Знайти математичне очікування числа промахів. Формула математичного очікування

Математичне очікування та дисперсія – найчастіше застосовувані числові характеристики випадкової величини. Вони характеризують найважливіші риси розподілу: його становище та рівень розкиданості. Багато завдань практики повна, вичерпна характеристика випадкової величини - закон розподілу - або взагалі може бути отримана, або взагалі не потрібна. У таких випадках обмежуються приблизним описом випадкової величини з допомогою числових характеристик.

Математичне очікування часто називають просто середнім значенням випадкової величини. Дисперсія випадкової величини - характеристика розсіювання, розкиданості випадкової величини у її математичного очікування.

Математичне очікування дискретної випадкової величини

Підійдемо до поняття математичного очікування спочатку виходячи з механічної інтерпретації розподілу дискретної випадкової величини. Нехай одинична маса розподілена між точками осі абсцис x1 , x 2 , ..., x n, причому кожна матеріальна точка має відповідну їй масу p1 , p 2 , ..., p n. Потрібно вибрати одну точку на осі абсцис, що характеризує становище всієї системи матеріальних точок, з урахуванням їх мас. Природно як така точка взяти центр маси системи матеріальних точок. Це середнє зважене значення випадкової величини X, в яке абсциса кожної точки xiвходить з "вагою", що дорівнює відповідній ймовірності. Отримане в такий спосіб середнє значення випадкової величини Xназивається її математичним очікуванням.

Математичним очікуванням дискретної випадкової величини називається сума творів всіх можливих її значень на ймовірності цих значень:

приклад 1.Організована безпрограшна лотерея. Є 1000 виграшів, їх 400 по 10 крб. 300 – по 20 руб. 200 – по 100 руб. і 100 – по 200 руб. Який середній розмір виграшу для того, хто купив один квиток?

Рішення. Середній виграш ми знайдемо, якщо загальну суму виграшів, яка дорівнює 10 * 400 + 20 * 300 + 100 * 200 + 200 * 100 = 50 000 руб, розділимо на 1000 (загальна сума виграшів). Тоді отримаємо 50 000/1000 = 50 руб. Але вираз для підрахунку середнього виграшу можна уявити й у такому вигляді:

З іншого боку, в умовах розмір виграшу є випадковою величиною, яка може приймати значення 10, 20, 100 і 200 руб. із ймовірностями, рівними відповідно 0,4; 0,3; 0,2; 0,1. Отже, очікуваний середній виграш дорівнює сумі творів розмірів виграшів на ймовірність їх отримання.

приклад 2.Видавець вирішив видати нову книгу. Продавати книгу він збирається за 280 руб., З яких 200 отримає він сам, 50 - книгарня і 30 - автор. У таблиці наведено інформацію про витрати на видання книги та ймовірність продажу певної кількості екземплярів книги.

Знайти очікуваний прибуток видавця.

Рішення. Випадкова величина "прибуток" дорівнює різниці доходів від продажу та вартості витрат. Наприклад, якщо буде продано 500 екземплярів книги, то доходи від продажу дорівнюють 200 * 500 = 100000, а витрати на видання 225 000 руб. Таким чином, видавцеві загрожує збиток розміром 125000 руб. У наступній таблиці узагальнено очікувані значення випадкової величини - прибутку:

ЧислоПрибуток xi Ймовірність pi xi p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всього: 1,00 25000

Таким чином, отримуємо математичне очікування прибутку видавця:

.

приклад 3.Імовірність влучення при одному пострілі p= 0,2. Визначити витрату снарядів, які забезпечують математичне очікування числа влучень, що дорівнює 5.

Рішення. З тієї ж формули математичного очікування, яку ми використовували досі, висловлюємо x- Витрата снарядів:

.

приклад 4.Визначити математичне очікування випадкової величини xчисла попадань при трьох пострілах, якщо ймовірність попадання при кожному пострілі p = 0,4 .

Підказка: ймовірність значень випадкової величини знайти за формулі Бернуллі .

Властивості математичного очікування

Розглянемо властивості математичного очікування.

Властивість 1.Математичне очікування постійної величини дорівнює цій постійній:

Властивість 2.Постійний множник можна виносити за знак математичного очікування:

Властивість 3.Математичне очікування суми (різниці) випадкових величин дорівнює сумі (різниці) їх математичних очікувань:

Властивість 4.Математичне очікування добутку випадкових величин дорівнює добутку їх математичних очікувань:

Властивість 5.Якщо всі значення випадкової величини Xзменшити (збільшити) на одне й те саме число З, то її математичне очікування зменшиться (збільшиться) на те число:

Коли не можна обмежуватися лише математичним очікуванням

Найчастіше лише математичне очікування неспроможна достатньою мірою характеризувати випадкову величину.

Нехай випадкові величини Xі Yзадані такими законами розподілу:

Значення X Ймовірність
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значення Y Ймовірність
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математичні очікування цих величин однакові - дорівнюють нулю:

Проте характер розподілу їх різний. Випадкова величина Xможе приймати тільки значення, що мало відрізняються від математичного очікування, а випадкова величина Yможе приймати значення, які значно відхиляються від математичного очікування. Аналогічний приклад: середня заробітна плата не дає можливості судити про питомій вазівисоко-і низькооплачуваних робітників. Іншими словами, з математичного очікування не можна судити про те, які відхилення від нього, хоч би в середньому, можливі. Для цього необхідно знайти дисперсію випадкової величини.

Дисперсія дискретної випадкової величини

Дисперсієюдискретної випадкової величини Xназивається математичне очікування квадрата відхилення її від математичного очікування:

Середнім квадратичним відхиленням випадкової величини Xназивається арифметичне значенняквадратного кореня її дисперсії:

.

Приклад 5.Обчислити дисперсії та середні квадратичні відхиленнявипадкових величин Xі Y, закони розподілу яких наведені у таблицях вище.

Рішення. Математичні очікування випадкових величин Xі YЯк було знайдено вище, дорівнюють нулю. Згідно з формулою дисперсії при Е(х)=Е(y)=0 отримуємо:

Тоді середні квадратичні відхилення випадкових величин Xі Yскладають

.

Таким чином, при однакових математичних очікуваннях дисперсія випадкової величини Xдуже мала, а випадкової величини Y- Значна. Це наслідок розбіжності у тому розподілі.

Приклад 6.У інвестора є 4 альтернативні проекти інвестицій. У таблиці узагальнено дані про очікуваний прибуток у цих проектах з відповідною ймовірністю.

Проект 1Проект 2Проект 3Проект 4
500, P=1 1000, P=0,5 500, P=0,5 500, P=0,5
0, P=0,5 1000, P=0,25 10500, P=0,25
0, P=0,25 9500, P=0,25

Знайти для кожної альтернативи математичне очікування, дисперсію та середнє квадратичне відхилення.

Рішення. Покажемо, як обчислюються ці величини для 3 альтернативи:

У таблиці узагальнено знайдені величини всім альтернатив.

У всіх альтернатив однакові математичні очікування. Це означає, що у довгостроковому періоді в усіх - однакові доходи. Стандартне відхилення можна інтерпретувати як одиницю виміру ризику - що більше, тим більше ризик інвестицій. Інвестор, який бажає великого ризику, вибере проект 1, оскільки він має найменше стандартне відхилення (0). Якщо ж інвестор віддає перевагу ризику та більшим доходам у короткий період, він вибере проект найбільшим стандартним відхиленням - проект 4.

Властивості дисперсії

Наведемо властивості дисперсії.

Властивість 1.Дисперсія постійної величини дорівнює нулю:

Властивість 2.Постійний множник можна виносити за знак дисперсії, зводячи його у квадрат:

.

Властивість 3.Дисперсія випадкової величини дорівнює математичному очікуванню квадрата цієї величини, з якого віднімається квадрат математичного очікування самої величини:

,

де .

Властивість 4.Дисперсія суми (різниці) випадкових величин дорівнює сумі (різниці) їх дисперсій:

Приклад 7.Відомо, що дискретна випадкова величина Xприймає лише два значення: −3 та 7. Крім того, відоме математичне очікування: E(X) = 4 . Знайти дисперсію дискретної випадкової величини.

Рішення. Позначимо через pймовірність, з якою випадкова величина набуває значення x1 = −3 . Тоді ймовірністю значення x2 = 7 буде 1 − p. Виведемо рівняння для математичного очікування:

E(X) = x 1 p + x 2 (1 − p) = −3p + 7(1 − p) = 4 ,

звідки отримуємо ймовірність: p= 0,3 та 1 − p = 0,7 .

Закон розподілу випадкової величини:

X −3 7
p 0,3 0,7

Дисперсію даної випадкової величини обчислимо за формулою з якості дисперсії 3:

D(X) = 2,7 + 34,3 − 16 = 21 .

Знайти математичне очікування випадкової величини самостійно, а потім переглянути рішення

Приклад 8.Дискретна випадкова величина Xнабуває лише два значення. Більше значень 3 вона приймає з ймовірністю 0,4. Крім того, відома дисперсія випадкової величини D(X) = 6 . Знайти математичне очікування випадкової величини.

Приклад 9.В урні 6 білих і 4 чорні кулі. З урни виймають 3 кулі. Число білих куль серед вийнятих куль є дискретною випадковою величиною X. Знайти математичне очікування та дисперсію цієї випадкової величини.

