Знайти площу плоскої фігури обмеженою графіками функцій. Калькулятор онлайн. Обчислити певний інтеграл (площа криволінійної трапеції)

Завдання 1(про обчислення площі криволінійної трапеції).

У декартовій прямокутної системикоординат xOy дана фігура (див. малюнок), обмежена віссю х, прямими х = a, х = b (a криволінійною трапецією. Потрібно обчислити площу криволінійної трапеції.
Рішення.Геометрія дає нам рецепти для обчислення площ багатокутників та деяких частин кола (сектора, сегмента). Використовуючи геометричні міркування, ми зможемо визначити лише наближене значення шуканої площі, розмірковуючи так.

Розіб'ємо відрізок [а; b] (підстава криволінійної трапеції) на n рівних частин; це розбиття здійснимо за допомогою точок x 1 x 2 ... x k ... x n-1. Проведемо через ці точки прямі, паралельні осі у. Тоді задана криволінійна трапеція розіб'ється на n елементів, на n вузьких стовпчиків. Площа всієї трапеції дорівнює сумі площ стовпчиків.

Розглянемо окремо k-ий стовпчик, тобто. криволінійну трапецію, основою якої є відрізок . Замінимо його прямокутником з тією самою основою і висотою, що дорівнює f(x k) (див. рисунок). Площа прямокутника дорівнює \(f(x_k) \ cdot \ Delta x_k \), де \ ( \ Delta x_k \) - Довжина відрізка ; Звичайно вважати складене твір наближеним значенням площі k-го стовпчика.

Якщо тепер зробити те саме з усіма іншими стовпчиками, то прийдемо до наступного результату: площа S заданої криволінійної трапеції приблизно дорівнює площі S n ступінчастої фігури, складеної з n прямокутників (див. малюнок):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_(n-1))\Delta x_(n-1) \)
Тут заради однаковості позначень ми вважаємо, що a = х 0 b = x n ; \(\Delta x_0 \) - Довжина відрізка , \(\Delta x_1 \) - Довжина відрізка, і т.д; при цьому, як ми домовилися вище, \(\Delta x_0 = \dots = \Delta x_(n-1) \)

Отже, (S \approx S_n \), причому це наближена рівність тим точніше, чим більше n.
За визначенням вважають, що потрібна площа криволінійної трапеції дорівнює межі послідовності (S n):
$$ S = \lim_(n \to \infty) S_n $$

Завдання 2(Про переміщення точки)
По прямій рухається матеріальна точка. Залежність швидкості від часу виражається формулою v = v(t). Знайти переміщення точки за проміжок часу [а; b].
Рішення.Якби рух був рівномірним, то завдання вирішувалося дуже просто: s = vt, тобто. s = v(b-а). Для нерівномірного руху доводиться використовувати самі ідеї, у яких було засновано рішення попередньої завдання.
1) Розділимо проміжок часу [а; b] на n рівних частин.
2) Розглянемо проміжок часу і вважатимемо, що у цей проміжок часу швидкість була постійною, такою, як у момент часу t k . Отже, ми вважаємо, що v = v (t k).
3) Знайдемо наближене значення переміщення точки за проміжок часу, це наближене значення позначимо s k
\(s_k = v(t_k) \Delta t_k \)
4) Знайдемо наближене значення переміщення s:
\(s \approx S_n \) де
\(S_n = s_0 + \dots + s_(n-1) = v(t_0)\Delta t_0 + \dots + v(t_(n-1)) \Delta t_(n-1) \)
5) Переміщення, що шукається, дорівнює межі послідовності (S n):
$$ s = \lim_(n \to \infty) S_n $$

Підведемо підсумки. Розв'язання різних завдань звелися до однієї і тієї ж математичної моделі. Багато завдань з різних галузей науки і техніки приводять у процесі вирішення такої ж моделі. Значить, цю математичну модельтреба спеціально вивчити.

