Визначення тангенсу онлайн. Прямокутний трикутник. Повний ілюстрований гід (2019)

Пряма y=f(x) буде дотичною до зображеного на малюнку графіка в точці х0 у тому випадку, якщо вона проходить через точку з координатами (х0; f(x0)) і має кутовий коефіцієнт f"(x0). Знайти такий коефіцієнт, знаючи особливості щодо, нескладно.

Вам знадобиться

  • - математичний довідник;
  • - Звичайний олівець;
  • - Зошит;
  • - транспортир;
  • - циркуль;
  • - Ручка.

Інструкція

Якщо значення f(x0) не існує, то або дотичної немає, або вона проходить вертикально. З огляду на це наявність похідної функції в точці х0 обумовлена ​​існуванням невертикальної дотичної, що стикається з графіком функції в точці (х0, f(х0)). У цьому випадку кутовий коефіцієнт дотичної дорівнює f"(х0). Таким чином, стає зрозумілим геометричний сенс похідної - розрахунок кутового коефіцієнта дотичної.

Зобразіть додаткові дотичні, які стикалися з графіком функції в точках x1, х2 і х3, і позначте кути, утворювані цими дотичними з віссю абсцис (такий кут відлічують позитивно від осі до дотичної прямої). Наприклад, кут, тобто α1, буде гострим, другий (α2) – тупий, а третій (α3) дорівнює нулю, оскільки дотична пряма паралельна осі ОХ. У разі тангенс тупого кута – негативне , тангенс гострого кута – позитивне, а при tg0 результат дорівнює нулю.

Зверніть увагу

Правильно визначте кут, що утворюється дотичною. Для цього використовуйте транспортир.

Корисна порада

Дві похилі прямі будуть паралельними у разі, якщо їх кутові коефіцієнти рівні між собою; перпендикулярними, якщо добуток кутових коефіцієнтів цих дотичних дорівнює -1.

Джерела:

  • Стосовна графіку функції

Косинус, як і синус, відносять до «прямих» тригонометричних функцій. Тангенс (разом з котангенсом) зараховують до іншої пари, яка називається «похідними». Існує кілька визначень цих функцій, які уможливлюють знаходження тангенсу заданого по відомого значеннякосинуса від цієї величини.

Інструкція

Відніміть приватне від одиниці на зведене значення косинуса заданого кута, а з результату витягніть квадратний корінь - це і буде значення тангенса від кута, виражене його косинус: tg(α)=√(1-1/(cos(α))²) . При цьому зверніть увагу на те, що у формулі косинус стоїть у знаменнику дробу. Неможливість поділу на нуль виключає використання цього виразу для кутів, рівних 90°, а також від цієї величини числа, кратні 180° (270°, 450°, -90° тощо.).

Існує і альтернативний спосібобчислення тангенсу за відомим значенням косинуса. Його можна застосовувати, якщо не встановлено обмеження щодо використання інших . Для цього способу спочатку визначте величину кута за відомим значенням косинуса - це можна зробити з допомогою функції арккосинус. Потім просто розрахуйте тангенс для кута отриманої величини. У загальному виглядіцей алгоритм можна записати так: tg(α)=tg(arccos(cos(α))).

Є ще екзотичний варіант з використанням визначення косинуса і тангенса через гострі кути прямокутного трикутника. Косинусу в такому визначенні відповідає відношення довжини катета, що прилягає до розглянутого кута, до довжини гіпотенузи. Знаючи значення косинуса, можна підібрати відповідні йому довжини цих двох сторін. Наприклад, якщо cos(α)=0,5, то прилеглий можна прийняти рівним 10см, а гіпотенузу - 20см. Конкретні числа тут значення не мають - однакове і правильне ви отримаєте з будь-якими значеннями, що мають . Потім по теоремі Піфагора визначте довжину сторони, що бракує, - протилежного катета. Вона дорівнюватиме квадратного кореняіз різниці між довжинами зведених у квадрат гіпотенузи та відомого катета: √(20²-10²)=√300. Тангенсу за визначенням відповідає відношення довжин протилежного та прилеглого катетів (√300/10) - розрахуйте його та отримайте значення тангенсу, знайдене з використанням класичного визначення косинуса.

Джерела:

  • косинус через тангенс формула

Одна з тригонометричних функцій, Найчастіше позначається літерами tg, хоча зустрічаються і позначення tan. Найпростіше уявити тангенс як ставлення синуса кутадо його косінусу. Це непарна періодична і не безперервна функція, Кожен цикл якої дорівнює числу Пі, а точка розриву відповідає позначці в половину цього числа.

Одним із розділів математики, з якими школярі справляються з найбільшими труднощами, є тригонометрія. Не дивно: щоб вільно оволодіти цією областю знань, потрібна наявність просторового мислення, вміння знаходити синуси, косинуси, тангенси, котангенси за формулами, спрощувати висловлювання, вміти застосовувати у обчисленнях число пі. Крім цього, потрібно вміти застосовувати тригонометрію за доказом теорем, а це вимагає або розвиненої математичної пам'яті, або вміння виводити непрості логічні ланцюжки.

Витоки тригонометрії

Знайомство з цією наукою слід розпочати з визначення синуса, косинуса і тангенса кута, проте спочатку необхідно розібратися, чим займається тригонометрія.

Історично основним об'єктом дослідження цього розділу математичної науки були прямокутні трикутники. Наявність кута в 90 градусів дає можливість здійснювати різні операції, що дозволяють по двох сторонах і одному куті або по двох кутах і одній стороні визначати значення всіх параметрів фігури, що розглядається. У минулому люди помітили цю закономірність і стали активно користуватися нею при будівництві будівель, навігації, в астрономії і навіть у мистецтві.