Рішення. Випадкова величина Xможе приймати значення 0, 1, 2, 3. Відповідні їм ймовірності можна обчислити за правилу множення ймовірностей. Закон розподілу випадкової величини:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Звідси математичне очікування цієї випадкової величини:

M(X) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсія даної випадкової величини:

D(X) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математичне очікування та дисперсія безперервної випадкової величини

Для безперервної випадкової величини механічна інтерпретація математичного очікування збереже той самий зміст: центр маси для одиничної маси, розподіленої безперервно на осі абсцис із щільністю f(x). На відміну від дискретної випадкової величини, яка має аргумент функції xiзмінюється стрибкоподібно, у безперервної випадкової величини аргумент змінюється безперервно. Але математичне очікування безперервної випадкової величини пов'язане з її середнім значенням.

Щоб знаходити математичне очікування та дисперсію безперервної випадкової величини, потрібно знаходити певні інтеграли . Якщо дана функція щільності безперервної випадкової величини, вона безпосередньо входить у подынтегральное вираз. Якщо дана функція розподілу ймовірностей, то, диференціюючи її, необхідно визначити функцію щільності.

Арифметичне середнє всіх можливих значень безперервної випадкової величини називається її математичним очікуванням, що позначається або .

Основні числові характеристики дискретних та безперервних випадкових величин: математичне очікування, дисперсія та середнє квадратичне відхилення. Їх властивості та приклади.

Закон розподілу (функція розподілу та ряд розподілу або щільність імовірності) повністю описують поведінку випадкової величини. Але в ряді завдань достатньо знати деякі числові характеристики досліджуваної величини (наприклад, її середнє значення і можливе відхилення від нього), щоб відповісти на поставлене запитання. Розглянемо основні числові характеристики дискретних випадкових величин.

Визначення 7.1.Математичним очікуваннямдискретної випадкової величини називається сума творів її можливих значень на відповідні їм ймовірності:

М(Х) = х 1 р 1 + х 2 р 2 + … + х п р п.(7.1)

Якщо число можливих значень випадкової величини нескінченно, то якщо отриманий ряд сходиться абсолютно.

Зауваження 1.Математичне очікування називають іноді виваженим середнім, так як воно приблизно дорівнює середньому арифметичному спостерігаються значень випадкової величини при великому числідослідів.

Примітка 2.З визначення математичного очікування випливає, що його значення не менше найменшого можливого значення випадкової величини і не більше найбільшого.

Примітка 3.Математичне очікування дискретної випадкової величини є невипадкова(Постійна) величина. Надалі побачимо, що це справедливо і для безперервних випадкових величин.

Приклад 1. Знайдемо математичне очікування випадкової величини Х- числа стандартних деталей серед трьох, відібраних із партії у 10 деталей, серед яких 2 браковані. Складемо ряд розподілу для Х. З умови завдання випливає, що Хможе набувати значень 1, 2, 3. Тоді

Приклад 2. Визначимо математичне очікування випадкової величини Х- Числа кидків монети до першої появи герба. Ця величина може приймати нескінченну кількість значень (безліч можливих значень є безліч натуральних чисел). Ряд її розподілу має вигляд:

Х п
р 0,5 (0,5) 2 (0,5)п

+ (при обчисленні двічі використовувалася формула суми нескінченно спадаючою геометричній прогресії: , звідки).

Властивості математичного очікування.

1) Математичне очікування постійної і найпостійнішої:

М(З) = З.(7.2)

Доведення. Якщо розглядати Зяк дискретну випадкову величину, що приймає лише одне значення Зз ймовірністю р= 1, то М(З) = З?1 = З.

2) Постійний множник можна виносити за знак математичного очікування:

М(СГ) = З М(Х). (7.3)

Доведення. Якщо випадкова величина Хзадана поруч розподілу


Тоді М(СГ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = З(х 1 р 1 + х 2 р 2 + … + х п р п) = СМ(Х).

Визначення 7.2.Дві випадкові величини називаються незалежними, якщо закон розподілу однієї з них не залежить від того, які значення набула інша. В іншому випадку випадкові величини залежні.

Визначення 7.3.Назвемо добутком незалежних випадкових величин Хі Y випадкову величину XY, можливі значення якої дорівнюють творам усіх можливих значень Хна всі можливі значення Y, А відповідні їм ймовірності рівні творам ймовірностей співмножників.

3) Математичне очікування твору двох незалежних випадкових величин дорівнює твору їх математичних очікувань:

M(XY) = M(X)M(Y). (7.4)

Доведення. Для спрощення обчислень обмежимося випадком, коли Хі Yприймають лише по два можливі значення:

Отже, M(XY) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M(X)?M(Y).

Зауваження 1.Аналогічно можна довести цю властивість для більшої кількості можливих значень співмножників.

Примітка 2.Властивість 3 справедливо добутку будь-якого числа незалежних випадкових величин, що доводиться методом математичної індукції.

Визначення 7.4.Визначимо суму випадкових величин Хі Y як випадкову величину Х+Y, можливі значення якої дорівнюють сумам кожного можливого значення Хз кожним можливим значенням Y; ймовірності таких сум рівні творам ймовірностей доданків (для залежних випадкових величин - творам ймовірності одного доданку на умовну ймовірність другого).

4) Математичне очікування суми двох випадкових величин (залежних або незалежних) дорівнює сумі математичних очікувань доданків:

M (X+Y) = M (X) + M (Y). (7.5)

Доведення.

Знову розглянемо випадкові величини, задані рядами розподілу, наведеними за доказом властивості 3. Тоді можливими значеннями X+Yє х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Позначимо їх ймовірності відповідно як р 11 , р 12 , р 21 і р 22 . Знайдемо М(Х+Y) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Доведемо, що р 11 + р 22 = р 1 . Справді, подія полягає в тому, що X+Yнабуде значення х 1 + у 1 або х 1 + у 2 і ймовірність якого дорівнює р 11 + р 22 , збігається з подією, що полягає в тому, що Х = х 1 (його ймовірність - р 1). Аналогічно доводиться, що p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значить,

M(X+Y) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X) + M (Y).

Зауваження. З якості 4 випливає, що сума будь-якого числа випадкових величин дорівнює сумі математичних очікувань доданків.

приклад. Знайти математичне очікування суми числа очок, що випали під час кидка п'яти гральних кісток.

Знайдемо математичне очікування числа очок, що випали під час кидка однієї кістки:

М(Х 1) = (1 + 2 + 3 + 4 + 5 + 6) Тому ж числу дорівнює математичне очікування числа очок, що випали на будь-якій кістці. Отже, за якістю 4 М(Х)=

Дисперсія.

Щоб мати уявлення про поведінку випадкової величини, недостатньо знати лише її математичне очікування. Розглянемо дві випадкові величини: Хі Y, задані рядами розподілу виду

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Знайдемо М(Х) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М(Y) = 0?0,5 + 100?0,5 = 50. Як видно, математичні очікування обох величин рівні, але якщо для Х М(Х) добре описує поведінку випадкової величини, будучи її найбільш ймовірним можливим значенням (причому інші значення ненабагато відрізняються від 50), то значення Yістотно відстоять від М(Y). Отже, поряд з математичним очікуванням бажано знати, наскільки значення випадкової величини відхиляються від нього. Для характеристики цього є дисперсія.

Визначення 7.5.Дисперсією (розсіянням)випадкової величини називається математичне очікування квадрата її відхилення від її математичного очікування:

D(X) = M (X - M(X))². (7.6)

Знайдемо дисперсію випадкової величини Х(Числа стандартних деталей серед відібраних) у прикладі 1 даної лекції. Обчислимо значення квадрата відхилення кожного можливого значення від математичного очікування:

(1 – 2,4) 2 = 1,96; (2 – 2,4) 2 = 0,16; (3 – 2,4) 2 = 0,36. Отже,

Зауваження 1.У визначенні дисперсії оцінюється не саме відхилення від середнього, яке квадрат. Це зроблено для того, щоб відхилення різних знаків не компенсували одне одного.

Примітка 2.З визначення дисперсії випливає, що ця величина набуває лише невід'ємних значень.

Примітка 3.Існує зручніша для розрахунків формула для обчислення дисперсії, справедливість якої доводиться в наступній теоремі:

Теорема 7.1.D(X) = M(X²) - M²( X). (7.7)

Доведення.

Використовуючи те, що М(Х) - постійна величина, та властивості математичного очікування, перетворимо формулу (7.6) на вигляд:

D(X) = M(X - M(X))² = M(X² - 2 X?M(X) + M²( X)) = M(X²) - 2 M(X)?M(X) + M²( X) =

= M(X²) - 2 M²( X) + M²( X) = M(X²) - M²( X), що й потрібно було довести.

приклад. Обчислимо дисперсії випадкових величин Хі Y, Розглянуті на початку цього розділу. М(Х) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М(Y) = (0 2? 0,5 ​​+ 100? 0,5) - 50? = 5000 - 2500 = 2500. Отже, дисперсія другої випадкової величини в кілька тисяч разів більше дисперсії першої. Таким чином, навіть не знаючи законів розподілу цих величин, відомим значеннямдисперсії ми можемо стверджувати, що Хмало відхиляється від свого математичного очікування, в той час як для Yце відхилення дуже суттєво.

Властивості дисперсії.

