Формула мат очікування та дисперсії випадкової величини. Математичне очікування дискретної випадкової величини

Як відомо, закон розподілу повністю характеризує випадкову величину. Однак часто закон розподілу невідомий і доводиться обмежуватись меншими відомостями. Іноді навіть вигідніше користуватися числами, що описують випадкову величину сумарно; такі числа називають числовими характеристиками випадкової величини. До важливих числових характеристик належить математичне очікування.

Математичне очікування, як буде показано далі, приблизно дорівнює середньому значенню випадкової величини. Для вирішення багатьох завдань достатньо знати математичне очікування. Наприклад, якщо відомо, що математичне очікування числа очок, що вибиваються, у першого стрілка більше, ніж у другого, то перший стрілець в середньому вибиває більше очок, ніж другий, і, отже, стріляє краще за другий. Хоча математичне очікування дає про випадкову величину значно менше відомостей, ніж закон її розподілу, але для вирішення завдань, подібних до наведеної та багатьох інших, знання математичного очікування виявляється достатнім.

§ 2. Математичне очікування дискретної випадкової величини

Математичним очікуваннямдискретної випадкової величини називають суму творів її можливих значень з їхньої ймовірності.

Нехай випадкова величина X може приймати лише значення х 1 х 2 , ..., х п , ймовірності яких відповідно дорівнюють р 1 , р 2 , . . ., р п . Тоді математичне очікування М(X) випадкової величини X визначається рівністю

М(X) = х 1 р 1 + х 2 р 2 + … + x n p n .

Якщо дискретна випадкова величина X приймає лічильна безліч можливих значень, то

М(Х)=

причому математичне очікування існує, якщо ряд правої частини рівності сходиться абсолютно.

Зауваження. З визначення слідує, що математичне очікування дискретної випадкової величини є невипадковою (постійною) величиною. Рекомендуємо запам'ятати це твердження, тому що далі воно використовується багаторазово. Надалі буде показано, що математичне очікування безперервної випадкової величини є постійна величина.

приклад 1.Знайти математичне очікування випадкової величини X, знаючи закон її розподілу:

Рішення. Шукане математичне очікування дорівнює сумі творів всіх можливих значень випадкової величини з їхньої ймовірності:

M(X)= 3* 0, 1+ 5* 0, 6+ 2* 0, 3= 3, 9.

приклад 2.Знайти математичне очікування кількості події Ав одному випробуванні, якщо ймовірність події Адорівнює нар.

Рішення. Випадкова величина X - Число появи події Ав одному випробуванні може приймати тільки два значення: х 1 = 1 (Подія Анастало) з ймовірністю рі х 2 = 0 (Подія Ане настало) з ймовірністю q= 1 -нар.Шукане математичне очікування

M(X)= 1* p+ 0* q= p

Отже, математичне очікування числа події в одному випробуванні дорівнює ймовірності цієї події.Цей результат буде використано нижче.

§ 3. Імовірнісний сенс математичного очікування

Нехай зроблено пвипробувань, у яких випадкова величина X прийняла т 1 раз значення х 1 , т 2 раз значення х 2 ,...,m k раз значення x k , причому т 1 + т 2 + …+т до = п.Тоді сума всіх значень, прийнятих X, дорівнює

х 1 т 1 + х 2 т 2 + ... + х до т до .

Знайдемо середнє арифметичне всіх значень, прийнятих, випадковою величиною, навіщо розділимо знайдену суму на загальне числовипробувань:

= (х 1 т 1 + х 2 т 2 + ... + х до т до)/п,

= х 1 (m 1 / n) + х 2 (m 2 / n) + ... + х до (т до /п). (*)

Помітивши, що ставлення m 1 / n- відносна частота W 1 значення х 1 , m 2 / n - відносна частота W 2 значення х 2 і т. д., запишемо співвідношення (*) так:

=х 1 W 1 + x 2 W 2 + .. . + х до W k . (**)

Припустимо, що кількість випробувань досить велика. Тоді відносна частота приблизно дорівнює ймовірності появи події (це буде доведено в гл. IX, § 6):

W 1 p 1 , W 2 p 2 , …, W k p k .

Замінивши у співвідношенні (**) відносні частоти відповідними ймовірностями, отримаємо

x 1 p 1 + х 2 р 2 + … + х до р до .

Права частинацієї наближеної рівності є М(X). Отже,

М(X).

Імовірнісний зміст отриманого результату такий: математичне очікування приблизно дорівнює(Тим точніше, чим більше число випробувань) середнього арифметичного значень випадкової величини, що спостерігаються.

