поділити на N чи N-1. Оскільки експериментів ми провели 21, що менше 30 виберемо другий варіант. Отже, відповідь: дисперсія дорівнює 12/2 = 2.

Математичне очікування

Перейдемо до другого поняття, яке ми обов'язково маємо розглянути цій статті. Математичне очікування - це результат складання всіх можливих наслідків, помножених на відповідні ймовірності. Важливо розуміти, що отримане значення, як і результат розрахунку дисперсії, виходить лише один раз для цілого завданняскільки б результатів у ній не розглядалося.

Формула математичного очікування досить проста: беремо результат, множимо з його ймовірність, додаємо те саме для другого, третього результату тощо. буд. Усе, що з цим поняттям, розраховується нескладно. Наприклад, сума матожиданий дорівнює маточку суми. Для твору актуально те саме. Такі прості операції дозволяє із собою виконувати далеко не кожна величина теорії ймовірності. Давайте візьмемо завдання і порахуємо значення одразу двох вивчених понять. Крім того, ми відволікалися на теорію - настав час попрактикуватися.

Ще один приклад

Ми провели 50 випробувань і отримали 10 видів результатів – цифри від 0 до 9 – які з'являються у різному відсотковому відношенні. Це відповідно: 2%, 10%, 4%, 14%, 2%, 18%, 6%, 16%, 10%, 18%. Нагадаємо, що для отримання ймовірностей потрібно розділити значення у відсотках на 100. Таким чином отримаємо 0,02; 0,1 і т.д. Представимо для дисперсії випадкової величини та математичного очікування приклад розв'язання задачі.

Середнє арифметичне розрахуємо за формулою, яку пам'ятаємо з молодшої школи: 50/10 = 5.

Тепер переведемо ймовірність у кількість наслідків «в штуках», щоб було зручніше рахувати. Отримаємо 1, 5, 2, 7, 1, 9, 3, 8, 5 і 9. З кожного отриманого значення віднімемо середнє арифметичне, після чого кожен із отриманих результатів зведемо в квадрат. Подивіться, як це зробити, з прикладу першого елемента: 1 - 5 = (-4). Далі: (-4) * (-4) = 16. Для решти значень проробіть ці операції самостійно. Якщо ви все зробили правильно, то після додавання всіх ви отримаєте 90.

Продовжимо розрахунок дисперсії та математичного очікування, розділивши 90 на N. Чому ми вибираємо N, а не N-1? Правильно тому, що кількість проведених експериментів перевищує 30. Отже: 90/10 = 9. Дисперсію ми отримали. Якщо у вас вийшло інше число, не впадайте у відчай. Швидше за все, ви припустилися банальної помилки при розрахунках. Перевірте ще раз написане, і напевно все стане на свої місця.

Зрештою, згадаємо формулу математичного очікування. Не будемо наводити всіх розрахунків, напишемо лише відповідь, з якою ви зможете звіритися, закінчивши всі необхідні процедури. Матоожидання дорівнюватиме 5,48. Нагадаємо лише, як здійснювати операції, з прикладу перших елементів: 0*0,02 + 1*0,1… тощо. Як бачите, ми просто множимо значення результату з його ймовірність.

Відхилення

Ще одне поняття, тісно пов'язане з дисперсією та математичним очікуванням – середнє квадратичне відхилення. Позначається воно або латинськими літерами sd, або грецькою «сигмою». Це поняттяпоказує, як у середньому відхиляються значення від центрального ознаки. Щоб знайти її значення, потрібно розрахувати квадратний коріньіз дисперсії.

Якщо ви збудуєте графік нормального розподілуі захочете побачити безпосередньо на ньому квадратичного відхиленняЦе можна зробити в кілька етапів. Візьміть половину зображення зліва або праворуч від моди (центрального значення), проведіть перпендикуляр до горизонтальної осі так, щоб площі фігур були рівні. Величина відрізка між серединою розподілу і проекцією, що вийшла, на горизонтальну вісь і буде середнім квадратичним відхиленням.

Програмне забезпечення

Як видно з описів формул і наведених прикладів, розрахунки дисперсії та математичного очікування - не найпростіша процедура з арифметичної точки зору. Щоб не витрачати час, є сенс скористатися програмою, яка використовується у вищих навчальних закладах- вона називається "R". У ній є функції, що дозволяють розраховувати значення для багатьох понять із статистики та теорії ймовірності.