1) Дисперсія постійної величини Здорівнює нулю:

D (C) = 0. (7.8)

Доведення. D(C) = M((C - M(C))²) = M((C - C)²) = M(0) = 0.

2) Постійний множник можна виносити за знак дисперсії, звівши його у квадрат:

D(CX) = C² D(X). (7.9)

Доведення. D(CX) = M((CX-M(CX))²) = M((CX - CM(X))²) = M(C²( X - M(X))²) =

= C² D(X).

3) Дисперсія суми двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X+Y) = D(X) + D(Y). (7.10)

Доведення. D(X+Y) = M(X² + 2 XY + Y²) - ( M(X) + M(Y))² = M(X²) + 2 M(X)M(Y) +

+ M(Y²) - M²( X) - 2M(X)M(Y) - M²( Y) = (M(X²) - M²( X)) + (M(Y²) - M²( Y)) = D(X) + D(Y).

Наслідок 1.Дисперсія суми кількох взаємно незалежних випадкових величин дорівнює сумі дисперсій.

Наслідок 2.Дисперсія суми постійної та випадкової величин дорівнює дисперсії випадкової величини.

4) Дисперсія різниці двох незалежних випадкових величин дорівнює сумі їх дисперсій:

D(X - Y) = D(X) + D(Y). (7.11)

Доведення. D(X - Y) = D(X) + D(-Y) = D(X) + (-1)² D(Y) = D(X) + D(X).

Дисперсія дає середнє значення квадрата відхилення випадкової величини середнього; з метою оцінки самого відхилення служить величина, звана середнім квадратичним відхиленням.

Визначення 7.6.Середнім квадратичним відхиленнямσ випадкової величини Хназивається квадратний коріньз дисперсії:

приклад. У попередньому прикладі середні квадратичні відхилення Хі Yрівні відповідно

Математичне очікування – це розподіл ймовірностей випадкової величини

Математичне очікування, визначення, математичне очікування дискретної та безперервної випадкових величин, вибіркове, умовне маточування, розрахунок, властивості, завдання, оцінка маточіння, дисперсія, функція розподілу, формули, приклади розрахунку

Розгорнути зміст

Згорнути зміст

Математичне очікування - це визначення

Одне з найважливіших понять у математичної статистикиі теорії ймовірностей, що характеризує розподіл значень чи ймовірностей випадкової величини Зазвичай виражається як середньозважене значення всіх можливих параметрів випадкової величини. Широко застосовується під час проведення технічного аналізу, дослідженні числових рядів, вивченні безперервних та тривалих процесів. Має важливе значення при оцінці ризиків, прогнозуванні цінових показників при торгівлі на фінансових ринках, використовується для розробки стратегій та методів ігрової тактики в теорії азартних ігор.

Математичне очікування – цесереднє значення випадкової величини, розподіл ймовірностей випадкової величини у теорії ймовірностей.

Математичне очікування – цеміра середнього значення випадкової величини теоретично ймовірності. Математичне очікування випадкової величини xпозначається M(x).

Математичне очікування – це

Математичне очікування – цетеоретично ймовірності середньозважена величина всіх можливих значень, які може приймати ця випадкова величина.

Математичне очікування – цесума творів всіх можливих значень випадкової величини на ймовірність цих значень.

Математичне очікування – цесередня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції.


Математичне очікування – цев теорії азартних ігор сума виграшу, яку може заробити або програти гравець, у середньому за кожною ставкою. На мові азартних гравців це іноді називається "перевагою гравця" (якщо воно позитивне для гравця) або "перевагою казино" (якщо воно є негативним для гравця).

Математичне очікування – цевідсоток прибутку на виграш, помножений на середній прибуток, мінус ймовірність збитку, помножена на середні збитки.


Математичне очікування випадкової величини в математичної теорії

Однією з найважливіших числових показників випадкової величини є математичне очікування. Введемо поняття системи випадкових величин. Розглянемо сукупність випадкових величин, які є результатами одного й того самого випадкового експерименту. Якщо - одне з можливих значень системи, то події відповідає певна ймовірність, що задовольняє аксіомам Колмогорова. Функція, визначена за будь-яких можливих значеннях випадкових величин, називається спільним законом розподілу. Ця функція дозволяє обчислювати ймовірності будь-яких подій. Зокрема, спільний закон розподілу випадкових величин і, які приймають значення з множини та, задається ймовірностями.


Термін «математичне очікування» введений П'єром Симоном маркізом де Лапласом (1795) і походить від поняття «очікуваного значення виграшу», що вперше з'явився в 17 столітті в теорії азартних ігор у працях Блеза Паскаля і Християна Гюйгенса. Однак перше повне теоретичне осмислення та оцінка цього поняття дано Пафнутієм Львовичем Чебишевим (середина 19 століття).


Закон розподілу випадкових числових величин (функція розподілу та ряд розподілу чи щільність ймовірності) повністю описують поведінку випадкової величини. Але в ряді завдань достатньо знати деякі числові характеристики досліджуваної величини (наприклад, її середнє значення та можливе відхилення від нього), щоб відповісти на поставлене запитання. Основними числовими характеристиками випадкових величин є математичне очікування, дисперсія, мода та медіана.

Математичним очікуванням дискретної випадкової величини називається сума творів її можливих значень відповідні їм ймовірності. Іноді математичне очікування називають виваженим середнім, тому що воно приблизно дорівнює середньому арифметичному спостерігаються значень випадкової величини при великій кількості дослідів. З визначення математичного очікування випливає, що його значення не менше від найменшого можливого значення випадкової величини і не більше від найбільшого. Математичне очікування випадкової величини є невипадковою (постійною) величиною.


Математичне очікування має простий фізичний зміст: якщо на прямий розмістити одиничну масу, помістивши в деякі точки деяку масу (для дискретного розподілу), або «розмазавши» її з певною щільністю (для абсолютно безперервного розподілу), то точка, що відповідає математичному очікуванню, буде координатою центру тяжкості прямий.


Середнє значення випадкової величини є деяке число, що є як би її «представником» і замінює її при грубо орієнтовних розрахунках. Коли ми говоримо: «середній час роботи лампи дорівнює 100 годин» або «середня точка влучення зміщена щодо мети на 2 м вправо», ми вказуємо певну числову характеристику випадкової величини, що описує її місце розташування на числовій осі, тобто. "Характеристику становища".

З характеристик становища теоретично ймовірностей найважливішу рольграє математичне очікування випадкової величини, яке іноді називають просто середнім значенням випадкової величини.


Розглянемо випадкову величину Х, що має можливі значення х1, х2, …, хnз ймовірностями p1, p2, …, pn. Нам потрібно охарактеризувати якимось числом положення значень випадкової величини осі абсцис з урахуванням того, що ці значення мають різні ймовірності. Для цієї мети природно скористатися так званим «середнім виваженим» із значень xi, причому кожне значення xi при середовищі має враховуватися з «вагою», пропорційною ймовірності цього значення. Таким чином, ми обчислимо середню випадкову величину X, яке ми позначимо M | X |:


Це середнє зважене значення називається математичним очікуванням випадкової величини. Отже, ми запровадили у розгляді одне з найважливіших понять теорії ймовірностей – поняття математичного очікування. Математичним очікуванням випадкової величини називається сума творів усіх можливих значень випадкової величини на ймовірності цих значень.

Хпов'язано своєрідною залежністю із середнім арифметичним спостережених значень випадкової величини при великій кількості дослідів. Ця залежність того ж типу, як залежність між частотою і ймовірністю, а саме: при великій кількості дослідів середнє арифметичне спостережених значень випадкової величини наближається (збігається ймовірністю) до її математичного очікування. З наявності зв'язку між частотою та ймовірністю можна вивести як наслідок наявність подібного ж зв'язку між середнім арифметичним та математичним очікуванням. Справді, розглянемо випадкову величину Х, що характеризується рядом розподілу:


Нехай проводиться Nнезалежних дослідів, у кожному з яких величина Xнабуває певного значення. Припустимо, що значення x1з'явилося m1раз, значення x2з'явилося m2раз, взагалі значення xiз'явилося mi разів. Обчислимо середнє арифметичне спостерігання значень величини Х, яке, на відміну від математичного очікування М | X |ми позначимо M*|X|:

При збільшенні дослідів Nчастоти piбудуть наближатися (збігатися ймовірно) до відповідних ймовірностей. Отже, і середнє арифметичне спостереження значень випадкової величини M | X |зі збільшенням кількості дослідів наближатися (збігається ймовірно) до її математичного очікування. Сформульований вище зв'язок між середнім арифметичним та математичним очікуванням становить зміст однієї із форм закону великих чисел.

Ми вже знаємо, що всі форми закону великих чисел констатують факт стійкості деяких середніх за великої кількості дослідів. Тут йдеться про стійкість середнього арифметичного із низки спостережень однієї й тієї ж величини. При невеликій кількості дослідів середнє арифметичне їх результатів випадково; при достатньому збільшенні числа дослідів воно стає «майже випадковим» і, стабілізуючись, наближається до постійної величині – математичного очікування.


Властивість стійкості середніх за великої кількості дослідів легко перевірити експериментально. Наприклад, зважуючи якесь тіло в лабораторії на точних терезах, ми в результаті зважування отримуємо щоразу нове значення; Щоб зменшити помилку спостереження, ми зважуємо тіло кілька разів і користуємося середнім арифметичним отриманим значенням. Легко переконатися, що при подальшому збільшенні числа дослідів (зважувань) середнє арифметичне реагує на це збільшення дедалі менше і при досить великій кількості дослідів практично перестає змінюватися.