Початковий етап

Спочатку люди міркували про взаємини кутів і сторін винятково з прикладу прямокутних трикутників. Потім були відкриті особливі формули, що дозволили розширити межі вживання в повсякденному життіцього розділу математики.

Вивчення тригонометрії у школі сьогодні починається з прямокутних трикутників, після чого отримані знання використовуються учнями у фізиці та вирішенні абстрактних тригонометричних рівнянь, робота з якими починається у старших класах

Сферична тригонометрія

Пізніше, коли наука вийшла на наступний рівень розвитку, формули із синусом, косінусом, тангенсом, котангенсом стали використовуватися у сферичній геометрії, де діють інші правила, а сума кутів у трикутнику завжди більша за 180 градусів. Цей розділ не вивчається в школі, проте знати про його існування необхідно як мінімум тому, що земна поверхня, та й поверхня будь-якої іншої планети, є опуклою, а отже, будь-яка розмітка поверхні буде в тривимірному просторі «дугоподібною».

Візьміть глобус та нитку. Прикладіть нитку до двох будь-яких точок на глобусі, щоб вона виявилася натягнутою. Зверніть увагу - вона набула форми дуги. З такими формами і має справу сферична геометрія, що застосовується в геодезії, астрономії та інших теоретичних та прикладних сферах.

Прямокутний трикутник

Дещо дізнавшись про способи застосування тригонометрії, повернемося до базової тригонометрії, щоб надалі розібратися, що таке синус, косинус, тангенс, які розрахунки можна з їх допомогою виконувати і які формули при цьому використовувати.

Насамперед необхідно усвідомити поняття, які стосуються прямокутного трикутника. По-перше, гіпотенуза - це сторона, що лежить навпроти кута 90 градусів. Вона є найдовшою. Ми пам'ятаємо, що за теоремою Піфагора її чисельне значення дорівнює кореню із суми квадратів двох інших сторін.

Наприклад, якщо дві сторони дорівнюють 3 і 4 сантиметрам відповідно, довжина гіпотенузи становитиме 5 сантиметрів. До речі, про це знали ще давні єгиптяни близько чотирьох із половиною тисяч років тому.

Дві сторони, що залишилися, які утворюють прямий кут, звуться катетів. Крім того, треба пам'ятати, що сума кутів у трикутнику в прямокутної системикоординат дорівнює 180 градусів.

Визначення

Нарешті, твердо розуміючи геометричну основу, можна звернутися до визначення синуса, косинуса та тангенсу кута.

Синусом кута називається відношення протилежного катета (тобто сторони, що знаходиться навпроти потрібного кута) до гіпотенузи. Косинусом кута називається відношення прилеглого катета до гіпотенузи.

Запам'ятайте, що ні синус, ні косинус не може бути більше одиниці! Чому? Тому що гіпотенуза - це за умовчанням найдовша Яким би довгим не був катет, він буде коротшим за гіпотенузу, а значить, їх відношення завжди буде менше одиниці. Таким чином, якщо у вас у відповіді до завдання вийшов синус або косинус зі значенням більшим, ніж 1, шукайте помилку в розрахунках або міркуваннях. Ця відповідь однозначно невірна.

Нарешті, тангенсом кута називається відношення протилежної сторони до прилеглої. Той самий результат дасть поділ синуса на косинус. Подивіться: відповідно до формули ми ділимо довжину сторони на гіпотенузу, після чого ділимо на довжину другої сторони та множимо на гіпотенузу. Таким чином, ми отримуємо те саме співвідношення, що і у визначенні тангенса.

Котангенс, відповідно, є відношенням прилеглої до кута сторони до протилежної. Той самий результат ми отримаємо, розділивши одиницю на тангенс.

Отже, ми розглянули визначення, що таке синус, косинус, тангенс та котангенс, і можемо зайнятися формулами.

Найпростіші формули

У тригонометрії не обійтися без формул – як знайти синус, косинус, тангенс, котангенс без них? Адже саме це потрібно при вирішенні завдань.

Перша формула, яку необхідно знати, починаючи вивчати тригонометрію, свідчить, що сума квадратів синуса і косинуса кута дорівнює одиниці. Ця формулає прямим наслідком теореми Піфагора, проте дозволяє заощадити час, якщо потрібно дізнатися про величину кута, а не сторони.

Багато учнів що неспроможні запам'ятати другу формулу, також дуже популярну під час вирішення шкільних завдань: сума одиниці і квадрата тангенса кута дорівнює одиниці, поділеної на квадрат косинуса кута. Придивіться: адже це те саме твердження, що й у першій формулі, тільки обидві сторони тотожності були поділені на квадрат косинуса. Виходить, проста математична операція робить тригонометричну формулу абсолютно невпізнанною. Пам'ятайте: знаючи, що таке синус, косинус, тангенс і котангенс, правила перетворення і кілька базових формул ви будь-якої миті зможете самі вивести необхідні більше складні формулина папері.

Формули подвійного кута та складання аргументів

Ще дві формули, які потрібно вивчити, пов'язані зі значеннями синуса та косинуса при сумі та різниці кутів. Вони представлені нижче. Зверніть увагу, що в першому випадку обидва рази перемножується синус та косинус, а в другому складається попарний добуток синуса та косинуса.

Також є формули, пов'язані з аргументами у вигляді подвійного кута. Вони повністю виводяться з попередніх - як тренування спробуйте отримати їх самостійно, прийнявши кут альфа рівним кутубета.

Нарешті, зверніть увагу, що формули подвійного кута можна перетворити так, щоб знизити рівень синуса, косинуса, тангенса альфа.

Теореми

Двома основними теоремами в базовій тригонометрії є теорема синусів та теорема косінусів. За допомогою цих теорем ви легко зможете зрозуміти, як знайти синус, косинус і тангенс, а отже, і площу фігури, і величину кожної сторони тощо.