Примітка 1. Легко збагнути, що математичне очікування більше за найменше і менше від найбільшого можливих значень. Іншими словами, на числовій осі можливі значення розташовані ліворуч і праворуч від математичного очікування. У цьому сенсі математичне очікування характеризує розташування розподілу і тому його часто називають центром розподілу.

Цей термін запозичений із механіки: якщо маси р 1 , р 2 , ..., р прозташовані в точках з абсцисами x 1 , х 2 , ..., х n, причому
то абсциса центру тяжкості

x c =
.

Враховуючи що
=
M (X) і
отримаємо М(Х)= х з .

Отже, математичне очікування є абсцисом центру ваги системи матеріальних точок, абсциси яких дорівнюють можливим значенням випадкової величини, а маси - їх ймовірностям.

Зауваження 2. Походження терміна «математичне очікування» пов'язане з початковим періодом виникнення теорії ймовірностей (XVI – XVII ст.), коли сфера її застосування обмежувалася азартними іграми. Гравця цікавило середнє значення очікуваного виграшу, або, іншими словами, математичне очікування на виграш.

Кожна окремо взята величина повністю визначається своєю функцією розподілу. Також, для вирішення практичних завдань вистачає знати кілька числових характеристик, завдяки яким з'являється можливість уявити основні особливості випадкової величини в короткій формі.

До таких величин відносять насамперед математичне очікуванняі дисперсія .

Математичне очікування - Середнє значення випадкової величини в теорії ймовірностей. Позначається як .

Самим простим способомматематичне очікування випадкової величини Х(w), знаходять як інтегралЛебегастосовно ймовірнісної міри Р вихідному імовірнісному просторі

Ще знайти математичне очікування величини можна як інтеграл Лебегавід хщодо розподілу ймовірностей Р Хвеличини X:

де - безліч усіх можливих значень X.

Математичне очікування функцій від випадкової величини Xзнаходиться через розподіл Р Х. Наприклад, якщо X- випадкова величина зі значеннями і f(x)- однозначна борелівськафункція Х , то:

Якщо F(x)- функція розподілу X, то математичне очікування представимо інтеграломЛебега - Стілтьєса (або Рімана - Стілтьєса):

при цьому інтегрованість Xв сенсі ( * ) відповідає кінцівки інтегралу

У конкретних випадках, якщо Xмає дискретний розподілз ймовірними значеннями х k, k = 1, 2, . і ймовірностями , то

якщо Xмає абсолютно безперервний розподіліз щільністю ймовірності р(х), то

при цьому існування математичного очікування рівносильне абсолютній збіжності відповідного ряду або інтеграла.

Властивості математичного очікування випадкової величини.

  • Математичне очікування постійної величини дорівнює цій величині:

C- Постійна;

  • M=C.M[X]
  • Математичне очікування суми випадково взятих величин дорівнює сумі їх математичних очікувань:

  • Математичне очікування твору незалежних випадково взятих величин = твору їх математичних очікувань:

M=M[X]+M[Y]

якщо Xі Yнезалежні.

якщо сходиться ряд:

Алгоритм обчислення математичного очікування.

Властивості дискретних випадкових величин: їх значення можна перенумерувати натуральними числами; кожному значення прирівняти відмінну від нуля ймовірність.

1. По черзі перемножуємо пари: x iна p i.

2. Складаємо твір кожної пари x i p i.

Наприклад, для n = 4 :

Функція розподілу дискретної випадкової величиниступінчаста, вона зростає стрибком у тих точках, ймовірності яких мають позитивний знак.

Приклад:Знайти математичне очікування за формулою.

Основні числові характеристики дискретних та безперервних випадкових величин: математичне очікування, дисперсія та середнє квадратичне відхилення. Їх властивості та приклади.

Закон розподілу (функція розподілу та ряд розподілу або щільність імовірності) повністю описують поведінку випадкової величини. Але в ряді завдань достатньо знати деякі числові характеристики досліджуваної величини (наприклад, її середнє значення і можливе відхилення від нього), щоб відповісти на поставлене запитання. Розглянемо основні числові характеристики дискретних випадкових величин.

Визначення 7.1.Математичним очікуваннямдискретної випадкової величини називається сума творів її можливих значень на відповідні їм ймовірності:

М(Х) = х 1 р 1 + х 2 р 2 + … + х п р п.(7.1)

Якщо число можливих значень випадкової величини нескінченно, то якщо отриманий ряд сходиться абсолютно.

Зауваження 1.Математичне очікування називають іноді виваженим середнім, так як воно приблизно дорівнює середньому арифметичному спостерігаються значень випадкової величини при великому числідослідів.