Слід зауважити, що найважливіша характеристикаположення випадкової величини – математичне очікування – існує для всіх випадкових величин. Можна скласти приклади таких випадкових величин, котрим математичного очікування немає, оскільки відповідна сума чи інтеграл розходяться. Однак для практики такі випадки суттєвого інтересу не становлять. Зазвичай випадкові величини, з якими ми маємо справу, мають обмежену область можливих значень і, безумовно, мають математичне очікування.


Крім найважливішої з характеристик положення випадкової величини - математичного очікування, - на практиці іноді застосовуються інші характеристики положення, зокрема, мода і медіана випадкової величини.


Модою випадкової величини називається її найімовірніше значення. Термін «найбільш ймовірне значення», строго кажучи, застосовується тільки до перервних величин; для безперервної величинимодою є значення, у якому щільність ймовірності максимальна. На малюнках показана мода відповідно для перервної та безперервної випадкових величин.


Якщо багатокутник розподілу (крива розподілу) має більше одного максимуму, розподіл називається полімодальним.



Іноді зустрічаються розподіли, що мають посередині не максимум, а мінімум. Такі розподіли називають «антимодальними».


У загальному випадкумода та математичне очікування випадкової величини не збігаються. В окремому випадку, коли розподіл є симетричним і модальним (тобто має моду) і існує математичне очікування, воно збігається з модою і центром симетрії розподілу.

Часто застосовується ще одне характеристика становища – так звана медіана випадкової величини. Цією характеристикою користуються зазвичай лише безперервних випадкових величин, хоча формально можна визначити й у перервної величини. Геометрично медіана – це абсцис точки, в якій площа, обмежена кривою розподілу, ділиться навпіл.


У разі симетричного модального розподілу медіана збігається з математичним очікуванням та модою.

Математичне очікування є середнє значення, випадкової величини - числова характеристика розподілу ймовірностей випадкової величини. Найзагальнішим чином математичне очікування випадкової величини Х(w)визначається як інтеграл Лебега по відношенню до імовірнісної міри Ру вихідному імовірнісному просторі:


Математичне очікування може бути обчислено і як інтеграл Лебега від хщодо розподілу ймовірностей рхвеличини X:


Звичайно можна визначити поняття випадкової величини з нескінченним математичним очікуванням. Типовим прикладомслужать часи повернення деяких випадкових блуканнях.

За допомогою математичного очікування визначаються багаточислові та функціональні характеристикирозподілу (як математичне очікування відповідних функцій від випадкової величини), наприклад, функція, що виробляє, характеристична функція, моменти будь-якого порядку, зокрема дисперсія, коваріація.

Математичне очікування є характеристикою розташування значень випадкової величини (середнє значення її розподілу). У цьому ролі математичне очікування служить деяким " типовим " параметром розподілу та її роль аналогічна ролі статичного моменту - координати центру тяжкості розподілу маси - у механіці. Від інших характеристик розташування, за допомогою яких розподіл описується в загальних рисах, - медіан, мод, математичне очікування відрізняється тим більшим значенням, яке воно і відповідна характеристика розсіювання - дисперсія - мають в граничних теоремах теорії ймовірностей. З найбільшою повнотою зміст математичного очікування розкривається законом великих чисел (нерівність Чебишева) і посиленим законом великих чисел.

Математичне очікування дискретної випадкової величини

Нехай є деяка випадкова величина, яка може набути одного з кількох числових значень (припустимо, кількість очок при кидку кістки може бути 1, 2, 3, 4, 5 або 6). Часто на практиці для такої величини виникає питання: а яке значення вона набуває "в середньому" при великій кількості тестів? Яким буде наш середній прибуток (або збиток) від кожної з ризикованих операцій?


Скажімо, є якась лотерея. Ми хочемо зрозуміти, вигідно чи ні в ній взяти участь (або навіть брати участь неодноразово, регулярно). Допустимо, виграшний кожен четвертий квиток, приз складе 300 руб., А ціна будь-якого квитка - 100 руб. За нескінченно великої кількості участі виходить ось що. У трьох чвертях випадків ми програємо, кожні три програші коштуватимуть 300 руб. У кожному четвертому випадку ми виграємо 200 руб. (Приз мінус вартість), тобто за чотири участі ми в середньому втрачаємо 100 руб., За одну – у середньому 25 руб. Разом у середньому темпи нашого руйнування становитимуть 25 руб./квиток.

Кидаємо гральна кістка. Якщо вона не шахрайська (без усунення центру тяжкості тощо), то скільки ми в середньому матимемо очок за раз? Оскільки кожен варіант рівноймовірний, беремо тупо середнє арифметичне та отримуємо 3,5. Оскільки це СЕРЕДНІШЕ, то нема чого обурюватися, що 3,5 очок ніякий конкретний кидок не дасть - ну немає у цього куба грані з таким числом!

Тепер узагальним наші приклади:


Звернемося до щойно наведеної картинки. Зліва табличка розподілу випадкової величини. Величина X може набувати одного з n можливих значень (наведені у верхньому рядку). Жодних інших значень не може бути. Під кожним можливим значенням знизу підписано його можливість. Справа наведена формула, де M(X) і називається математичним очікуванням. Сенс цієї величини в тому, що при великій кількості випробувань (при великій вибірці) середнє значення буде прагнути цього математичного очікування.

Повернемося знову до того ж грального куба. Математичне очікування кількості очок при кидку дорівнює 3,5 (порахуйте самі за формулою, якщо не вірите). Скажімо, ви кинули його кілька разів. Випали 4 та 6. У середньому вийшло 5, тобто далеко від 3,5. Кинули ще раз, випало 3, тобто в середньому (4 + 6 + 3) / 3 = 4,3333 ... Якось далеко від математичного очікування. А тепер проведіть божевільний експеримент – киньте куб 1000 разів! І якщо в середньому не буде рівно 3,5, то буде близько до того.

Порахуємо математичне очікування вище описаної лотереї. Табличка виглядатиме ось так:


Тоді математичне очікування складе, як ми встановили вище.


Інша річ, що так само "на пальцях", без формули, було б важкувато, якби було більше варіантів. Ну скажімо, було б 75% програшних квитків, 20% виграшних квитків та 5% особливо виграшних.

Тепер є деякі властивості математичного очікування.

Довести це просто:


Постійний множник допускається виносити за знак математичного очікування, тобто:


Це окремий випадок якості лінійності математичного очікування.

Інший наслідок лінійності математичного очікування:

тобто математичне очікування суми випадкових величин дорівнює сумі математичних очікувань випадкових величин.

Нехай X, Y – незалежні випадкові величинитоді:

Це теж нескладно довести) Твір XYсамо є випадковою величиною, при цьому якщо вихідні величини могли приймати nі mзначень відповідно, то XYможе набувати nm значень. Імовірність кожного з значень обчислюється з огляду на те, що ймовірності незалежних подій перемножуються. У результаті отримуємо ось що:


Математичне очікування безперервної випадкової величини

Безперервні випадкові величини мають таку характеристику, як щільність розподілу (щільність ймовірності). Вона, по суті характеризує ситуацію, що деякі значення з множини дійсних чисел випадкова величина набуває частіше, деякі - рідше. Наприклад, розглянемо ось який графік:


Тут X- Власне випадкова величина, f(x)- Щільність розподілу. Судячи з даного графіку, при дослідах значення Xчасто буде числом, близьким до нуля. Шанси ж перевищити 3 або виявитися менше -3 скоріше чисто теоретичні.


Нехай, наприклад, є рівномірний розподіл:



Це цілком відповідає інтуїтивному розумінню. Скажімо, якщо ми отримуємо у рівномірному розподілібагато випадкових дійсних чисел, кожне з відрізка |0; 1| , то середнє арифметичне має бути близько 0,5.

Властивості математичного очікування - лінійність і т.д., застосовні для дискретних випадкових величин, застосовні і тут.

Взаємозв'язок математичного очікування з іншими статистичними показниками

У статистичному аналізі поряд із математичним очікуванням існує система взаємозалежних показників, що відображають однорідність явищ та стійкість процесів. Часто показники варіації немає самостійного сенсу і використовуються подальшого аналізу даних. Винятком є ​​коефіцієнт варіації, що характеризує однорідність даних, що є цінною статистичною характеристикою.


Ступінь мінливості чи стійкості процесів у статистичній науці може вимірюватися за допомогою кількох показників.

Найбільш важливим показником, Що характеризує мінливість випадкової величини, є Дисперсія, яка найтіснішим і безпосереднім чином пов'язана з математичним очікуванням. Цей параметр активно використовують у інших видах статистичного аналізу (перевірка гіпотез, аналіз причинно-наслідкових зв'язків та інших.). Як і середнє лінійне відхилення, дисперсія також відображає міру розкидання даних навколо середньої величини.


Мова знаків корисно перекласти мовою слів. Вийде, що дисперсія – це середній квадрат відхилень. Тобто спочатку розраховується середнє значення, потім береться різниця між кожним вихідним та середнім значенням, зводиться у квадрат, складається і потім ділиться на кількість значень у цій сукупності. Різниця між окремим значенням та середньою відображає міру відхилення. У квадрат зводиться для того, щоб усі відхилення стали виключно позитивними числамиі щоб уникнути взаємознищення позитивних та негативних відхилень при їх підсумовуванні. Потім, маючи квадрати відхилень, ми просто розраховуємо середню арифметичну. Середній – квадрат – відхилень. Відхилення зводяться у квадрат, і вважається середня. Розгадка магічного слова «дисперсія» полягає лише у трьох словах.