Поняття певного інтегралу

Дамо математичний опис тієї моделі, яка була побудована у трьох розглянутих задачах для функції y = f(x), безперервної (але необов'язково невід'ємної, як це передбачалося у розглянутих задачах) на відрізку [а; b]:
1) розбиваємо відрізок [а; b] на n рівних частин;
2) складаємо суму $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_(n-1))\Delta x_(n-1) $$
3) обчислюємо $$ \lim_(n \to \infty) S_n $$

В курсі математичного аналізудоведено, що ця межа у разі безперервної (або шматково-безперервної) функції існує. Його називають певним інтегралом від функції y = f(x) за відрізком [а; b]і позначають так:
\(\int\limits_a^b f(x) dx \)
Числа a та b називають межами інтегрування (відповідно нижнім та верхнім).

Повернемося до розглянутих вище завдань. Визначення площі, дане в задачі 1, тепер можна переписати так:
\(S = \int\limits_a^b f(x) dx \)
тут S - площа криволінійної трапеції, зображеної на малюнку вище. У цьому полягає геометричний зміст певного інтегралу.

Визначення переміщення точки, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = a до t = b, дане в задачі 2, можна переписати так:

Формула Ньютона - Лейбніца

Спочатку відповімо питанням: який зв'язок між певним інтегралом і первообразной?

Відповідь можна знайти в задачі 2. З одного боку, переміщення точки s, що рухається по прямій зі швидкістю v = v(t), за проміжок часу від t = а до t = b і обчислюється за формулою
\(S = \int\limits_a^b v(t) dt \)

З іншого боку, координата точки, що рухається, є первісна для швидкості - позначимо її s(t); отже, переміщення s виражається формулою s = s(b) - s(a). У результаті отримуємо:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
де s(t) - первісна для v(t).

У курсі математичного аналізу доведено таку теорему.
Теорема. Якщо функція y = f(x) безперервна на відрізку [а; b], то справедлива формула
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
де F(x) - первісна для f(x).

Наведену формулу зазвичай називають формулою Ньютона - Лейбніцана честь англійського фізика Ісаака Ньютона (1643-1727) та німецького філософа Готфріда Лейбніца (1646-1716), які отримали її незалежно один від одного і практично одночасно.

Насправді замість запису F(b) - F(a) використовують запис \(\left. F(x)\right|_a^b \) (її називають іноді подвійною підстановкою) і, відповідно, переписують формулу Ньютона - Лейбніца в такому вигляді:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

Вираховуючи визначений інтеграл, спочатку знаходять первинну, а потім здійснюють подвійну підстановку.

Маючи формулу Ньютона - Лейбніца, можна отримати дві властивості певного інтеграла.

Властивість 1.Інтеграл від суми функцій дорівнює суміінтегралів:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Властивість 2.Постійний множник можна винести за знак інтегралу:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Обчислення площ плоских фігур за допомогою певного інтегралу

За допомогою інтегралу можна обчислювати площі не тільки криволінійних трапецій, а й плоских фігур. складного виглядунаприклад такого, який представлений на малюнку. Фігура Р обмежена прямими х = а, х = b та графіками безперервних функцій y = f(x), y = g(x), причому на відрізку [а; b] виконується нерівність \(g(x) \leq f(x) \). Щоб обчислити площу S такої фігури, будемо діяти так:
\(S = S_(ABCD) = S_(aDCb) - S_(aABb) = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Отже, площа фігури S, обмеженої прямими х = а, х = b і графіками функцій y = f(x), y = g(x), безперервних на відрізку і таких, що для будь-якого x з відрізка [а; b] виконується нерівність \(g(x) \leq f(x) \), обчислюється за формулою
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Таблиця невизначених інтегралів (первоподібних) деяких функцій