Теорема синусів стверджує, що в результаті розподілу довжини кожної зі сторін трикутника на величину протилежного кута ми отримаємо однакове число. Більше того, це число дорівнюватиме двом радіусам описаного кола, тобто кола, що містить всі точки даного трикутника.

Теорема косінусів узагальнює теорему Піфагора, проеціруя її будь-які трикутники. Виявляється, із суми квадратів двох сторін відняти їх добуток, помножений на подвійний косинус суміжного їм кута - отримане значення виявиться рівним квадрату третьої сторони. Таким чином, теорема Піфагора виявляється окремим випадком теореми косінусів.

Помилки з неуважності

Навіть знаючи, що таке синус, косинус і тангенс, легко зробити помилку через неуважність або помилки в найпростіших розрахунках. Щоб уникнути таких помилок, ознайомимося з найпопулярнішими з них.

По-перше, не слід перетворювати звичайні дроби на десяткові до отримання остаточного результату - можна й відповідь залишити у вигляді звичайного дробу, якщо умові не обумовлено зворотне. Таке перетворення не можна назвати помилкою, проте слід пам'ятати, що на кожному етапі завдання можуть з'явитися нові корені, які за задумом автора повинні скоротитися. У цьому випадку ви дарма згаєте час на зайві математичні операції. Особливо це актуально для таких значень, як корінь із трьох або з двох, адже вони зустрічаються в завданнях на кожному кроці. Те саме стосується заокруглень «некрасивих» чисел.

Далі, зверніть увагу, що до будь-якого трикутника застосовна теорема косінусів, але не теорема Піфагора! Якщо ви помилково забудете відняти подвійний твір сторін, помножений на косинус кута між ними, ви не тільки отримаєте абсолютно невірний результат, але й продемонструєте повне нерозуміння предмета. Це гірше, ніж помилка через неуважність.

По-третє, не плутайте значення для кутів 30 і 60 градусів для синусів, косінусів, тангенсів, котангенсів. Запам'ятайте ці значення, адже синус 30 градусів дорівнює косінусу 60, і навпаки. Їх легко переплутати, внаслідок чого ви неминуче отримаєте хибний результат.

Застосування

Багато учнів не поспішають братися до вивчення тригонометрії, оскільки розуміють її прикладного сенсу. Що таке синус, косинус, тангенс для інженера чи астронома? Це поняття, завдяки яким можна вирахувати відстань до далеких зірок, передбачити падіння метеорита, відправити дослідницький зонд на іншу планету. Без них не можна звести будинок, спроектувати автомобіль, розрахувати навантаження на поверхню або траєкторію руху предмета. І це лише очевидні приклади! Адже тригонометрія у тому чи іншому вигляді використовується всюди, починаючи від музики та закінчуючи медициною.

На закінчення

Отже, ви синус, косинус, тангенс. Ви можете використовувати їх у розрахунках та успішно вирішувати шкільні завдання.

Вся суть тригонометрії зводиться до того, що за відомими параметрами трикутника потрібно вирахувати невідомі. Усього цих параметрів шість: довжини трьохсторін та величини трьох кутів. Вся різниця в завданнях полягає в тому, що даються різні вхідні дані.

Як знайти синус, косинус, тангенс, виходячи з відомих довжин катетів або гіпотенузи, ви тепер знаєте. Оскільки ці терміни позначають не що інше, як відношення, а відношення - це дріб, головною метою тригонометричної задачі стає знаходження коренів звичайного рівняння або системи рівнянь. І тут вам допоможе звична шкільна математика.

Поняття синуса (), косинуса (), тангенса (), котангенса () нерозривно пов'язані з поняттям кута. Щоб добре розібратися в цих, на перший погляд, складних поняттях (які викликають у багатьох школярів стан жаху), і переконатися, що «не такий страшний чорт, як його малюють», почнемо від початку і розберемося в понятті кута.

Поняття кута: радіан, градус

Давай подивимося малюнку. Вектор «повернувся» щодо точки на певну величину. Так ось мірою цього повороту щодо початкового положення і виступатиме кут.

Що ще необхідно знати про поняття кута? Ну, звичайно ж, одиниці виміру кута!

Кут, як і геометрії, і у тригонометрії, може вимірюватися у градусах і радіанах.

Кутом (один градус) називають центральний кут в колі, що спирається на кругову дугу, рівну частині кола. Таким чином, все коло складається з «шматочків» кругових дуг, або кут, що описується колом, дорівнює.

Тобто малюнку вище зображений кут, рівний, тобто цей кут спирається на кругову дугу розміром довжини кола.

Кутом у радіан називають центральний кут в колі, що спирається на кругову дугу, довжина якої дорівнює радіусу кола. Ну що, розібрався? Якщо ні, то давай розумітися на малюнку.

Отже, на малюнку зображено кут, рівний радіану, тобто цей кут спирається на кругову дугу, довжина якої дорівнює радіусу кола (довжина дорівнює довжині або радіус дорівнює довжинідуги). Таким чином, довжина дуги обчислюється за такою формулою:

Де – центральний кут у радіанах.

Ну що, можеш, знаючи це, відповісти, скільки радіан містить кут, який описує коло? Так, для цього треба згадати формулу довжини кола. Ось вона:

Ну ось, тепер співвіднесемо ці дві формули і отримаємо, що кут, що описується коло дорівнює. Тобто, співвіднісши величину у градусах та радіанах, отримуємо, що. Відповідно, . Як можна побачити, на відміну «градусів», слово «радіан» опускається, оскільки одиниця виміру зазвичай зрозуміла з контексту.

А скільки радіан складають? Все вірно!