Однак у чистому вигляді, наприклад, середня арифметична, або індекс, дисперсія не використовується. Це скоріше допоміжний та проміжний показник, який використовується для інших видів статистичного аналізу. У неї навіть одиниці вимірювання нормальної немає. Судячи з формули, це квадрат одиниці виміру вихідних даних.

Нехай ми вимірюємо випадкову величину Nразів, наприклад, десять разів вимірюємо швидкість вітру та хочемо знайти середнє значення. Як пов'язане середнє значення із функцією розподілу?

Або кидатимемо гральний кубик велика кількістьразів. Кількість очок, що випаде на кубику при кожному кидку, є випадковою величиною і може набувати будь-яких натуральних значень від 1 до 6. Середнє арифметичне випалих очок, підрахованих за всі кидки кубика, теж є випадковою величиною, проте при великих Nвоно прагне цілком конкретного числа – математичного очікування Mx. У даному випадку Mx = 3,5.

Як вийшла ця величина? Нехай у Nвипробуваннях n1раз випало 1 очко, n2разів – 2 очки тощо. Тоді кількість наслідків, у яких випало одне очко:


Аналогічно для наслідків, коли випало 2, 3, 4, 5 та 6 очок.


Припустимо тепер, що ми знаємо закон розподілу випадкової величини x, тобто знаємо, що випадкова величина x може набувати значень x1, x2, ..., xk з ймовірностями p1, p2, ..., pk.

Математичне очікування Mx випадкової величини x дорівнює:


Математичне очікування який завжди є розумною оцінкою якоїсь випадкової величини. Так, для оцінки середньої заробітної платирозумніше використовувати поняття медіани, тобто такої величини, що кількість людей, які отримують меншу, ніж медіана, зарплату та більшу, збігаються.

Імовірність р1 того, що випадкова величина х виявиться меншою за х1/2, і ймовірність р2 того, що випадкова величина x виявиться більшою за х1/2, однакові й рівні 1/2. Медіана визначається однозначно задля всіх розподілів.


Стандартним або Середньоквадратичним відхиленняму статистиці називається ступінь відхилення даних спостережень чи множин від СЕРЕДНЬОГО значення. Позначається літерами s чи s. Невелике стандартне відхилення вказує на те, що дані групуються навколо середнього значення, а значне - що початкові дані розташовані далеко від нього. Стандартне відхилення дорівнює квадратному кореню величини, яка називається дисперсією. Вона є середня кількість суми зведених у квадрат різниць початкових даних, що відхиляються від середнього значення. Середньоквадратичним відхиленням випадкової величини називається квадратний корінь з дисперсії:


приклад. В умовах випробувань при стрільбі по мішені обчислити дисперсію та середньоквадратичне відхилення випадкової величини:


Варіація- коливання, змінність величини ознаки в одиниць сукупності. Окремі числові значення ознаки, що зустрічаються в досліджуваній сукупності, називають варіантами значень. Недостатність середньої величини для повної характеристикисукупності змушує доповнювати середні величини показниками, що дозволяють оцінити типовість цих середніх шляхом вимірювання коливання (варіації) ознаки, що вивчається. Коефіцієнт варіації обчислюють за такою формулою:


Розмах варіації(R) являє собою різницю між максимальним і мінімальним значеннями ознаки в досліджуваній сукупності. Цей показник дає найзагальніше уявлення про коливання досліджуваного ознаки, оскільки показує різницю лише між граничними значеннями варіантів. Залежність крайніх значень ознаки надає розмаху варіації нестійкий, випадковий характер.


Середнє лінійне відхиленняявляє собою середнє арифметичне з абсолютних (за модулем) відхилень всіх значень аналізованої сукупності від їхньої середньої величини:


Математичне очікування теорії азартних ігор

Математичне очікування – цесередня кількість грошей, яку гравець в азартні ігри може виграти чи програти на даній ставці. Це дуже важливе поняття для гравця, тому що воно є основним для оцінки більшості ігрових ситуацій. Математичне очікування – це також оптимальний інструмент аналізу основних карткових розкладів і ігрових ситуацій.

Припустимо, ви граєте з другом у монетку, щоразу роблячи ставку порівну по $1 незалежно від того, що випаде. Решка – ви виграли, орел – програли. Шанси на те, що випаде решка один до одного, і ви робите ставку $1 до $1. Таким чином, математичне очікування у вас рівне нулю, т.к. з точки зору математики ви не можете знати ви будете вести або програвати після двох кидків або після 200.


Ваш годинний виграш дорівнює нулю. Часовий виграш – це та кількість грошей, яку ви очікуєте виграти за годину. Ви можете кидати монету 500 разів протягом години, але ви не виграєте та не програєте, т.к. ваші шанси ні позитивні, ні негативні. Якщо дивитися, з погляду серйозного гравця, така система ставок непогана. Але це просто втрата часу.

Але припустимо, хтось хоче поставити $2 проти вашого $1 у цю гру. Тоді ви одразу ж маєте позитивне маточкування в 50 центів з кожної ставки. Чому 50 центів? У середньому одну ставку ви виграєте, другу програєте. Поставте перший долар – і втратите $1, ставите другий – виграєте $2. Ви двічі зробили ставку $1 і йдете попереду на $1. Таким чином кожна з ваших однодоларових ставок дала вам 50 центів.


Якщо за годину монета випаде 500 разів, ваш годинний виграш становитиме вже $250, т.к. в середньому ви втратили по одному долару 250 разів і виграли по два долари 250 разів. $500 мінус $250 і $250, що і становить сумарний виграш. Зверніть увагу, що матожидання є сумою, яку в середньому ви виграли на одній ставці, дорівнює 50 центам. Ви виграли $250, роблячи ставку по долару 500 разів, що дорівнює 50 центам зі ставки.

Математичне очікування немає нічого спільного з короткочасним результатом. Ваш опонент, який вирішив ставити проти вас $2 міг обіграти вас на перших десяти кидках поспіль, але ви, маючи перевагу ставок 2 до 1 за інших рівних, за будь-яких обставин заробляєте 50 центів з кожної ставки в $1. Немає різниці, ви виграєте або програєте одну ставку або кілька ставок, але тільки за умови, що у вас вистачить готівки, щоб спокійно компенсувати витрати. Якщо ви продовжуватимете ставити так само, то за тривалий період часу ваш виграш підійде до суми матожиданий в окремих кидках.


Щоразу, роблячи ставку з найкращим результатом (ставка, яка може виявитися вигідною на довгій дистанції), коли шанси на вашу користь, ви обов'язково щось виграєте на ній, і не важливо ви втрачаєте її чи ні в даній роздачі. І навпаки, якщо ви зробили ставку з найгіршим результатом (ставка, яка невигідна на довгій дистанції), коли шанси не на вашу користь, ви щось втрачаєте незалежно від того, ви виграли або програли в даній роздачі.

Ви робите ставку з найкращим результатом, якщо маточування у вас позитивне, а воно є позитивним, якщо шанси на вашому боці. Роблячи ставку з найгіршим наслідком, у вас негативне маточування, яке буває, коли шанси проти вас. Серйозні гравці роблять ставки тільки з найкращим результатом, за гіршого – вони пасують. Що означає шанси на вашу користь? Ви можете зрештою виграти більше, ніж приносять реальні шанси. Реальні шансина те, що випаде решка 1:1, але у вас виходить 2:1 за рахунок співвідношення ставок. У цьому випадку шанси на вашу користь. Ви точно отримуєте найкращий результат із позитивним очікуванням у 50 центів за одну ставку.


Ось більше складний прикладматематичного очікування. Приятель пише цифри від одного до п'яти і робить ставку $5 проти $1 на те, що ви не визначите загадану цифру. Чи погоджуватись вам на таке парі? Яке тут маточіння?

У середньому чотири рази ви помилитеся. Виходячи з цього, шанси проти того, що ви відгадаєте цифру, складуть 4 до 1. Шанси за те, що при одній спробі ви втратите долар. Тим не менш, ви виграє 5 до 1, при можливості програти 4 до 1. Тому шанси на вашу користь, ви можете приймати парі і сподіватися на найкращий результат. Якщо ви зробите таку ставку п'ять разів, в середньому ви програєте чотири рази $1 і один раз виграєте $5. Виходячи з цього, за всі п'ять спроб ви заробите $1 з позитивним математичним очікуванням 20 центів за одну ставку.


Гравець, який збирається виграти більше, ніж ставить, як у прикладі вище – ловить шанси. І навпаки, він губить шанси, коли передбачає виграти менше, ніж ставить. Гравець, який робить ставку може мати або позитивне, або негативне маточування, яке залежить від того, ловить він або губить шанси.

Якщо ви поставите $50 для того, щоб виграти $10 за ймовірності виграшу 4 до 1, то ви отримаєте негативне маточування $2, т.к. в середньому ви виграєте чотири рази $10 і один раз програєте $50, з чого видно, що втрата за одну ставку складе $10. Але якщо ви поставите $30 для того, щоб виграти $10, при тих же шансах виграшу 4 до 1, то в даному випадку ви маєте позитивне очікування $2, т.к. ви знову виграєте чотири рази по $10 і один раз програєте $30, що становитиме прибуток у $10. Дані приклади показують, перша ставка погана, а друга – хороша.