Наприклад, ви задаєте вектор значень. Робиться це так: vector<-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

На закінчення

Дисперсія та математичне очікування - це без яких складно надалі щось розрахувати. В основному курсі лекцій у вишах вони розглядаються вже у перші місяці вивчення предмета. Саме через нерозуміння цих найпростіших понять та невміння їх розрахувати багато студентів відразу починають відставати за програмою і пізніше отримують погані позначки за результатами сесії, що позбавляє їх стипендії.

Потренуйтесь хоча б один тиждень по півгодини на день, вирішуючи завдання, схожі на представлені в цій статті. Тоді на будь-якій контрольній теорії ймовірності ви впораєтеся з прикладами без сторонніх підказок і шпаргалок.

Основні числові характеристики дискретних та безперервних випадкових величин: математичне очікування, дисперсія та середнє квадратичне відхилення. Їх властивості та приклади.

Закон розподілу (функція розподілу та ряд розподілу або щільність імовірності) повністю описують поведінку випадкової величини. Але в ряді завдань достатньо знати деякі числові характеристики досліджуваної величини (наприклад, її середнє значення і можливе відхилення від нього), щоб відповісти на поставлене запитання. Розглянемо основні числові характеристики дискретних випадкових величин.

Визначення 7.1.Математичним очікуваннямдискретної випадкової величини називається сума творів її можливих значень на відповідні їм ймовірності:

М(Х) = х 1 р 1 + х 2 р 2 + … + х п р п.(7.1)

Якщо число можливих значень випадкової величини нескінченно, то якщо отриманий ряд сходиться абсолютно.

Зауваження 1.Математичне очікування називають іноді виваженим середнім, тому що воно приблизно дорівнює середньому арифметичному спостерігаються значень випадкової величини при великій кількості дослідів.

Примітка 2.З визначення математичного очікування випливає, що його значення не менше найменшого можливого значення випадкової величини і не більше найбільшого.

Примітка 3.Математичне очікування дискретної випадкової величини є невипадкова(Постійна) величина. Надалі побачимо, що це справедливо і для безперервних випадкових величин.

Приклад 1. Знайдемо математичне очікування випадкової величини Х- числа стандартних деталей серед трьох, відібраних із партії у 10 деталей, серед яких 2 браковані. Складемо ряд розподілу для Х. З умови завдання випливає, що Хможе набувати значень 1, 2, 3. Тоді

Приклад 2. Визначимо математичне очікування випадкової величини Х- Числа кидків монети до першої появи герба. Ця величина може приймати нескінченну кількість значень (безліч можливих значень є безліч натуральних чисел). Ряд її розподілу має вигляд:

Х п
р 0,5 (0,5) 2 (0,5)п

+ (при обчисленні двічі використовувалася формула суми нескінченно спадної геометричної прогресії: , звідки ).

Властивості математичного очікування.

1) Математичне очікування постійної і найпостійнішої:

М(З) = З.(7.2)

Доказ. Якщо розглядати Зяк дискретну випадкову величину, що приймає лише одне значення Зз ймовірністю р= 1, то М(З) = З?1 = З.

2) Постійний множник можна виносити за знак математичного очікування:

М(СГ) = З М(Х). (7.3)

Доказ. Якщо випадкова величина Хзадана поруч розподілу


Тоді М(СГ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = З(х 1 р 1 + х 2 р 2 + … + х п р п) = СМ(Х).

Визначення 7.2.Дві випадкові величини називаються незалежними, якщо закон розподілу однієї з них не залежить від того, які значення набула інша. В іншому випадку випадкові величини залежні.

Визначення 7.3.Назвемо добутком незалежних випадкових величин Хі Y випадкову величину XY, можливі значення якої дорівнюють творам усіх можливих значень Хна всі можливі значення Y, А відповідні їм ймовірності рівні творам ймовірностей співмножників.

3) Математичне очікування твору двох незалежних випадкових величин дорівнює твору їх математичних очікувань:

M(XY) = M(X)M(Y). (7.4)

Доказ. Для спрощення обчислень обмежимося випадком, коли Хі Yприймають лише по два можливі значення:

Отже, M(XY) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M(X)?M(Y).

Зауваження 1.Аналогічно можна довести цю властивість для більшої кількості можливих значень співмножників.

Примітка 2.Властивість 3 справедливо добутку будь-якого числа незалежних випадкових величин, що доводиться методом математичної індукції.