Примітка 2.З визначення математичного очікування випливає, що його значення не менше найменшого можливого значення випадкової величини і не більше найбільшого.

Примітка 3.Математичне очікування дискретної випадкової величини є невипадкова(Постійна) величина. Надалі побачимо, що це справедливо і для безперервних випадкових величин.

Приклад 1. Знайдемо математичне очікування випадкової величини Х- числа стандартних деталей серед трьох, відібраних із партії у 10 деталей, серед яких 2 браковані. Складемо ряд розподілу для Х. З умови завдання випливає, що Хможе набувати значень 1, 2, 3. Тоді

Приклад 2. Визначимо математичне очікування випадкової величини Х- Числа кидків монети до першої появи герба. Ця величина може приймати нескінченну кількість значень (множина можливих значень є безліч натуральних чисел). Ряд її розподілу має вигляд:

Х п
р 0,5 (0,5) 2 (0,5)п

+ (при обчисленні двічі використовувалася формула суми нескінченно спадаючою геометричній прогресії: , звідки).

Властивості математичного очікування.

1) Математичне очікування постійної і найпостійнішої:

М(З) = З.(7.2)

Доведення. Якщо розглядати Зяк дискретну випадкову величину, що приймає лише одне значення Зз ймовірністю р= 1, то М(З) = З?1 = З.

2) Постійний множник можна виносити за знак математичного очікування:

М(СГ) = З М(Х). (7.3)

Доведення. Якщо випадкова величина Хзадана поруч розподілу


Тоді М(СГ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = З(х 1 р 1 + х 2 р 2 + … + х п р п) = СМ(Х).

Визначення 7.2.Дві випадкові величини називаються незалежними, якщо закон розподілу однієї з них не залежить від того, які значення набула інша. В іншому випадку випадкові величини залежні.

Визначення 7.3.Назвемо добутком незалежних випадкових величин Хі Y випадкову величину XY, можливі значення якої дорівнюють творам усіх можливих значень Хна всі можливі значення Y, А відповідні їм ймовірності рівні творам ймовірностей співмножників.

3) Математичне очікування твору двох незалежних випадкових величин дорівнює твору їх математичних очікувань:

M(XY) = M(X)M(Y). (7.4)

Доведення. Для спрощення обчислень обмежимося випадком, коли Хі Yприймають лише по два можливі значення:

Отже, M(XY) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M(X)?M(Y).

Зауваження 1.Аналогічно можна довести цю властивість для більшої кількості можливих значень співмножників.

Примітка 2.Властивість 3 справедливо добутку будь-якого числа незалежних випадкових величин, що доводиться методом математичної індукції.

Визначення 7.4.Визначимо суму випадкових величин Хі Y як випадкову величину Х+Y, можливі значення якої дорівнюють сумам кожного можливого значення Хз кожним можливим значенням Y; ймовірності таких сум рівні творам ймовірностей доданків (для залежних випадкових величин - творам ймовірності одного доданку на умовну ймовірність другого).

4) Математичне очікування суми двох випадкових величин (залежних або незалежних) дорівнює сумі математичних очікувань доданків:

M (X+Y) = M (X) + M (Y). (7.5)

Доведення.

Знову розглянемо випадкові величини, задані рядами розподілу, наведеними за доказом властивості 3. Тоді можливими значеннями X+Yє х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Позначимо їх ймовірності відповідно як р 11 , р 12 , р 21 і р 22 . Знайдемо М(Х+Y) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Доведемо, що р 11 + р 22 = р 1 . Справді, подія полягає в тому, що X+Yнабуде значення х 1 + у 1 або х 1 + у 2 і ймовірність якого дорівнює р 11 + р 22 , збігається з подією, що полягає в тому, що Х = х 1 (його ймовірність - р 1). Аналогічно доводиться, що p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значить,

M(X+Y) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X) + M (Y).

Зауваження. З якості 4 випливає, що сума будь-якого числа випадкових величин дорівнює сумі математичних очікувань доданків.

приклад. Знайти математичне очікування суми числа очок, що випали під час кидка п'яти гральних кісток.

Знайдемо математичне очікування числа очок, що випали під час кидка однієї кістки:

М(Х 1) = (1 + 2 + 3 + 4 + 5 + 6) Тому ж числу дорівнює математичне очікування числа очок, що випали на будь-якій кістці. Отже, за якістю 4 М(Х)=

Дисперсія.