Математичне очікування є центром будь-якої ігрової ситуації. Коли букмекер закликає футбольних уболівальників ставити $11, щоб виграти $10, то він має позитивне чаклунство з кожних $10 у розмірі 50 центів. Якщо казино виплачує рівні гроші з пасової лінії в крепсі, то позитивне очікування казино становитиме приблизно $1.40 з $100, т.к. ця гра побудована так, що кожен, хто поставив на цю лінію, в середньому програє 50.7% та виграє 49.3% загального часу. Безперечно, саме це начебто мінімальне позитивне маточіння і приносить колосальні прибутки власникам казино по всьому світу. Як зауважив господар казино Vegas World Боб Ступак, «одна тисячна відсотка негативної ймовірності на досить довгій дистанції розорить найбагатшої людинив світі".


Математичне очікування при грі в Покер

Гра в Покер є найбільш показовим і наочним прикладомз погляду використання теорії та властивостей математичного очікування.


Математичне очікування (англ. Expected Value) у Покері – середня вигода від того чи іншого рішення за умови, що подібне рішення може бути розглянуте в рамках теорії великих чисел та тривалої дистанції. Успішна гра в покер полягає в тому, щоб завжди приймати ходи лише з позитивним математичним очікуванням.

Математичний сенс математичного очікування при грі в покер полягає в тому, що ми часто стикаємося з випадковими величинами при прийнятті рішення (ми не знаємо, які карти на руках у опонента, які карти прийдуть на наступних колах торгівлі). Ми повинні розглядати кожне з рішень з погляду теорії великих чисел, що свідчить, що з досить великий вибірці середнє значення випадкової величини прагнутиме її математичного очікування.


Серед приватних формул для обчислення математичного очікування, в покері найбільше застосовується наступна:

Під час гри в покер математичне очікування можна розраховувати як для ставок, так і для колів. У першому випадку до уваги слід брати фолд-еквіті, у другому – власні шанси банку. Оцінюючи математичного очікування тієї чи іншої ходу слід пам'ятати, що фолд завжди має нульове матожидания. Таким чином, скидання карт буде завжди вигіднішим рішенням, ніж будь-який негативний хід.

Очікування говорить вам про те, що ви можете очікувати (прибуток або збиток) на кожен долар, що ризикує вами. Казино заробляють гроші, оскільки математичне очікування від усіх ігор, які практикуються в них, на користь казино. При досить довгій серії гри очікується, що клієнт втратить свої гроші, оскільки «ймовірність» на користь казино. Однак професійні гравці в казино обмежують свої ігри короткими проміжками часу, тим самим збільшуючи ймовірність своєї користі. Те саме стосується й інвестування. Якщо ваше очікування є позитивним, ви можете заробити більше грошей, Здійснюючи багато угод в короткий період часу. Очікування це ваш відсоток прибутку на виграш, помножений на середній прибуток, мінус ваша ймовірність збитку, помножена на середній збиток.


Покер також можна розглянути з погляду математичного очікування. Ви можете припустити, що певний хід вигідний, але в деяких випадках він може виявитися далеко не кращим, тому що вигідніший інший хід. Допустимо, ви зібрали фул-хаус у п'ятикартковому покері з обміном. Ваш суперник робить ставку. Ви знаєте, що, якщо підвищите ставку, він відповість. Тому підвищення виглядає найкращою тактикою. Але якщо ви все ж таки підніміть ставку, що залишилися двоє гравців, точно скинуть карти. Але якщо ви зрівняєте ставку, то повністю впевнені, що двоє інших гравців після вас надійдуть також. При підвищенні ставки ви отримуєте одну одиницю, а просто зрівнюючи дві. Таким чином, вирівнювання дає вам більш високе позитивне математичне очікування, і буде з'являтися найкращою тактикою.

Математичне очікування також може дати поняття про те, яка тактика в покері менш вигідна, а яка – більше. Наприклад, граючи на певній руці, ви вважаєте, що втрати в середньому складуть 75 центів, включаючи анте, то таку руку слід грати, т.к. це краще, ніж скинутися, коли анте дорівнює $1.


Іншою важливою причиною для розуміння суті математичного очікування є те, що воно дає вам почуття спокою незалежно від того, чи ви виграли ставку чи ні: якщо ви зробили хорошу ставку або вчасно спасували, ви знатимете, що ви заробили або зберегли певну кількість грошей, яка гравець слабше не зміг вберегти. Набагато складніше скинути карти, якщо ви засмучені тим, що суперник на обміні зібрав сильнішу комбінацію. При цьому гроші, які ви зберегли, не граючи, замість того, щоб ставити, додаються до вашого виграшу за ніч або за місяць.

Просто пам'ятайте, що якщо поміняти ваші руки, ваш суперник відповів би вам, і як ви побачите у статті «фундаментальна покерна теорема» це лише одна з ваших переваг. Ви повинні радіти, коли це станеться. Вам навіть можна навчитися отримувати задоволення від програної роздачі, тому що ви знаєте, що інші гравці на вашому місці програли б набагато більше.


Як говорилося у прикладі з грою в монетку на початку, часовий коефіцієнт прибутку взаємопов'язаний з математичним очікуванням, і дане поняттяособливо важливо для професійних гравців. Коли ви збираєтеся грати в покер, ви повинні подумки прикинути, скільки ви зможете виграти за годину гри. У більшості випадків вам необхідно буде ґрунтуватися на вашій інтуїції та досвіді, але ви також можете користуватись і деякими математичними викладками. Наприклад, ви граєте в лоуболл з обміном, і спостерігаєте, що три учасники роблять ставки по $10, а потім змінюють дві карти, що є дуже поганою тактикою, ви можете порахувати для себе, що кожного разу, коли вони ставлять $10, вони втрачають близько $2. Кожен з них робить це вісім разів на годину, а отже, всі троє втрачають за годину приблизно $48. Ви один з чотирьох гравців, що залишилися, приблизно рівні, відповідно ці чотири гравці (і ви серед них) повинні розділити $48, і прибуток кожного складе $12 на годину. Ваш часовий коефіцієнт у цьому випадку просто дорівнює вашій долі від суми грошей, програної трьома поганими гравцями за годину.

За великий проміжок часу сумарний виграш гравця становить суму його математичних очікувань окремих роздачах. Чим більше ви граєте з позитивним очікуванням, тим більше виграєте, і навпаки, чим більше роздач з негативним очікуванням ви зіграєте, тим більше ви програєте. Внаслідок цього, слід віддавати перевагу грі, яка зможе максимально збільшити ваше позитивне очікування або зведе нанівець негативне, щоб ви змогли підняти до максимуму ваш годинний виграш.


Позитивне математичне очікування в ігровій стратегії

Якщо ви знаєте, як рахувати карти, у вас може бути перевага перед казино, якщо вони не помітять цього і не викинуть вас геть. Казино люблять п'яних гравців і не переносять карти, що рахують. Перевага дозволить вам з часом виграти більше разів, ніж програти. Хороше управліннякапіталом при використанні розрахунків математичного очікування може допомогти отримати більше прибутку з вашої переваги і скоротити втрати. Без переваги вам найкраще віддати гроші на благодійність. У грі на біржі перевагу дає система гри, що створює більший прибуток, ніж втрати, різниця цін та комісійні. Жодне управління капіталом не врятує погану ігрову систему.

Позитивне очікування визначається значенням, що перевищує нуль. Чим більше це число, тим сильніше статистичне очікування. Якщо значення менше нуля, то математичне очікування також буде негативним. Чим більший модуль від'ємного значення, тим гірша ситуація. Якщо результат дорівнює нулю, то очікування є беззбитковим. Ви можете виграти тільки тоді, коли у вас є позитивне математичне очікування, розумна система гри. Гра інтуїції призводить до катастрофи.


Математичне очікування та біржова торгівля

Математичне очікування – досить широко затребуваний та популярний статистичний показникпід час здійснення біржових торгів на фінансових ринках. Насамперед цей параметр використовують для аналізу успішності торгівлі. Не складно здогадатися, що чим більше це значення, тим більше підстав вважати успішну торгівлю. Звичайно, аналіз роботи трейдера не може проводитися тільки за допомогою даного параметра. Тим не менш, обчислюване значення в сукупності з іншими способами оцінки якості роботи може істотно підвищити точність аналізу.


Математичне очікування часто обчислюється у сервісах моніторингів торгових рахунків, що дозволяє швидко оцінювати роботу, що здійснюється на депозиті. Як винятки можна навести стратегії, у яких використовується “пересиджування” збиткових угод. Трейдеру може деякий час супроводжувати успіх, а тому, в його роботі може не виявитися збитків взагалі. У такому разі, орієнтуватися тільки за мотаченням не вийде, адже не будуть враховані ризики, що використовуються в роботі.

У торгівлі над ринком математичне очікування найчастіше застосовують під час прогнозування прибутковості будь-якої торгової стратегії чи прогнозування доходів трейдера з урахуванням статистичних даних його попередніх торгів.