Визначення 7.4.Визначимо суму випадкових величин Хі Y як випадкову величину Х+Y, можливі значення якої дорівнюють сумам кожного можливого значення Хз кожним можливим значенням Y; ймовірності таких сум рівні творам ймовірностей доданків (для залежних випадкових величин - творам ймовірності одного доданку на умовну ймовірність другого).

4) Математичне очікування суми двох випадкових величин (залежних або незалежних) дорівнює сумі математичних очікувань доданків:

M (X+Y) = M (X) + M (Y). (7.5)

Доказ.

Знову розглянемо випадкові величини, задані рядами розподілу, наведеними за доказом властивості 3. Тоді можливими значеннями X+Yє х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Позначимо їх ймовірності відповідно як р 11 , р 12 , р 21 і р 22 . Знайдемо М(Х+Y) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Доведемо, що р 11 + р 22 = р 1 . Справді, подія полягає в тому, що X+Yнабуде значення х 1 + у 1 або х 1 + у 2 і ймовірність якого дорівнює р 11 + р 22 , збігається з подією, що полягає в тому, що Х = х 1 (його ймовірність - р 1). Аналогічно доводиться, що p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значить,

M(X+Y) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X) + M (Y).

Зауваження. З якості 4 випливає, що сума будь-якого числа випадкових величин дорівнює сумі математичних очікувань доданків.

приклад. Знайти математичне очікування суми числа очок, що випали під час кидка п'яти гральних кісток.

Знайдемо математичне очікування числа очок, що випали під час кидка однієї кістки:

М(Х 1) = (1 + 2 + 3 + 4 + 5 + 6) Тому ж числу дорівнює математичне очікування числа очок, що випали на будь-якій кістці. Отже, за якістю 4 М(Х)=

Дисперсія.

Щоб мати уявлення про поведінку випадкової величини, недостатньо знати лише її математичне очікування. Розглянемо дві випадкові величини: Хі Y, задані рядами розподілу виду

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Знайдемо М(Х) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М(Y) = 0?0,5 + 100?0,5 = 50. Як видно, математичні очікування обох величин рівні, але якщо для Х М(Х) добре описує поведінку випадкової величини, будучи її найбільш ймовірним можливим значенням (причому інші значення ненабагато відрізняються від 50), то значення Yістотно відстоять від М(Y). Отже, поряд з математичним очікуванням бажано знати, наскільки значення випадкової величини відхиляються від нього. Для характеристики цього є дисперсія.

Визначення 7.5.Дисперсією (розсіянням)випадкової величини називається математичне очікування квадрата її відхилення від її математичного очікування:

D(X) = M (X - M(X))². (7.6)

Знайдемо дисперсію випадкової величини Х(Числа стандартних деталей серед відібраних) у прикладі 1 даної лекції. Обчислимо значення квадрата відхилення кожного можливого значення від математичного очікування:

(1 – 2,4) 2 = 1,96; (2 – 2,4) 2 = 0,16; (3 – 2,4) 2 = 0,36. Отже,

Зауваження 1.У визначенні дисперсії оцінюється не саме відхилення від середнього, яке квадрат. Це зроблено для того, щоб відхилення різних знаків не компенсували одне одного.

Примітка 2.З визначення дисперсії випливає, що ця величина набуває лише невід'ємних значень.

Примітка 3.Існує зручніша для розрахунків формула для обчислення дисперсії, справедливість якої доводиться в наступній теоремі:

Теорема 7.1.D(X) = M(X²) - M²( X). (7.7)

Доказ.

Використовуючи те, що М(Х) - постійна величина, та властивості математичного очікування, перетворимо формулу (7.6) на вигляд:

D(X) = M(X - M(X))² = M(X² - 2 X?M(X) + M²( X)) = M(X²) - 2 M(X)?M(X) + M²( X) =

= M(X²) - 2 M²( X) + M²( X) = M(X²) - M²( X), Що й потрібно довести.

приклад. Обчислимо дисперсії випадкових величин Хі Y, Розглянуті на початку цього розділу. М(Х) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М(Y) = (0 2? 0,5 ​​+ 100? 0,5) - 50? = 5000 - 2500 = 2500. Отже, дисперсія другої випадкової величини в кілька тисяч разів більше дисперсії першої. Таким чином, навіть не знаючи законів розподілу цих величин, за відомими значеннями дисперсії ми можемо стверджувати, що Хмало відхиляється від свого математичного очікування, в той час як для Yце відхилення дуже суттєво.