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac(x^(n+1))(n+1 ) + C \; \; (n \neq -1) $$ $$ \int \frac(1)(x) dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac(a^x)(\ln a) +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $ $ \int \frac(dx)(\cos^2 x) = \text(tg) x +C $$ $$ \int \frac(dx)(\sin^2 x) = -\text(ctg) x +C $$ $$ \int \frac(dx)(\sqrt(1-x^2)) = \text(arcsin) x +C $$ $$ \int \frac(dx)(1+x^2 ) = \text(arctg) x +C $$ $$ \int \text(ch) x dx = \text(sh) x +C $$ $$ \int \text(sh) x dx = \text(ch) ) x + C $$

Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

Додаток інтеграла до вирішення прикладних завдань

Обчислення площі

Певний інтеграл безперервної невід'ємної функції f(x) чисельно дорівнюєплощі криволінійної трапеції, обмеженої кривою y = f(x), віссю Ох і прямими х = а і х = b. Відповідно до цього формула площі записується так:

Розглянемо деякі приклади на обчислення площ плоских фігур.

Завдання № 1. Обчислити площу, обмежену лініями y = x 2 +1, y = 0, x = 0, x = 2.

Рішення.Побудуємо фігуру, площу якої ми маємо обчислити.

y = x 2 + 1 – це парабола гілки якої спрямовані вгору, і парабола зміщена щодо осі O y вгору одну одиницю (рисунок 1).

Малюнок 1. Графік функції y = x 2 + 1

Завдання № 2. Обчислити площу, обмежену лініями y = x 2 – 1, y = 0 у межах від 0 до 1.


Рішення.Графіком даної функції є парабола гілки, якої спрямовані вгору, і парабола зміщена щодо осі O y вниз одну одиницю (рисунок 2).

Малюнок 2. Графік функції y = x 2 – 1


Завдання № 3. Зробіть креслення та обчисліть площу фігури, обмеженою лініями

y = 8 + 2x - x 2 і y = 2x - 4.

Рішення.Перша з цих двох ліній – парабола, спрямована гілками вниз, оскільки коефіцієнт при x 2 негативний, а друга лінія – пряма, що перетинає обидві осі координат.

Для побудови параболи знайдемо координати її вершини: y=2 – 2x; 2 – 2x = 0, x = 1 – абсцис вершини; y(1) = 8 + 2∙1 – 1 2 = 9 – її ордината, N(1;9) – вершина.

Тепер знайдемо точки перетину параболи та прямий, розв'язавши систему рівнянь:

Прирівнюючи праві частини рівняння, ліві частини яких рівні.

Отримаємо 8 + 2x - x 2 = 2x - 4 або x 2 - 12 = 0, звідки .

Отже, точки – точки перетину параболи та прямий (рисунок 1).


Малюнок 3 Графіки функцій y = 8 + 2x – x 2 та y = 2x – 4

Побудуємо пряму y = 2x - 4. Вона проходить через точки (0; -4), (2; 0) на осях координат.

Для побудови параболи можна ще її точки перетину з віссю 0x, тобто коріння рівняння 8 + 2x – x 2 = 0 або x 2 – 2x – 8 = 0. За теоремою Вієта легко знайти його коріння: x 1 = 2, x 2 = 4.

На малюнку 3 зображено фігуру (параболічний сегмент M 1 N M 2), обмежений даними лініями.

Друга частина завдання полягає у знаходженні площі цієї фігури. Її площу можна знайти за допомогою певного інтегралу за формулою .

Стосовно до даною умовою, Отримаємо інтеграл:

2 Обчислення об'єму тіла обертання

Обсяг тіла, отриманого від обертання кривої y = f(x) навколо осі Ох, обчислюється за формулою:

При обертанні навколо осі О y формула має вигляд:

Завдання №4. Визначити об'єм тіла, отриманого від обертання криволінійної трапеції, обмеженої прямими х = 0 х = 3 та кривою y = навколо осі О х.

Рішення.Побудуємо рисунок (рисунок 4).

Малюнок 4. Графік функції y =

Обсяг, що шукається, дорівнює


Завдання №5. Обчислити обсяг тіла, отриманого від обертання криволінійної трапеції, обмеженою кривою y = x 2 і прямими y = 0 і y = 4 навколо осі O y .