Щодо управління капіталом дуже важливо розуміти, що при здійсненні угод з негативним очікуванням немає схеми управління грошима, яка може однозначно принести високий прибуток. Якщо ви продовжуєте грати на біржі в цих умовах, то незалежно від способу управління грошима ви втратите весь ваш рахунок, хоч би яким великим він був на початку.

Ця аксіома вірна не тільки для гри або операцій з негативним очікуванням, вона дійсна також для гри з рівними шансами. Тому єдиний випадок, коли ви маєте шанс отримати вигоду в довгостроковій перспективі, - це укладання угод з позитивним математичним очікуванням.


Відмінність між негативним очікуванням і позитивним очікуванням - це різницю між життям і смертю. Немає значення, наскільки позитивне чи наскільки негативне очікування; важливо лише те, позитивне воно чи негативне. Тому до розгляду питань управління капіталом ви маєте знайти гру з позитивним очікуванням.

Якщо у вас такої гри немає, тоді жодне управління грошима у світі не врятує вас. З іншого боку, якщо у вас є позитивне очікування, то можна за допомогою правильного управління грошима перетворити його на функцію експоненційного зростання. Не має значення, як мало це позитивне очікування! Іншими словами, не має значення, наскільки прибутковою є торгова система на основі одного контракту. Якщо у вас є система, яка виграє 10 доларів на контракт в одній угоді (після відрахування комісійних та прослизання), можна використовувати методи управління капіталом таким чином, щоб зробити її більш прибутковою, ніж систему, яка показує середній прибуток 1000 доларів за угоду (після відрахування комісійних та прослизання).


Має значення не те, наскільки прибуткова система була, а те, наскільки точно можна сказати, що система покаже, принаймні, мінімальний прибуток у майбутньому. Тому найбільш важливе приготування, яке може зробити трейдер, це переконатися в тому, що система покаже позитивне математичне очікування в майбутньому.

Щоб мати позитивне математичне очікування у майбутньому, дуже важливо не обмежувати ступеня свободи вашої системи. Це досягається не тільки скасуванням або зменшенням кількості параметрів, що підлягають оптимізації, але також шляхом скорочення якомога більшої кількості правил системи. Кожен параметр, який ви додаєте, кожне правило, яке ви вносите, кожна дрібна зміна, яку ви робите в системі, скорочує кількість ступенів свободи. В ідеалі, вам потрібно побудувати досить примітивну та просту систему, яка постійно приноситиме невеликий прибуток майже на будь-якому ринку. І знову важливо, щоб ви зрозуміли, - не має значення, наскільки прибутковою є система, поки вона прибуткова. Гроші, які ви заробите в торгівлі, будуть зароблені за допомогою ефективного управліннягрошима.

Торгова система - це просто засіб, який дає вам позитивне математичне очікування, щоб можна було керувати грошима. Системи, які працюють (показують принаймні мінімальний прибуток) тільки на одному або декількох ринках або мають різні правила або параметри для різних ринків, Найімовірніше, не працюватимуть у режимі реального часу досить довго. Проблема більшості технічно орієнтованих трейдерів полягає в тому, що вони витрачають занадто багато часу та зусиль на оптимізацію. різних правилта значень параметрів торгової системи. Це дає цілком протилежні результати. Замість витрачати сили і комп'ютерний часна збільшення прибутків торгової системи, спрямуйте енергію збільшення рівня надійності отримання мінімальної прибутку.

Знаючи, що управління капіталом - це лише числова гра, яка вимагає використання позитивних очікувань, трейдер може припинити пошуки "священного Грааля" біржової торгівлі. Натомість він може зайнятися перевіркою свого торговельного методу, з'ясувати, наскільки цей метод логічно обґрунтований, чи дає він позитивні очікування. Правильні методиуправління капіталом, що застосовуються стосовно будь-яких, навіть дуже посередніх методів ведення торгівлі, самі зроблять решту роботи.


Будь-якому трейдеру для успіху у своїй роботі необхідно вирішити три найбільш важливі завдання: . Домогтися, щоб кількість вдалих угод перевищувала неминучі помилки та прорахунки; Налаштувати свою систему торгівлі так, щоб можливість заробітку була якнайчастіше; Досягти стабільності позитивного результату своїх операцій.

І тут нам, працюючим трейдерам, непогану допомогу може надати математичне очікування. Цей термінтеоретично ймовірності одна із ключових. З його допомогою можна дати усереднену оцінку деяким випадковим значенням. Математичне очікування випадкової величини подібно до центру тяжкості, якщо уявити всі можливі ймовірності точками з різною масою.


Що стосується торгової стратегії з метою оцінки її ефективності найчастіше використовують математичне очікування прибутку (чи збитку). Цей параметр визначають, як суму творів заданих рівнів прибутку та втрат та ймовірності їх появи. Наприклад, розроблена стратегія торгівлі передбачає, що 37% всіх операцій принесуть прибуток, а частина – 63% - буде збитковою. При цьому, середній дохід від вдалої угоди складе 7 доларів, а середній програш дорівнюватиме 1,4 долара. Розрахуємо математичне очікування торгівлі за такою системою:

Що означає це число? Воно говорить про те, що, дотримуючись правил цієї системи, в середньому ми отримуватимемо 1,708 долара від кожної закритої угоди. Оскільки отримана оцінка ефективності більша за нуль, то таку систему цілком можна використовувати для реальної роботи. Якщо ж у результаті розрахунку математичне очікування вийде негативним, це вже говорить про середній збиток і така торгівля призведе до руйнування.

Обсяг прибутку однією угоду то, можливо виражений ще й відносної величиною як %. Наприклад:

- Відсоток доходу на 1 угоду - 5%;

- Відсоток успішних торгових операцій - 62%;

- Відсоток збитку в розрахунку на 1 угоду - 3%;

- Відсоток невдалих угод - 38%;

Тобто середня угода принесе 1,96%.

Можна розробити систему, яка попри переважання збиткових угод даватиме позитивний результат, оскільки її МО>0.

Втім, одного очікування мало. Важко заробити, якщо система дає дуже мало торгових сигналів. У цьому випадку її прибутковість буде порівнянна з банківським відсотком. Нехай кожна операція дає в середньому лише 0,5 долара, але якщо система передбачає 1000 операцій на рік? Це буде дуже серйозна сума за порівняно короткий час. Із цього логічно випливає, що ще одним відмітною ознакоюхорошої торгової системи вважатимуться короткий строкутримання позицій.


Джерела та посилання

dic.academic.ru – академічний інтернет-словник

mathematics.ru – освітній сайт з математики

nsu.ru - освітній сайт Новосибірського державного університету

webmath.ru – освітній портал для студентів, абітурієнтів та школярів.

exponenta.ru освітній математичний сайт

ru.tradimo.com – безкоштовна онлайн школатрейдінга

crypto.hut2.ru – багатопрофільний інформаційний ресурс

poker-wiki.ru – вільна енциклопедія покеру

sernam.ru - Наукова бібліотекавибраних природничо-наукових видань

reshim.su – інтернет сайт РЕШИМО задачі контрольні курсові

unfx.ru - Forex на UNFX: навчання, торгові сигнали, довірче управління

slovopedia.com – Великий Енциклопедичний словник Словопедія

pokermansion.3dn.ru - Ваш гід у світі покеру

statanaliz.info – інформаційний блог « Статистичний аналізданих»

форекс-трейдер.рф – портал Форекс-Трейдер

megafx.ru – актуальна аналітика Форекс

fx-by.com – все для трейдера

Наступною за важливістю властивістю випадкової величини за математичним очікуванням є її дисперсія, що визначається як середній квадрат відхилення від середнього:

Якщо позначити через те дисперсія VX буде очікуваним значенням, це характеристика „розкиду” розподілу X.

В якості простого прикладуОбчислення дисперсії припустимо, що нам щойно зробили пропозицію, від якої ми не можемо відмовитися: хтось подарував нам два сертифікати для участі в одній лотереї. Організатори лотереї продають щотижня по 100 квитків, що беруть участь в окремому тиражі. У тиражі вибирається один із цих квитків за допомогою рівномірного випадкового процесу - кожен квиток має рівні шанси бути обраним - і володар цього щасливого квитка отримує сто мільйонів доларів. Інші 99 власників лотерейних квитківне виграють нічого.

Ми можемо використовувати подарунок двома способами: купити або два квитки в одній лотереї або по одному для участі в двох різних лотереях. Яка стратегія краща? Спробуємо провести аналіз. Для цього позначимо через випадкові величини, що становлять розмір нашого виграшу за першим та другим квитком. Очікуване значення у мільйонах, так само

і те саме справедливо для Очікувані значення адитивні, тому наш середній сумарний виграш складе

незалежно від ухваленої стратегії.

Проте дві стратегії виглядають різними. Вийдемо за рамки очікуваних значень та вивчимо повністю розподіл ймовірностей

Якщо ми купимо два квитки в одній лотереї, то наші шанси не виграти нічого не становитимуть 98% і 2% - шанси на виграш 100 мільйонів. Якщо ж ми купимо квитки на різні тиражі, то цифри будуть такими: 98.01% – шанс не виграти нічого, що дещо більше, ніж раніше; 0.01% - шанс виграти 200 мільйонів, також трохи більше, ніж раніше; та шанс виграти 100 мільйонів тепер становить 1.98%. Таким чином, у другому випадку розподіл величини дещо більш розкиданий; середнє значення, 100 мільйонів доларів, дещо менш ймовірне, тоді як крайні значення ймовірніші.