Вловив? Тоді вперед закріплювати:

Виникли проблеми? Тоді дивись відповіді:

Прямокутний трикутник: синус, косинус, тангенс, котангенс кута

Отже, з поняттям кута розібралися. А що ж таке синус, косинус, тангенс, котангенс кута? Давай розбиратись. Для цього нам допоможе прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, що лежить навпроти прямого кута (у прикладі це сторона); катети - це дві сторони, що залишилися і (ті, що прилягають до прямому куту), причому, якщо розглядати катети щодо кута, то катет – це прилеглий катет, а катет – протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику.

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику.

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику.

Котангенс кута- це відношення прилеглого (близького) катета до протилежного (далекого).

У нашому трикутнику.

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилеглий;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута. За визначенням, з трикутника: , але ми можемо обчислити косинус кута і з трикутника: . Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника, зображеного нижче малюнку, знайдемо.

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута.

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з рівним радіусом. Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (у нашому прикладі, це радіус).

Кожній точці кола відповідають два числа: координата по осі та координата по осі. А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник. Він прямокутний, оскільки є перпендикуляром до осі.

Чому дорівнює трикутнику? Все вірно. Крім того, нам відомо, що - це радіус одиничного кола, а значить, . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

А чому дорівнює трикутнику? Ну звичайно, ! Підставимо значення радіуса в цю формулу та отримаємо:

Так, а можеш сказати, які координати має точка, що належить колу? Ну що, аж ніяк? А якщо збагнути, що й – це просто числа? Який координаті відповідає? Ну, звісно, ​​координати! А якій координаті відповідає? Все правильно, координати! Таким чином, точка.

А чому тоді рівні? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу та отримаємо, що, а.

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося в даному прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник: кут (як прилеглий до кута). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

Ну от, як бачиш, значення синуса кута так само відповідає координаті; значення косинуса кута – координаті; а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове становище радіус-вектора - вздовж позитивного спрямування осі. Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оберт радіус-вектора по колу становить або. А чи можна повернути радіус-вектор на чи на? Ну звісно, ​​можна! У першому випадку, таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні.

У другому випадку, тобто радіус-вектор зробить три повні обороти і зупиниться в положенні або.

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на або (де - будь-яке ціле число), відповідають одному положенню радіус-вектора.

Нижче на малюнку зображено кут. Це зображення відповідає куту тощо. Цей список можна продовжити до безкінечності. Всі ці кути можна записати загальною формулою або (де – будь-яке ціле число)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку відповідає точка з координатами, отже:

Не існує;

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам відповідають точки з координатами, відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

Не існує

Не існує

Не існує

Не існує

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

А ось значення тригонометричних функцій кутів і, наведених нижче в таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синусу для всіх трьох заходівкута (), а також значення тангенсу кута ст. Знаючи ці значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілочок, тобто:

Знаючи це можна відновити значення. Чисельник « » буде відповідати, а знаменник « » відповідає. Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити і запам'ятати схему зі стрілочками, достатньо пам'ятати всього значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту?

Ну, звісно, ​​можна! Давай виведемо загальну формулудля знаходження координат точки.

Ось, наприклад, перед нами таке коло:

Нам дано, що точка – центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, одержаної поворотом точки на градусів.

Як очевидно з малюнка, координаті точки відповідає довжина відрізка. Довжина відрізка відповідає координаті центру кола, тобто дорівнює. Довжину відрізка можна виразити, використовуючи визначення косинуса:

Тоді маємо, що для точки координат.

За тією ж логікою знаходимо значення координати для точки. Таким чином,

Отже, у загальному вигляді координати точок визначаються за формулами:

Координати центру кола,

Радіус кола,

Кут повороту вектор радіуса.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, так як координати центру дорівнюють нулю, а радіус дорівнює одиниці:

Ну що, спробуємо ці формули на смак, повправляючись у знаходженні крапок на колі?

1. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

2. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

3. Знайти координати точки на одиничному колі, отриманому поворотом точки на.

4. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

5. Крапка - центр кола. Радіус кола дорівнює. Необхідно знайти координати точки, отриманої поворотом початкового радіус-вектора.

Виникли проблеми у знаходженні координот точки на колі?

Розв'яжи ці п'ять прикладів (або добре розберись у рішенні) і ти навчишся їх знаходити!

1.

Можна побачити, що. Адже ми знаємо, що відповідає повному обороту початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

2. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Ми знаємо, що відповідає двом повним оборотам початкової точки. Таким чином, точка, що шукається, буде знаходитися в тому ж положенні, що і при повороті на. Знаючи це, знайдемо шукані координати точки:

Синус та косинус - це табличні значення. Згадуємо їх значення та отримуємо:

Таким чином, потрібна точка має координати.

3. Окружність одинична з центром у точці, отже, ми можемо скористатися спрощеними формулами:

Можна зауважити, що. Зобразимо приклад на малюнку:

Радіус утворює з віссю кути, рівні та. Знаючи, що табличні значення косинуса та синуса рівні, і визначивши, що косинус тут набуває від'ємне значення, А синус позитивне, маємо:

Докладніше такі приклади розбираються щодо формул приведення тригонометричних функцій у темі .

Таким чином, потрібна точка має координати.

4.

Кут повороту радіуса вектора (за умовою)

Для визначення відповідних знаків синуса та косинуса побудуємо одиничне коло та кут:

Як можна побачити, значення, тобто позитивно, а значення, тобто – негативно. Знаючи табличні значення відповідних тригонометричних функцій, отримуємо, що:

Підставимо отримані значення в нашу формулу і знайдемо координати:

Таким чином, потрібна точка має координати.

5. Для вирішення цього завдання скористаємося формулами у загальному вигляді, де

Координати центру кола (у нашому прикладі,

Радіус кола (за умовою,)

Кут повороту векторного радіуса (за умовою,).

Підставимо всі значення у формулу та отримаємо:

та - табличні значення. Згадуємо та підставляємо їх у формулу:

Таким чином, потрібна точка має координати.