Властивості дисперсії.

1) Дисперсія постійної величини Здорівнює нулю:

D (C) = 0. (7.8)

Доказ. D(C) = M((C - M(C))²) = M((C - C)²) = M(0) = 0.

2) Постійний множник можна виносити за знак дисперсії, звівши його у квадрат:

D(CX) = C² D(X). (7.9)

Доказ. D(CX) = M((CX-M(CX))²) = M((CX - CM(X))²) = M(C²( X - M(X))²) =

= C² D(X).

3) Дисперсія суми двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X+Y) = D(X) + D(Y). (7.10)

Доказ. D(X+Y) = M(X² + 2 XY + Y²) - ( M(X) + M(Y))² = M(X²) + 2 M(X)M(Y) +

+ M(Y²) - M²( X) - 2M(X)M(Y) - M²( Y) = (M(X²) - M²( X)) + (M(Y²) - M²( Y)) = D(X) + D(Y).

Наслідок 1.Дисперсія суми кількох взаємно незалежних випадкових величин дорівнює сумі дисперсій.

Наслідок 2.Дисперсія суми постійної та випадкової величин дорівнює дисперсії випадкової величини.

4) Дисперсія різниці двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X - Y) = D(X) + D(Y). (7.11)

Доказ. D(X - Y) = D(X) + D(-Y) = D(X) + (-1)² D(Y) = D(X) + D(X).

Дисперсія дає середнє значення квадрата відхилення випадкової величини середнього; з метою оцінки самого відхилення служить величина, звана середнім квадратичним відхиленням.

Визначення 7.6.Середнім квадратичним відхиленнямσ випадкової величини Хназивається квадратний корінь з дисперсії:

приклад. У попередньому прикладі середні квадратичні відхилення Хі Yрівні відповідно

Кожна окремо взята величина повністю визначається своєю функцією розподілу. Також, для вирішення практичних завдань вистачає знати кілька числових характеристик, завдяки яким з'являється можливість уявити основні особливості випадкової величини в короткій формі.

До таких величин відносять насамперед математичне очікуванняі дисперсія .

Математичне очікування- Середнє значення випадкової величини в теорії ймовірностей. Позначається як .

Найпростішим способом математичне очікування випадкової величини Х(w), знаходять як інтегралЛебегастосовно ймовірнісної міри Р вихідному імовірнісному просторі

Ще знайти математичне очікування величини можна як інтеграл Лебегавід хщодо розподілу ймовірностей Р Хвеличини X:

де - безліч усіх можливих значень X.

Математичне очікування функцій від випадкової величини Xзнаходиться через розподіл Р Х. Наприклад, якщо X- випадкова величина зі значеннями і f(x)- однозначна борелівськафункція Х , то:

Якщо F(x)- функція розподілу X, то математичне очікування представимо інтеграломЛебега - Стілтьєса (або Рімана - Стілтьєса):

при цьому інтегрованість Xу сенсі ( * ) відповідає кінцівки інтегралу

У конкретних випадках, якщо Xмає дискретний розподіл із ймовірними значеннями х k, k=1, 2, . і ймовірностями , то

якщо Xмає абсолютно безперервний розподіл із щільністю ймовірності р(х), то

при цьому існування математичного очікування рівносильне абсолютній збіжності відповідного ряду або інтеграла.

Властивості математичного очікування випадкової величини.

  • Математичне очікування постійної величини дорівнює цій величині:

C- Постійна;

  • M=C.M[X]
  • Математичне очікування суми випадково взятих величин дорівнює сумі їх математичних очікувань:

  • Математичне очікування твору незалежних випадково взятих величин = твору їх математичних очікувань:

M=M[X]+M[Y]

якщо Xі Yнезалежні.

якщо сходиться ряд:

Алгоритм обчислення математичного очікування.

Властивості дискретних випадкових величин: їх значення можна перенумерувати натуральними числами; кожному значення прирівняти відмінну від нуля ймовірність.

1. По черзі перемножуємо пари: x iна p i.

2. Складаємо твір кожної пари x i p i.

Наприклад, для n = 4 :

Функція розподілу дискретної випадкової величиниступінчаста, вона зростає стрибком у тих точках, ймовірності яких мають позитивний знак.

Приклад:Знайти математичне очікування за формулою.

Математичне очікування – це середнє значення випадкової величини.