Саме це поняття розкиду випадкової величини покликане відобразити дисперсія. Ми вимірюємо розкид через квадрат відхилення випадкової величини від її математичного очікування. Таким чином, у разі 1 дисперсія становитиме

у випадку 2 дисперсія дорівнює

Як ми й очікували, остання величина дещо більша, оскільки розподіл у разі 2 дещо більш розкиданий.

Коли ми працюємо з дисперсіями, то все зводиться в квадрат, тому в результаті можуть вийти дуже великі числа. (Множитель є один трильйон, це має вразити

навіть звичних до великих ставок гравців.) Для перетворення величин більш осмислену вихідну шкалу часто витягують квадратний корінь з дисперсії. Отримане число називається стандартним відхиленням і зазвичай позначається грецькою літерою:

Стандартні відхилення величини для двох лотерейних стратегій складуть . У певному сенсі другий варіант приблизно на 71247 доларів ризикованіший.

Як дисперсія допомагає у виборі стратегії? Це не зрозуміло. Стратегія з більшою дисперсією ризикованіша; але що краще для нашого гаманця – ризик чи безпечна гра? Нехай у нас є можливість купити не два квитки, а всі сто. Тоді ми могли б гарантувати виграш в одній лотереї (і дисперсія була б нульовою); або ж можна було зіграти в сотні різних тиражів, нічого не отримуючи з ймовірністю, зате маючи ненульовий шанс на виграш аж до доларів. Вибір однієї з цих альтернатив лежить за межами цієї книги; все, що ми можемо зробити тут, це пояснити, як зробити підрахунки.

Насправді є простіший спосіб обчислення дисперсії, ніж пряме використання визначення (8.13). (Є всі підстави підозрювати тут якусь приховану від очей математику; інакше з чого дисперсія в лотерейних прикладах виявилася цілим кратним Маємо

оскільки – константа; отже,

"Дисперсія є середнє значення квадрата мінус квадрат середнього значення"

Наприклад, у задачі про лотерею середнім значенням виявляється або Віднімання (квадрату середнього) дає результати, які ми вже отримали раніше більш важким шляхом.

Є, однак, ще простіша формула, застосовна, коли ми обчислюємо для незалежних X та Y.

оскільки, як ми знаємо, для незалежних випадкових величин Отже,

"Дисперсія суми незалежних випадкових величин дорівнює сумі їх дисперсій" Так, наприклад, дисперсія суми, яку можна виграти на один лотерейний квиток, дорівнює

Отже, дисперсія сумарного виграшу за двома лотерейними квитками у двох різних (незалежних) лотереях становитиме Відповідне значення дисперсії для незалежних лотерейних квитків буде

Дисперсія суми очок, що випали на двох кубиках, може бути отримана за тією самою формулою, оскільки є сума двох випадкових незалежних величин. Маємо

для правильного кубика; отже, у разі зміщеного центру мас

отже, якщо в обох кубиків центр мас зміщений. Зауважте, що в останньому випадку дисперсія більша, хоча набуває середнього значення 7 частіше, ніж у разі правильних кубиків. Якщо наша мета - викинути більше сімок, що приносять удачу, то дисперсія - не найкращий показникуспіху.

Ну, добре, ми встановили, як обчислити дисперсію. Але ми поки що не дали відповіді на запитання, чому треба обчислювати саме дисперсію. Усі так роблять, але чому? Основна причина полягає в нерівності Чебишева, яка встановлює важливу властивість дисперсії:

(Ця нерівність відрізняється від нерівностей Чебишева для сум, що зустрілися нам у гол. 2.) На якісному рівні (8.17) стверджує, що випадкова величина X рідко набуває значень, далеких від свого середнього якщо її дисперсія VX мала. Доведення

тельство надзвичайно просто. Справді,

розподіл на завершує підтвердження.

Якщо ми позначимо математичне очікування через а стандартне відхилення - через а і замінимо на (8.17) то умова перетвориться на отже, ми отримаємо з (8.17)

Таким чином, X лежатиме в межах -кратного стандартного відхилення від свого середнього значення за винятком випадків, ймовірність яких не перевищує Випадкова величина лежатиме в межах 2а принаймні для 75% випробувань; в межах від до - принаймні на 99%. Це випадки нерівності Чебишева.

Якщо кинути пару кубиків разів, то загальна сума очок у всіх киданнях майже завжди, при великих буде близька до цього.

Тому з нерівності Чебишева отримуємо, що сума очок буде лежати між

принаймні на 99% всіх кидань правильних кубиків. Наприклад, підсумок мільйона кидань із ймовірністю понад 99% буде укладено між 6.976 млн та 7.024 млн.

У випадку, нехай X - будь-яка випадкова величина на імовірнісному просторі П, має кінцеве математичне очікування і кінцеве стандартне відхилення а. Тоді можна ввести в розгляд ймовірнісний простір Пп, елементарними подіями якого є послідовності де кожне , а ймовірність визначається як

Якщо тепер визначити випадкові величини формулою

то величина

буде сумою незалежних випадкових величин, яка відповідає процесу підсумовування незалежних реалізацій величини X на П. Математичне очікування дорівнюватиме а стандартне відхилення - ; отже, середнє значення реалізацій,

буде лежати в межах від до принаймні 99% тимчасового періоду. Іншими словами, якщо вибрати досить велике те середнє арифметичне незалежних випробувань буде майже завжди дуже близько до очікуваного значення (У підручниках теорії ймовірностей доводиться ще сильніша теорема, звана посиленим законом великих чисел; але нам достатньо і простого наслідку нерівності Чебишева, яке ми тільки що вивели.)

Іноді нам не відомі характеристики ймовірнісного простору, але потрібно оцінити математичне очікування випадкової величини X за допомогою повторних спостережень її значення. (Наприклад, нам могла б знадобитися середня південна температура січня в Сан-Франциско; або ж ми хочемо дізнатися очікувану тривалість життя, на якому повинні засновувати свої розрахунки страхові агенти.) Якщо в нашому розпорядженні є незалежні емпіричні спостереження, то ми можемо припустити, що справжнє математичне очікування приблизно дорівнює

Можна оцінити дисперсію, використовуючи формулу

Дивлячись на цю формулу, можна подумати, що в ній – друкарська помилка; здавалося б, там має стояти як у (8.19), оскільки справжнє значення дисперсії визначається у (8.15) через очікувані значення. Однак заміна тут дозволяє отримати кращу оцінку, оскільки з визначення (8.20) випливає, що

Ось доказ:

(У цій викладці ми спираємося на незалежність спостережень, коли замінюємо на )

На практиці для оцінки результатів експерименту з випадковою величиною X зазвичай обчислюють емпіричне середнє та емпіричне стандартне відхилення після чого записують відповідь у вигляді Ось, наприклад, результати кидання пари кубиків, імовірно правильних.

Кожна окремо взята величина повністю визначається своєю функцією розподілу. Також, для вирішення практичних завдань вистачає знати кілька числових характеристик, завдяки яким з'являється можливість уявити основні особливості випадкової величини в короткій формі.

До таких величин відносять насамперед математичне очікуванняі дисперсія .

Математичне очікування- Середнє значення випадкової величини в теорії ймовірностей. Позначається як .

Самим простим способомматематичне очікування випадкової величини Х(w), знаходять як інтегралЛебегастосовно ймовірнісної міри Р вихідному імовірнісному просторі

Ще знайти математичне очікування величини можна як інтеграл Лебегавід хщодо розподілу ймовірностей Р Хвеличини X:

де - безліч усіх можливих значень X.

Математичне очікування функцій від випадкової величини Xзнаходиться через розподіл Р Х. Наприклад, якщо X- випадкова величина зі значеннями і f(x)- однозначна борелівськафункція Х , то:

Якщо F(x)- функція розподілу X, то математичне очікування представимо інтеграломЛебега - Стілтьєса (або Рімана - Стілтьєса):

при цьому інтегрованість Xв сенсі ( * ) відповідає кінцівки інтегралу

У конкретних випадках, якщо Xмає дискретний розподіл із ймовірними значеннями х k, k = 1, 2, . і ймовірностями , то

якщо Xмає абсолютно безперервний розподіл із щільністю ймовірності р(х), то

при цьому існування математичного очікування рівносильне абсолютній збіжності відповідного ряду або інтеграла.

Властивості математичного очікування випадкової величини.

  • Математичне очікування постійної величини дорівнює цій величині:

C- Постійна;

  • M=C.M[X]
  • Математичне очікування суми випадково взятих величин дорівнює сумі їх математичних очікувань:

  • Математичне очікування твору незалежних випадково взятих величин = твору їх математичних очікувань:

M=M[X]+M[Y]

якщо Xі Yнезалежні.

якщо сходиться ряд:

Алгоритм обчислення математичного очікування.

Властивості дискретних випадкових величин: усі їхні значення можна перенумерувати натуральними числами; кожному значення прирівняти відмінну від нуля ймовірність.

1. По черзі перемножуємо пари: x iна p i.

2. Складаємо твір кожної пари x i p i.

Наприклад, для n = 4 :

Функція розподілу дискретної випадкової величиниступінчаста, вона зростає стрибком у тих точках, ймовірності яких мають позитивний знак.

Приклад:Знайти математичне очікування за формулою.

Схожі статті

2023 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.