Щоб мати уявлення про поведінку випадкової величини, недостатньо знати лише її математичне очікування. Розглянемо дві випадкові величини: Хі Y, задані рядами розподілу виду

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Знайдемо М(Х) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М(Y) = 0?0,5 + 100?0,5 = 50. Як видно, математичні очікування обох величин рівні, але якщо для Х М(Х) добре описує поведінку випадкової величини, будучи її найбільш ймовірним можливим значенням (причому інші значення ненабагато відрізняються від 50), то значення Yістотно відстоять від М(Y). Отже, поряд з математичним очікуванням бажано знати, наскільки значення випадкової величини відхиляються від нього. Для характеристики цього є дисперсія.

Визначення 7.5.Дисперсією (розсіянням)випадкової величини називається математичне очікування квадрата її відхилення від її математичного очікування:

D(X) = M (X - M(X))². (7.6)

Знайдемо дисперсію випадкової величини Х(Числа стандартних деталей серед відібраних) у прикладі 1 даної лекції. Обчислимо значення квадрата відхилення кожного можливого значення від математичного очікування:

(1 – 2,4) 2 = 1,96; (2 – 2,4) 2 = 0,16; (3 – 2,4) 2 = 0,36. Отже,

Зауваження 1.У визначенні дисперсії оцінюється не саме відхилення від середнього, яке квадрат. Це зроблено для того, щоб відхилення різних знаків не компенсували одне одного.

Примітка 2.З визначення дисперсії випливає, що ця величина набуває лише невід'ємних значень.

Примітка 3.Існує зручніша для розрахунків формула для обчислення дисперсії, справедливість якої доводиться в наступній теоремі:

Теорема 7.1.D(X) = M(X²) - M²( X). (7.7)

Доведення.

Використовуючи те, що М(Х) - постійна величина, та властивості математичного очікування, перетворимо формулу (7.6) на вигляд:

D(X) = M(X - M(X))² = M(X² - 2 X?M(X) + M²( X)) = M(X²) - 2 M(X)?M(X) + M²( X) =

= M(X²) - 2 M²( X) + M²( X) = M(X²) - M²( X), що й потрібно було довести.

приклад. Обчислимо дисперсії випадкових величин Хі Y, Розглянуті на початку цього розділу. М(Х) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М(Y) = (0 2? 0,5 ​​+ 100? 0,5) - 50? = 5000 - 2500 = 2500. Отже, дисперсія другої випадкової величини в кілька тисяч разів більше дисперсії першої. Таким чином, навіть не знаючи законів розподілу цих величин, відомим значеннямдисперсії ми можемо стверджувати, що Хмало відхиляється від свого математичного очікування, в той час як для Yце відхилення дуже суттєво.

Властивості дисперсії.

1) Дисперсія постійної величини Здорівнює нулю:

D (C) = 0. (7.8)

Доведення. D(C) = M((C - M(C))²) = M((C - C)²) = M(0) = 0.

2) Постійний множник можна виносити за знак дисперсії, звівши його у квадрат:

D(CX) = C² D(X). (7.9)

Доведення. D(CX) = M((CX-M(CX))²) = M((CX - CM(X))²) = M(C²( X - M(X))²) =

= C² D(X).

3) Дисперсія суми двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X+Y) = D(X) + D(Y). (7.10)

Доведення. D(X+Y) = M(X² + 2 XY + Y²) - ( M(X) + M(Y))² = M(X²) + 2 M(X)M(Y) +

+ M(Y²) - M²( X) - 2M(X)M(Y) - M²( Y) = (M(X²) - M²( X)) + (M(Y²) - M²( Y)) = D(X) + D(Y).

Наслідок 1.Дисперсія суми кількох взаємно незалежних випадкових величин дорівнює сумі дисперсій.

Наслідок 2.Дисперсія суми постійної та випадкової величин дорівнює дисперсії випадкової величини.

4) Дисперсія різниці двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X - Y) = D(X) + D(Y). (7.11)

Доведення. D(X - Y) = D(X) + D(-Y) = D(X) + (-1)² D(Y) = D(X) + D(X).

Дисперсія дає середнє значення квадрата відхилення випадкової величини середнього; з метою оцінки самого відхилення служить величина, звана середнім квадратичним відхиленням.

Визначення 7.6.Середнім квадратичним відхиленнямσ випадкової величини Хназивається квадратний коріньз дисперсії:

приклад. У попередньому прикладі середні квадратичні відхилення Хі Yрівні відповідно

Математичне очікування – це середнє значення випадкової величини.

Математичним очікуванням дискретної випадкової величини називають суму творів всіх її можливих значень з їхньої ймовірності:

приклад.

X -4 6 10
р 0,2 0,3 0,5


Рішення: Математичне очікування дорівнює сумі творів всіх можливих значень X з їхньої ймовірності:

М (X) = 4 * 0,2 + 6 * 0,3 + 10 * 0,5 = 6.