Математичним очікуванням дискретної випадкової величини називають суму творів всіх її можливих значень з їхньої ймовірності:

приклад.

X -4 6 10
р 0,2 0,3 0,5


Рішення: Математичне очікування дорівнює сумі творів всіх можливих значень X з їхньої ймовірності:

М (X) = 4 * 0,2 + 6 * 0,3 + 10 * 0,5 = 6.


Для обчислення математичного очікування зручно розрахунки проводити Excel (особливо коли даних багато), пропонуємо скористатися готовим шаблоном ().

Приклад для самостійного рішення (можна застосувати калькулятор).
Знайти математичне очікування дискретної випадкової величини X, заданої законом розподілу:

X 0,21 0,54 0,61
р 0,1 0,5 0,4

Математичне очікування має такі властивості.

Властивість 1. Математичне очікування постійної величини дорівнює найпостійнішій: М(С)=С.

Властивість 2. Постійний множник можна виносити за знак математичного очікування: М(СХ) = СМ(Х).

Властивість 3. Математичне очікування добутку взаємно незалежних випадкових величин дорівнює добутку математичних очікувань співмножників: М (Х1Х2 ... Хп) = М (X1) М (Х2) *. ..*М (Xn)

Властивість 4. Математичне очікування суми випадкових величин дорівнює сумі математичних очікувань доданків: М(Хг + Х2+...+Хn) = М(Хг)+М(Х2)+…+М(Хn).

Завдання 189. Знайти математичне очікування випадкової величини Z, якщо відомі математичні очікування X н Y: Z = X + 2Y, M (X) = 5, M (Y) = 3;

Рішення: Використовуючи властивості математичного очікування (математичне очікування суми дорівнює сумі математичних очікувань доданків; постійний множник можна винести за знак математичного очікування), отримаємо M(Z)=M(X + 2Y)=M(X) + M(2Y)=M (X) + 2M(Y) = 5 + 2 * 3 = 11.

190. Використовуючи властивості математичного очікування, довести, що: а) М(Х - Y) = M(X)-М(Y); б) математичне очікування відхилення X-M(Х) дорівнює нулю.

191. Дискретна випадкова величина X набуває трьох можливих значень: x1= 4 З ймовірністю р1 = 0,5; xЗ = 6 З ймовірністю P2 = 0,3 та x3 з ймовірністю р3. Знайти: x3 і р3, знаючи, що М(Х)=8.

192. Даний перелік можливих значень дискретної випадкової величини X: x1 = -1, х2 = 0, x3 = 1 також відомі математичні очікування цієї величини та її квадрата: M(Х) = 0,1, М(Х^2)=0 ,9. Знайти ймовірності p1, p2, p3, що відповідають можливим значенням xi

194. У партії з 10 деталей міститься три нестандартні. Навмання відібрано дві деталі. Знайти математичне очікування дискретної випадкової величини X – числа нестандартних деталей серед двох відібраних.

196. Знайти математичне очікування дискретної випадкової величини X числа таких кидань п'яти гральних кісток, у кожному з яких на двох кістках з'явиться по одному окуляру, якщо загальна кількість кидань дорівнює двадцяти.



Математичне очікування біномного розподілу дорівнює добутку числа випробувань на ймовірність появи події в одному випробуванні:

Як відомо, закон розподілу повністю характеризує випадкову величину. Однак часто закон розподілу невідомий і доводиться обмежуватись меншими відомостями. Іноді навіть вигідніше користуватися числами, що описують випадкову величину сумарно; такі числа називають числовими характеристиками довільної величини.До важливих числових характеристик належить математичне очікування.

Математичне очікування, як буде показано далі, приблизно дорівнює середньому значенню випадкової величини. Для вирішення багатьох завдань достатньо знати математичне очікування. Наприклад, якщо відомо, що математичне очікування числа очок, що вибиваються, у першого стрілка більше, ніж у другого, то перший стрілець в середньому вибиває більше очок, ніж другий, і, отже, стріляє краще за другий. Хоча математичне очікування дає про випадкову величину значно менше відомостей, ніж закон її розподілу, але для вирішення завдань, подібних до наведеної та багатьох інших, знання математичного очікування виявляється достатнім.

§ 2. Математичне очікування дискретної випадкової величини

Математичним очікуваннямдискретної випадкової величини називають суму творів її можливих значень з їхньої ймовірності.