Рішення.Маємо:

Запитання для повторення

Насправді, для того щоб знаходити площу фігури не треба так багато знань з невизначеного і певного інтегралу. Завдання «обчислити площу за допомогою певного інтегралу» завжди передбачає побудову кресленняТому набагато актуальнішим питанням будуть ваші знання та навички побудови креслень. У зв'язку з цим корисно освіжити в пам'яті графіки основних елементарних функцій, а, як мінімум, вміти будувати пряму, і гіперболу.

Криволінійною трапецією називається плоска фігура, обмежена віссю , прямими , і безперервною графіком на відрізку функції , яка не змінює знак на цьому проміжку. Нехай дана фігурарозташована не нижчеосі абсцис:

Тоді площа криволінійної трапеції чисельно дорівнює певному інтегралу. Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст.

З погляду геометрії певний інтеграл – це ПЛОЩА.

Тобто,певному інтегралу (якщо він існує) геометрично відповідає площа певної постаті. Наприклад, розглянемо певний інтеграл. Підінтегральна функція задає на площині криву, що знаходиться вище за осі (бажаючі можуть виконати креслення), а сам певний інтеграл чисельно дорівнює площівідповідної криволінійної трапеції.

Приклад 1

Це типове формулювання завдання. Перший і найважливіший моментрішення - побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім- параболи, гіперболи, графіки інших функцій. Графіки функцій вигідніше будувати крапково.

У цій задачі рішення може виглядати так.
Виконаємо креслення (зверніть увагу, що рівняння задає вісь):


На відрізку графік функції розташований над віссютому:

Відповідь:

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У даному випадку«на вічко» підраховуємо кількість клітин у кресленні - ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшла, скажімо, відповідь: 20 квадратних одиниць, то, зрозуміло, десь допущена помилка - у розглянуту постать 20 клітинок вочевидь не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 3

Обчислити площу фігури, обмеженою лініями і координатними осями.

Рішення: Виконаємо креслення:


Якщо криволінійна трапеція розташована під віссю(або, принаймні, Не вищеданої осі), то її площу можна знайти за формулою:


В даному випадку:

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями , .

Рішення: Спочатку потрібно виконати креслення Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи та прямий. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Значить, нижня межа інтегрування, верхня межа інтегрування.

Цим способом краще, наскільки можна, не користуватися.

Набагато вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). І такий приклад ми теж розглянемо.

Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

А зараз робоча формула : Якщо на відрізку деяка безперервна функція більше або дорівнюєдеякою безперервної функції, то площа фігури, обмеженої графіками даних функцій і прямими , можна знайти за формулою:

Тут уже не треба думати, де розташована постать - над віссю чи під віссю, і, грубо кажучи, важливо, який графік Вище(щодо іншого графіка), а який - НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою зверху і прямою знизу.
На відрізку , за відповідною формулою:

Відповідь:

Приклад 4

Обчислити площу фігури, обмеженою лініями , , , .

Рішення: Спочатку виконаємо креслення:

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці через неуважність нерідко виникає «глюк», що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад корисний і тим, що в ньому площа фігури вважається за допомогою двох певних інтегралів.

Дійсно:

1) На відрізку над віссю розташований графік прямий;

2) На відрізку над віссю розташований графік гіперболи.

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

З цієї статті ви дізнаєтеся, як знайти площу фігури, обмеженою лініями, використовуючи обчислення за допомогою інтегралів. Вперше з постановкою такого завдання ми стикаємося у старших класах, коли тільки-но пройдено вивчення певних інтегралів і настав час приступити до геометричної інтерпретації отриманих знань на практиці.