КОРОТКИЙ ВИКЛАД І ОСНОВНІ ФОРМУЛИ

Синус кута - це відношення протилежного (далекого) катета до гіпотенузи.

Косинус кута – це відношення прилеглого (близького) катета до гіпотенузи.

Тангенс кута - це відношення протилежного (далекого) катета до прилеглого (близького).

Котангенс кута - це відношення прилеглого (близького) катета до протилежного (далекого).

Тригонометрія – тема, яку багато хто обходить стороною. Незважаючи на це, якщо знайти до неї правильний підхід, вона стане дуже цікавою для вас. Тригонометричні формули, у тому числі й формули для знаходження тангенсу, використовуються у багатьох сферах реального життя. Ця стаття розповість про способи знаходження тангенсу кута та наведе приклади застосування цієї величини у житті. Це дасть вам мотивацію на шляху вивчення цієї теми.

Незважаючи на думку, що існує серед більшості школярів, тригонометрія досить часто застосовується в житті. Наочний приклад практичного застосуваннядасть вам стимул не лінуватися. Ось кілька сфер діяльності, де використовуються тригонометричні обчислення, в тому числі і знаходження тангенсу кута:

  • економіка.
  • Астрономія.
  • Авіація.
  • Інженерія.

Отже, нижче буде наведено способи знаходження tg.

Як знайти tg кута

Знаходження тангенсу кута досить просто. Ви можете вивчити цю темуі просто визубрити правила, але все це може вилетіти з голови на іспиті. Тому варто підходити до даному питаннюосмислено. Основні формули для запам'ятовування:

  • tg0° = 0
  • tg30° = 1/√3
  • tg45° = 1
  • tg60° = √3
  • tg90° = ∞ (нескінченність/невизначено)

Зверніть увагу, що величини йдуть за зростанням: що більше кут – то більше значення тангенса. Відповідно, при градусному значенні кута в 0 ° ми отримаємо 0. При значенні в тридцять градусів - одиниця поділена на корінь з трьох і т.д., Поки ми не досягнемо позначки в 90 °. При ньому величина тангенса дорівнює нескінченності чи невизначеності (виходячи із конкретної ситуації).

Дані вирази випливають із правила знаходження тангенсу через прямокутний трикутник. Так, тангенс кута A (tgA) дорівнює співвідношенню протилежного катета до прилеглого. Уявіть, що дано прямокутний трикутник, у якому відомі всі сторони, але не відомі куту. За рішенням завдання потрібно знайти тангенс кута A. Величина сторони, що лежить навпроти кута – 1, а прилеглого катета – √3. Їхнє співвідношення дає 1/√3. Ми вже знаємо, що величина кута при даному показникудорівнює 30 градусів. Відповідно, кут A = 30 °.

У прямокутному трикутнику біля прямокутного кута обидва тангенси – прилеглі. Протилежна сторона цього кута – гіпотенуза. Саме тому, що ми не можемо розділити два катети один на одного (порушиться умова знаходження), тангенс 90° даному випадкуне існує.

Крім того, часто доводиться знаходити тангенс тупого кута. Зазвичай у завданнях зустрічаються тупі кути з величиною 120 або 150 градусів. Формула знаходження тангенса тупого кута виглядає так: tg(180-a) = tga.
Наприклад, нам потрібно знайти тангенс 120°. Необхідно поставити собі наступне питання: скільки потрібно відібрати від 180, щоб отримати 120? Однозначно, 60 °. Звідси випливає, що тангенс 120° та тангенс 60° дорівнюють один одному і tg120° = √3. За такою ж логікою можна знайти тангенс 150 і 180 градусів. Їх значення будуть відповідно дорівнюють 1/√3 і 0. Величини тангенсів інших кутів наведені в тригонометричній таблиці, але використовуються вони вкрай рідко.

Як знайти tg кута онлайн

Існує багато онлайн ресурсів для знаходження тангенсу кута. Одним із таких є сайт FXYZ. Перейдіть за посиланням. Перед вами вийде сторінка, де буде наведено основні формули, пов'язані з тангенсом, а також калькулятор. Використовувати калькулятор досить просто. Необхідно ввести відповідні та калькулятор обчислить відповідь. Цей нескладний алгоритм допоможе вам у випадку, якщо ви щось забули. На цьому сайті є два калькулятори. Один – знаходження величини тангенса з довжин катетів трикутника, а другий з величини кута. Використовуйте обчислювач, який потребує завдання.


Як ви могли помітити, знаходження тангенсу та інших тригонометричних показників часто застосовується в реальному житті, а знаходити ці значення зовсім нескладно. Якщо ви зрозумієте суть знаходження, то що-небудь зазубрювати вам не доведеться - ви зможете дійти до правильної відповіді. Якщо щось не виходить, скористайтеся калькулятором, але не зловживайте. На іспиті, заліку чи шкільній контрольній роботітакої можливості вам ніхто не надасть. Більше того, якщо ви вступите на факультет, де вивчається тригонометрія вищої математики, без базових знаньвам доведеться серйозно попітніти, щоб не зрізатися.

Що таке синус, косинус, тангенс, котангенс кута допоможе зрозуміти прямокутний трикутник.

Як називаються сторони прямокутного трикутника? Все вірно, гіпотенуза і катети: гіпотенуза - це сторона, яка лежить навпроти прямого кута (у нашому прикладі це сторона (AC)); катети - це дві сторони, що залишилися \(AB \) і \(BC \) (ті, що прилягають до прямого кута), причому, якщо розглядати катети щодо кута \(BC \) , то катет \(AB \) - це прилеглий катет, а катет (BC) - протилежний. Отже, тепер дамо відповідь на запитання: що таке синус, косинус, тангенс і котангенс кута?

Синус кута- Це ставлення протилежного (далекого) катета до гіпотенузи.