Нехай випадкова величина X може приймати лише значення х 1 х 2 , ..., х п , ймовірності яких відповідно дорівнюють р 1 , р 2 , . . ., р п . Тоді математичне очікування М(X) випадкової величини X визначається рівністю

М(X) = х 1 р 1 + х 2 р 2 + … + x n p n .

Якщо дискретна випадкова величина X приймає лічильну безліч можливих значень, то

М(Х)=

причому математичне очікування існує, якщо ряд правої частини рівності сходиться абсолютно.

Зауваження. З визначення слідує, що математичне очікування дискретної випадкової величини є невипадковою (постійною) величиною. Рекомендуємо запам'ятати це твердження, тому що далі воно використовується багаторазово. Надалі буде показано, що математичне очікування безперервної випадкової величини є постійна величина.

приклад 1.Знайти математичне очікування випадкової величини X, знаючи закон її розподілу:

Рішення. Шукане математичне очікування дорівнює сумі творів всіх можливих значень випадкової величини з їхньої ймовірності:

M(X)= 3* 0, 1+ 5* 0, 6+ 2* 0, 3= 3, 9.

приклад 2.Знайти математичне очікування кількості події Ав одному випробуванні, якщо ймовірність події Адорівнює нар.

Рішення. Випадкова величина X - Число появи події Ав одному випробуванні - може приймати лише два значення: х 1 = 1 (Подія Анастало) з ймовірністю рі х 2 = 0 (Подія Ане настало) з ймовірністю q= 1 -нар.Шукане математичне очікування

M(X)= 1* p+ 0* q= p

Отже, математичне очікування числа події в одному випробуванні дорівнює ймовірності цієї події.Цей результат буде використано нижче.

§ 3. Імовірнісний сенс математичного очікування

Нехай зроблено пвипробувань, у яких випадкова величина X прийняла т 1 раз значення х 1 , т 2 раз значення х 2 ,...,m k раз значення x k , причому т 1 + т 2 + …+т до = п.Тоді сума всіх значень, прийнятих X, дорівнює

х 1 т 1 + х 2 т 2 + ... + х до т до .

Знайдемо середнє арифметичне всіх значень, прийнятих, випадковою величиною, навіщо розділимо знайдену суму загальне число випробувань:

= (х 1 т 1 + х 2 т 2 + ... + х до т до)/п,

= х 1 (m 1 / n) + х 2 (m 2 / n) + ... + х до (т до /п). (*)

Помітивши, що ставлення m 1 / n- відносна частота W 1 значення х 1 , m 2 / n - відносна частота W 2 значення х 2 і т. д., запишемо співвідношення (*) так:

=х 1 W 1 + x 2 W 2 + .. . + х до W k . (**)

Припустимо, що кількість випробувань досить велика. Тоді відносна частота приблизно дорівнює ймовірності появи події (це буде доведено в гл. IX, § 6):

W 1 p 1 , W 2 p 2 , …, W k p k .

Замінивши у співвідношенні (**) відносні частоти відповідними ймовірностями, отримаємо

x 1 p 1 + х 2 р 2 + … + х до р до .

Права частина цієї наближеної рівності є М(X). Отже,

М(X).

Імовірнісний зміст отриманого результату такий: математичне очікування приблизно дорівнює(Тим точніше, чим більше число випробувань) середнього арифметичного значень випадкової величини, що спостерігаються.

Зауваження 1. Легко збагнути, що математичне очікування більше за найменше і менше від найбільшого можливих значень. Іншими словами, на числовій осі можливі значення розташовані ліворуч і праворуч від математичного очікування. У цьому сенсі математичне очікування характеризує розташування розподілу і тому його часто називають центром розподілу.

Цей термін запозичений із механіки: якщо маси р 1 , р 2 , ..., р прозташовані в точках з абсцисами x 1 , х 2 , ..., х n, причому
то абсциса центру тяжіння

x c =
.

Враховуючи, що
=
M (X) і
отримаємо М(Х)= х з .

Отже, математичне очікування є абсцисом центру ваги системи матеріальних точок, абсциси яких дорівнюють можливим значенням випадкової величини, а маси - їх ймовірностям.

Зауваження 2. Походження терміна «математичне очікування» пов'язане з початковим періодом виникнення теорії ймовірностей (XVI – XVII ст.), коли сфера її застосування обмежувалася азартними іграми. Гравця цікавило середнє значення очікуваного виграшу, або, іншими словами, математичне очікування на виграш.



Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.