Отже, що буде потрібно для успішного вирішення задачі з пошуку площі фігури за допомогою інтегралів:

  • Вміння грамотно будувати креслення;
  • Вміння вирішувати певний інтеграл за допомогою відомої формулиНьютона-Лейбніца;
  • Вміння «побачити» вигідніший варіант рішення - тобто. зрозуміти, як у тому чи іншому випадку буде зручніше проводити інтегрування? Вздовж осі ікс (OX) чи осі ігорок (OY)?
  • Ну і куди без коректних обчислень? Сюди входить розуміння як вирішувати той інший тип інтегралів і правильні чисельні обчислення.

Алгоритм розв'язання задачі з обчислення площі фігури, обмеженої лініями:

1. Будуємо креслення. Бажано це робити на листку в клітку з великим масштабом. Підписуємо олівцем над кожним графіком назву цієї функції. Підпис графіків робиться виключно задля зручності подальших обчислень. Отримавши графік шуканої постаті, найчастіше буде видно відразу, які межі інтегрування буде використано. Таким чином ми вирішуємо завдання графічним методом. Однак буває так, що значення меж дробові чи ірраціональні. Тому, можна зробити додаткові розрахунки, переходимо за крок два.

2. Якщо явно не задані межі інтегрування, то знаходимо точки перетину графіків один з одним, і дивимося, чи наше графічне рішення збігається з аналітичним.

3. Далі необхідно проаналізувати креслення. Залежно від цього, як розташовуються графіки функцій, існують різні підходи до знаходження площі фігури. Розглянемо різні прикладина перебування площі фігури з допомогою інтегралів.

3.1. Найкласичніший і найпростіший варіант завдання, це коли потрібно знайти площу криволінійної трапеції. Що таке криволінійна трапеція? Це плоска фігура, обмежена віссю ікс (у = 0), Прямими х = а, х = bі будь-який кривий, безперервний на проміжку від aдо b. При цьому дана фігура невід'ємна і розташовується не нижче осі абсцис. У цьому випадку площа криволінійної трапеції чисельно дорівнює певному інтегралу, що обчислюється за формулою Ньютона-Лейбніца:

Приклад 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Якими лініями обмежена фігура? Маємо параболу y = x2 - 3x + 3, яка розташовується над віссю ОХ, Вона невід'ємна, т.к. всі точки цієї параболи мають позитивні значення. Далі задані прямі х = 1і х = 3, які пролягають паралельно до осі ОУ, є обмежувальними лініями фігури зліва та справа. Ну і у = 0, вона ж вісь ікс, яка обмежує фігуру знизу. Отримана фігура заштрихована, як видно із малюнка зліва. В даному випадку можна відразу приступати до вирішення задачі. Перед нами простий приклад криволінійної трапеції, яку вирішуємо за допомогою формули Ньютона-Лейбніца.

3.2. У попередньому пункті 3.1 розібрано випадок, коли криволінійна трапеція розташована над віссю ікс. Тепер розглянемо випадок, коли умови завдання такі самі, крім того, що функція пролягає під віссю ікс. До стандартної формули Ньютона-Лейбніца додається мінус. Як розв'язувати цю задачу розглянемо далі.

Приклад 2 . Обчислити площу фігури, обмеженою лініями y = x2 + 6x + 2, x = -4, x = -1, y = 0.

У даному прикладімаємо параболу y = x2 + 6x + 2, яка бере свій початок з-під осі ОХпрямі х = -4, х = -1, у = 0. Тут у = 0обмежує шукану фігуру зверху. Прямі х = -4і х = -1це межі, у межах яких обчислюватиметься певний інтеграл. Принцип розв'язання задачі на пошук площі фігури практично повністю збігається з прикладом №1. Єдина відмінність у тому, що задана функціяне позитивна, і все також безперервна на проміжку [-4; -1] . Що означає не позитивна? Як видно з малюнка, фігура, яка полягає в рамках заданих іксів, має виключно «негативні» координати, що нам і потрібно побачити і пам'ятати при вирішенні задачі. Площу фігури шукаємо за формулою Ньютона-Лейбніца, тільки зі знаком мінус на початку.

Статтю не завершено.

Схожі статті

2023 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.