У нашому трикутнику:

\[ \sin \beta =\dfrac(BC)(AC) \]

Косинус кута- Це ставлення прилеглого (близького) катета до гіпотенузи.

У нашому трикутнику:

\[ \cos \beta =\dfrac(AB)(AC) \]

Тангенс кута- Це ставлення протилежного (далекого) катета до прилеглого (близького).

У нашому трикутнику:

\[ tg\beta = dfrac(BC)(AB) \]

Котангенс кута- Це ставлення прилеглого (близького) катета до протилежного (дальнього).

У нашому трикутнику:

\[ ctg\beta = dfrac(AB)(BC) \]

Ці визначення необхідні запам'ятати! Щоб було простіше запам'ятати який катет на що ділити, необхідно чітко усвідомити, що в тангенсеі котангенсісидять тільки катети, а гіпотенуза з'являється тільки в синусіі косинус. А далі можна придумати ланцюжок асоціацій. Наприклад, ось таку:

Косинус→торкатися→доторкнутися→прилеглий;

Котангенс→торкатися→доторкнутися→прилежний.

Насамперед, необхідно запам'ятати, що синус, косинус, тангенс і котангенс як відносини сторін трикутника не залежить від довжин цих сторін (при одному вугіллі). Не віриш? Тоді переконайся, подивившись на малюнок:

Розглянемо, наприклад, косинус кута (beta). За визначенням, із трикутника \(ABC \) : \(\cos \beta =\dfrac(AB)(AC)=\dfrac(4)(6)=\dfrac(2)(3) \), але ми можемо обчислити косинус кута \(\beta \) і з трикутника \(AHI \) : \(\cos \beta =\dfrac(AH)(AI)=\dfrac(6)(9)=\dfrac(2)(3) \). Бачиш, довжини у сторін різні, а значення косинуса одного кута одне й те саме. Таким чином, значення синуса, косинуса, тангенсу та котангенсу залежать виключно від величини кута.

Якщо розібрався у визначеннях, то вперед закріплюйте їх!

Для трикутника \(ABC \), зображеного нижче на малюнку, знайдемо \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \).

\(\begin(array)(l)\sin \ \alpha =\dfrac(4)(5)=0,8\\cos \ \alpha =\dfrac(3)(5)=0,6\\ tg \ \ alpha = \ dfrac (4) (3) \ \ ctg \ \ alpha = \ dfrac (3) (4) = 0,75 \ end (array) \)

Ну що, вловив? Тоді пробуй сам: порахуй те саме для кута (beta).

Відповіді: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac(4)(3) \).

Одиничне (тригонометричне) коло

Розбираючись у поняттях градуса і радіана, ми розглядали коло з радіусом, рівним (1). Таке коло називається одиничною. Вона дуже знадобиться щодо тригонометрії. Тому зупинимося на ній трохи докладніше.

Як можна помітити, це коло побудовано в декартовій системі координат. Радіус кола дорівнює одиниці, при цьому центр кола лежить на початку координат, початкове положення радіус-вектора зафіксовано вздовж позитивного напрямку осі (x) (у нашому прикладі, це радіус (AB)).

Кожній точці кола відповідають два числа: координата по осі (x) і координата по осі (y). А що це за числа-координати? І взагалі, яке відношення вони мають до цієї теми? Для цього треба згадати розглянутий прямокутний трикутник. На малюнку, наведеному вище, можна помітити цілих два прямокутні трикутники. Розглянемо трикутник (ACG). Він прямокутний, оскільки \(CG\) є перпендикуляром до осі \(x\).

Чому дорівнює \(\cos \ \alpha\) з трикутника \(ACG\)? Все вірно \(\cos \ \alpha =\dfrac(AG)(AC) \). Крім того, нам відомо, що \(AC \) - це радіус одиничного кола, а значить, \(AC=1 \) . Підставимо це значення на нашу формулу для косинуса. Ось що виходить:

\(\cos \ \alpha =\dfrac(AG)(AC)=\dfrac(AG)(1)=AG \).

А чому дорівнює \(\sin \ \alpha\) з трикутника \(ACG\)? Ну звичайно, \(\sin \alpha =\dfrac(CG)(AC) \)! Підставимо значення радіусу \(AC \) в цю формулу і отримаємо:

\(\sin \alpha =\dfrac(CG)(AC)=\dfrac(CG)(1)=CG \)

Так, а можеш сказати, які координати має точка (C), що належить колу? Ну що, аж ніяк? А якщо збагнути, що \(\cos\alpha\) і \(\sin\alpha\) - це просто числа? Який координаті відповідає \(\cos\alpha\)? Ну, звичайно, координаті (x)! А якій координаті відповідає \(\sin\alpha\)? Все правильно, координаті \ (y \)! Таким чином, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \).

А чому тоді рівні \(tg\alpha\) та \(ctg\alpha\)? Все вірно, скористаємося відповідними визначеннями тангенсу та котангенсу і отримаємо, що \(tg \alpha =\dfrac(\sin \alpha )(\cos \alpha )=\dfrac(y)(x) \), а \(ctg \alpha =\dfrac(\cos \alpha )(\sin \alpha )=\dfrac(x)(y) \).