Для обчислення математичного очікування зручно розрахунки проводити в Excel (особливо коли даних багато), пропонуємо скористатися готовим шаблоном ().

Приклад для самостійного рішення(можете застосувати калькулятор).
Знайти математичне очікування дискретної випадкової величини X, заданої законом розподілу:

X 0,21 0,54 0,61
р 0,1 0,5 0,4

Математичне очікування має такі властивості.

Властивість 1. Математичне очікування постійної величини дорівнює найпостійнішій: М(С)=С.

Властивість 2. Постійний множник можна виносити за знак математичного очікування: М(СХ) = СМ(Х).

Властивість 3. Математичне очікування добутку взаємно незалежних випадкових величин дорівнює добутку математичних очікувань співмножників: М (Х1Х2 ... Хп) = М (X1) М (Х2) *. ..*М (Xn)

Властивість 4. Математичне очікування суми випадкових величин дорівнює сумі математичних очікувань доданків: М(Хг + Х2+...+Хn) = М(Хг)+М(Х2)+…+М(Хn).

Завдання 189. Знайти математичне очікування випадкової величини Z, якщо відомі математичні очікування X н Y: Z = X + 2Y, M (X) = 5, M (Y) = 3;

Рішення: Використовуючи властивості математичного очікування (математичне очікування суми дорівнює сумі математичних очікувань доданків; постійний множник можна винести за знак математичного очікування), отримаємо M(Z)=M(X + 2Y)=M(X) + M(2Y)=M (X) + 2M(Y) = 5 + 2 * 3 = 11.

190. Використовуючи властивості математичного очікування, довести, що: а) М(Х - Y) = M(X)-М(Y); б) математичне очікування відхилення X-M(Х) дорівнює нулю.

191. Дискретна випадкова величина X набуває трьох можливих значень: x1= 4 З ймовірністю р1 = 0,5; xЗ = 6 З ймовірністю P2 = 0,3 та x3 з ймовірністю р3. Знайти: x3 і р3, знаючи, що М(Х)=8.

192. Даний перелік можливих значень дискретної випадкової величини X: x1 = -1, х2 = 0, x3 = 1 також відомі математичні очікування цієї величини та її квадрата: M(Х) = 0,1, М(Х^2)=0 ,9. Знайти ймовірності p1, p2, p3, що відповідають можливим значенням xi

194. У партії з 10 деталей міститься три нестандартні. Навмання відібрано дві деталі. Знайти математичне очікування дискретної випадкової величини X – числа нестандартних деталей серед двох відібраних.

196. Знайти математичне очікування дискретної випадкової величини X числа таких кидань п'яти гральних кісток, у кожному з яких на двох кістках з'явиться по одному окуляру, якщо загальна кількість кидань дорівнює двадцяти.



Математичне очікування біномного розподілудорівнює добутку числа випробувань на ймовірність появи події в одному випробуванні:

Математичне очікування - це визначення

Мат очікування - цеодне з найважливіших понять у математичної статистикиі теорії ймовірностей, що характеризує розподіл значень або ймовірностейдовільної величини. Зазвичай виражається як середньозважене значення всіх можливих параметрів випадкової величини. Широко застосовується під час проведення технічного аналізу, дослідженні числових рядів, вивченні безперервних та тривалих процесів. Має важливе значення при оцінці ризиків, прогнозуванні цінових показників при торгівлі на фінансових ринках, використовується при розробці стратегій та методів ігрової тактики теорії азартних ігор.

Мат очікування- цесереднє значення випадкової величини, розподіл ймовірностейвипадкової величини у теорії ймовірностей.

Мат очікування - цеміра середнього значення випадкової величини теоретично ймовірності. Мат очікування випадкової величини xпозначається M(x).

Математичне очікування (Population mean) – це

Мат очікування - це

Мат очікування - цетеоретично ймовірності середньозважена величина всіх можливих значень, які може приймати ця випадкова величина.

Мат очікування - цесума творів всіх можливих значень випадкової величини на ймовірність цих значень.

Математичне очікування (Population mean) – це

Мат очікування - цесередня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції.

Мат очікування - цев теорії азартних ігор сума виграшу, яку може заробити чи програти спекулянт, у середньому за кожною ставкою. Мовою азартних спекулянтівце іноді називається «перевагою спекулянта(якщо воно позитивне для спекулянта) або «перевагою казино» (якщо воно негативне для спекулянта).

Математичне очікування (Population mean) – це


Wir verwenden Cookies für die beste Präsentation unserer Website. Wenn Sie diese Website weiterhin nutzen, stimmen Sie dem zu. OK



Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.