А що, якщо кут буде більшим? Ось, наприклад, як у цьому рисунку:

Що ж змінилося у цьому прикладі? Давай розбиратись. Для цього знову звернемося до прямокутного трикутника. Розглянемо прямокутний трикутник \(((A)_(1))((C)_(1))G \) : кут (як прилеглий до кута \(\beta \) ). Чому дорівнює значення синуса, косинуса, тангенсу та котангенсу для кута \(((C)_(1))((A)_(1))G=180()^\circ -\beta \ \)? Все вірно, дотримуємося відповідних визначень тригонометричних функцій:

\(\begin(array)(l)\sin \angle ((C)_(1))((A)_(1))G=\dfrac(((C)_(1))G)(( (A)_(1))((C)_(1)))=\dfrac(((C)_(1))G)(1)=((C)_(1))G=y; \\\cos \angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((A)_(1)) ((C)_(1)))=\dfrac(((A)_(1))G)(1)=((A)_(1))G=x;\\tg\angle ((C )_(1))((A)_(1))G=\dfrac(((C)_(1))G)(((A)_(1))G)=\dfrac(y)( x);\ctg\angle ((C)_(1))((A)_(1))G=\dfrac(((A)_(1))G)(((C)_(1) ))G)=\dfrac(x)(y)\end(array) \)

Ну от, як бачиш, значення синуса кута так само відповідає координаті \ (y \) ; значення косинуса кута - координаті (x); а значення тангенсу та котангенсу відповідним співвідношенням. Таким чином, ці співвідношення можна застосовувати до будь-яких поворотів радіус-вектора.

Вже згадувалося, що початкове положення радіус-вектора - вздовж позитивного напрямку осі (x). Досі ми обертали цей вектор проти годинникової стрілки, а що буде, якщо повернути його за годинниковою стрілкою? Нічого екстраординарного, вийде так само кут певної величини, але він буде негативним. Таким чином, при обертанні радіус-вектора проти годинникової стрілки виходять позитивні кути, а при обертанні за годинниковою стрілкою - негативні.

Отже, ми знаємо, що цілий оборот радіус-вектора по колу складає \(360()^\circ \) або \(2\pi \). А чи можна повернути радіус-вектор на \(390()^\circ \) або на \(-1140()^\circ \) ? Ну звісно, ​​можна! В першому випадку, \(390()^\circ =360()^\circ +30()^\circ \), таким чином, радіус-вектор зробить один повний оборот і зупиниться в положенні \(30()^\circ \) або \(\dfrac(\pi)(6) \) .

У другому випадку, \(-1140()^\circ =-360()^\circ \cdot 3-60()^\circ \), тобто радіус-вектор зробить три повні обороти і зупиниться в положенні \(-60()^\circ \) або \(-\dfrac(\pi)(3) \) .

Таким чином, з наведених прикладів можемо зробити висновок, що кути, що відрізняються на \(360()^\circ \cdot m \) або \(2\pi \cdot m \) (де \(m \) - будь-яке ціле число ), відповідають тому самому положенню радіус-вектора.

Нижче малюнку зображений кут \(\beta =-60()^\circ \) . Це ж зображення відповідає куту \(-420()^\circ ,-780()^\circ ,\ 300()^\circ ,660()^\circ \)і т.д. Цей список можна продовжити до безкінечності. Усі ці кути можна записати загальною формулою \(\beta +360()^\circ \cdot m \)або \(\beta +2\pi \cdot m \) (де \(m \) – будь-яке ціле число)

\(\begin(array)(l)-420()^\circ =-60+360\cdot (-1);\-780()^\circ =-60+360\cdot (-2); \\300()^\circ =-60+360\cdot 1;\\660()^\circ =-60+360\cdot 2.\end(array) \)

Тепер, знаючи визначення основних тригонометричних функцій та використовуючи одиничне коло, спробуй відповісти, чому рівні значення:

\(\begin(array)(l)\sin \ 90()^\circ =?\\\cos \ 90()^\circ =?\\\text(tg)\ 90()^\circ =? \\text(ctg)\ 90()^\circ =?\\\sin \ 180()^\circ =\sin \ \pi =?\\cos \ 180()^\circ =\cos \ \pi =?\\\text(tg)\ 180()^\circ =\text(tg)\ \pi =?\\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =?\\\sin \ 270()^\circ =?\\\cos \ 270()^\circ =?\\\text(tg)\ 270()^\circ =?\\\text (ctg)\ 270()^\circ =?\\\sin \ 360()^\circ =?\\\cos \ 360()^\circ =? \circ =?\\\text(ctg)\ 360()^\circ =?\\\sin \ 450()^\circ =?\\\cos \ 450()^\circ =?\\\text (tg)\ 450()^\circ =?\\\text(ctg)\ 450()^\circ =?\end(array) \)

Ось тобі на допомогу одиничне коло:

Виникли проблеми? Тоді давай розбиратись. Отже, ми знаємо, що:

\(\begin(array)(l)\sin \alpha =y;\\cos\alpha =x;\tg\alpha =\dfrac(y)(x);\ctg\alpha =\dfrac(x )(y).\end(array) \)

Звідси ми визначаємо координати точок, що відповідають певним заходам кута. Ну що ж, почнемо по порядку: кутку в \(90()^\circ =\dfrac(\pi )(2) \)відповідає точка з координатами \(\left(0;1 \right) \) , отже:

\(\sin 90()^\circ =y=1 \);

\(\cos 90()^\circ =x=0 \);

\(\text(tg)\ 90()^\circ =\dfrac(y)(x)=\dfrac(1)(0)\Rightarrow \text(tg)\ 90()^\circ \)- не існує;

\(\text(ctg)\ 90()^\circ =\dfrac(x)(y)=\dfrac(0)(1)=0 \).

Далі, дотримуючись тієї ж логіки, з'ясовуємо, що кутам у \(180()^\circ ,\ 270()^\circ ,\ 360()^\circ ,\ 450()^\circ (=360()^\circ +90()^\circ)\ \ )відповідають точки з координатами \(\left(-1;0 \right),\text( )\left(0;-1 \right),\text( )\left(1;0 \right),\text( )\left(0 ;1 \right) \)відповідно. Знаючи це, легко визначити значення тригонометричних функцій у відповідних точках. Спочатку спробуй сам, а потім звіряйся з відповідями.

Відповіді:

\(\displaystyle \sin \ 180()^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180()^\circ =\cos \ \pi =-1 \)

\(\text(tg)\ 180()^\circ =\text(tg)\ \pi =\dfrac(0)(-1)=0 \)

\(\text(ctg)\ 180()^\circ =\text(ctg)\ \pi =\dfrac(-1)(0)\Rightarrow \text(ctg)\ \pi \)- не існує

\(\sin \ 270()^\circ =-1 \)

\(\cos \ 270()^\circ =0 \)

\(\text(tg)\ 270()^\circ =\dfrac(-1)(0)\Rightarrow \text(tg)\ 270()^\circ \)- не існує

\(\text(ctg)\ 270()^\circ =\dfrac(0)(-1)=0 \)

\(\sin \ 360()^\circ =0 \)

\(\cos \ 360()^\circ =1 \)

\(\text(tg)\ 360()^\circ =\dfrac(0)(1)=0 \)

\(\text(ctg)\ 360()^\circ =\dfrac(1)(0)\Rightarrow \text(ctg)\ 2\pi \)- не існує

\(\sin \ 450()^\circ =\sin \ \left(360()^\circ +90()^\circ \right)=\sin \ 90()^\circ =1 \)

\(\cos \ 450()^\circ =\cos \ \left(360()^\circ +90()^\circ \right)=\cos \ 90()^\circ =0 \)

\(\text(tg)\ 450()^\circ =\text(tg)\ \left(360()^\circ +90()^\circ \right)=\text(tg)\ 90() ^\circ =\dfrac(1)(0)\Rightarrow \text(tg)\ 450()^\circ \)- не існує

\(\text(ctg)\ 450()^\circ =\text(ctg)\left(360()^\circ +90()^\circ \right)=\text(ctg)\ 90()^ \circ =\dfrac(0)(1)=0 \).

Таким чином, ми можемо скласти таку табличку:

Немає потреби пам'ятати всі ці значення. Достатньо пам'ятати відповідність координат точок на одиничному колі та значень тригонометричних функцій:

\(\left. \begin(array)(l)\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac(y)(x);\\ctg \alpha =\ dfrac(x)(y).\end(array) \right\)\text(Треба запам'ятати або вміти виводити!! \) !}

А ось значення тригонометричних функцій кутів в і \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4) \), наведених нижче у таблиці, необхідно запам'ятати:

Не треба лякатися, зараз покажемо один із прикладів досить простого запам'ятовування відповідних значень:

Для користування цим методом життєво необхідно запам'ятати значення синуса для всіх трьох заходів кута ( \(30()^\circ =\dfrac(\pi )(6),\ 45()^\circ =\dfrac(\pi )(4),\ 60()^\circ =\dfrac(\pi )(3) \)), а також значення тангенса кута \(30()^\circ \) . Знаючи ці \ (4 \) значення, досить просто відновити всю таблицю цілком - значення косинуса переносяться відповідно до стрілок, тобто:

\(\begin(array)(l)\sin 30()^\circ =\cos \ 60()^\circ =\dfrac(1)(2)\ \\\sin 45()^\circ = \cos \ 45()^\circ =\dfrac(\sqrt(2))(2)\\\sin 60()^\circ =\cos \ 30()^\circ =\dfrac(\sqrt(3) ))(2)\ \end(array) \)

\(\text(tg)\ 30()^\circ \ =\dfrac(1)(\sqrt(3)) \)знаючи це можна відновити значення для \(\text(tg)\ 45()^\circ , \text(tg)\ 60()^\circ \). Чисельник "\(1 \)" буде відповідати \(\text(tg)\ 45()^\circ \ \) , а знаменник "\(\sqrt(\text(3)) \)" відповідає \(\text (tg) \ 60 () ^ \ circ \ \) . Значення котангенсу переносяться відповідно до стрілок, вказаних на малюнку. Якщо це усвідомити та запам'ятати схему зі стрілочками, то буде достатньо пам'ятати всього \(4\) значення з таблиці.

Координати точки на колі

А чи можна знайти точку (її координати) на колі, знаючи координати центру кола, його радіус та кут повороту? Ну, звісно, ​​можна! Давай виведемо загальну формулу для знаходження координат точки. Ось, наприклад, перед нами таке коло:

Нам дано, що точка \(K(((x)_(0));((y)_(0)))=K(3;2) \)- Центр кола. Радіус кола дорівнює \ (1,5 \). Необхідно знайти координати точки \(P \), отриманої поворотом точки \(O \) на \(\delta \) градусів.

Як видно з малюнка, координаті (x) точки (P) відповідає довжина відрізка (TP = UQ = UK + KQ). Довжина відрізка \ (UK \) відповідає координаті \ (x \) центру кола, тобто дорівнює \ (3 \). Довжину відрізка (KQ) можна виразити, використовуючи визначення косинуса:

\(\cos \ \delta =\dfrac(KQ)(KP)=\dfrac(KQ)(r)\Rightarrow KQ=r\cdot \cos \ \delta \).

Тоді маємо, що для точки \(P \) координата \(x=((x)_(0))+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \).

За тією ж логікою знаходимо значення координати для точки \(P \) . Таким чином,

\(y=((y)_(0))+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \).

Отже, у загальному вигляді координати точок визначаються за формулами:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta \\y=((y)_(0))+r\cdot \sin \ \delta \end(array) \), де

\(((x)_(0)),((y)_(0)) \) - координати центру кола,

\ (r \) - радіус кола,

\(\delta \) - Кут повороту радіуса вектора.

Як можна помітити, для одиничного кола, що розглядається нами, ці формули значно скорочуються, так як координати центру дорівнюють нулю, а радіус дорівнює одиниці:

\(\begin(array)(l)x=((x)_(0))+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y =((y)_(0))+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end(array) \)

У вашому браузері вимкнено Javascript.
Щоб розрахувати, необхідно дозволити елементи ActiveX!


Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.