Середня величина визначається за такою формулою. Розрахунок середнього значення у програмі Microsoft Excel

Що таке середнє арифметичне

Середнім арифметичним кількох величин є відношення суми цих величин до їхньої кількості.

Середнє арифметичне певного ряду чисел називається сума всіх цих чисел, поділена на кількість доданків. Таким чином, середнє арифметичне є середнім значенням числового ряду.

Чому дорівнює середнє арифметичне кількох чисел? А одно вони сумі цих чисел, яка поділена на кількість доданків у цій сумі.

Як знайти середнє арифметичне число

У обчисленні чи знаходженні середнього арифметичного кількох чисел немає нічого складного, достатньо скласти всі представлені числа, а отриману суму розділити на кількість доданків. Отриманий результат і буде середнім арифметичним цих чисел.


Розглянемо цей процес докладніше. Що ж нам потрібно зробити для обчислення середнього арифметичного та отримання кінцевого результату цього числа?

По-перше, для його обчислення потрібно визначити набір чисел чи їхню кількість. У цей набір можуть входити великі і невеликі числа, і їх кількість може бути будь-яким.

По-друге, всі ці числа потрібно скласти та отримати їхню суму. Звичайно, якщо числа нескладні та їх невелика кількість, то обчислення можна зробити, записавши від руки. А якщо набір чисел вражаючий, то краще скористатися калькулятором або електронною таблицею.

І, по-четверте, отриману від складання суму необхідно поділити на кількість чисел. У результаті ми отримаємо результат, який буде середнім арифметичним числом цього ряду.



Для чого потрібне середнє арифметичне

Середнє арифметичне може стати в нагоді не тільки для вирішення прикладів і завдань на уроках математики, але для інших цілей, необхідних у повсякденному життілюдини. Такими цілями може бути підрахунок середнього арифметичного для розрахунку середньої витрати фінансів на місяць, або для підрахунку часу, який ви витрачаєте на дорогу, також для того, щоб дізнатися відвідуваність, продуктивність, швидкість руху, врожайність та багато іншого.

Так, наприклад, спробуємо розрахувати, скільки часу ви витрачаєте на дорогу до школи. Йдучи до школи або повертаючись, додому ви щоразу витрачаєте на дорогу різний частому що коли ви поспішаєте, то ви йдете швидше, і тому дорога займає менше часу. А ось, повертаючись, додому ви можете йти поспішаючи, спілкуючись із однокласниками, милуючись природою і тому часу на дорогу займе більше.

Тому точно визначити час, витрачений на дорогу у вас не вийти, але завдяки середньому арифметичному ви зможете приблизно дізнатися час, який ви витрачаєте на дорогу.

Припустимо, що в перший день після вихідних, ви витратили на шлях від дому до школи п'ятнадцять хвилин, на другий день ваш шлях зайняв двадцять хвилин, у середу ви пройшли відстань за двадцять п'ять хвилин, за такий же час склав ваш шлях і в четвер, а в п'ятницю ви нікуди не поспішали і поверталися цілу півгодини.

Давайте знайдемо середнє арифметичне, додавши час, за п'ять днів. Отже,

15 + 20 + 25 + 25 + 30 = 115

Тепер розділимо цю суму на кількість днів

Завдяки такому способу ви дізналися, що шлях від дому до школи приблизно витрачаєте двадцять три хвилини свого часу.

Домашнє завдання

1.Шляхом нехитрих обчислень знайдіть середнє арифметичне числовідвідування учнів вашого класу за тиждень.

2. Знайдіть середнє арифметичне:



3. Розв'яжіть задачу:



Цей термін має й інші значення, див. середнє значення.

Середнє арифметичне(В математиці та статистиці) безлічі чисел - сума всіх чисел, поділена на їх кількість. Є одним із найпоширеніших заходів центральної тенденції.

Запропонована (поряд із середнім геометричним та середнім гармонійним) ще піфагорійцями.

Приватними випадками середнього арифметичного є середнє ( генеральної сукупності) та вибіркове середнє (вибірки).

Вступ

Позначимо безліч даних X = (x 1 , x 2 , …, x n), тоді вибіркове середнє зазвичай позначається горизонтальною межею над змінною (x ¯ (\displaystyle (\bar (x))) ), вимовляється « xз межею»).

Для позначення середнього арифметичного усієї сукупності використовується грецька буква μ. Для випадкової величини, Для якої визначено середнє значення, μ є імовірнісне середнєчи математичне очікування випадкової величини. Якщо безліч Xє сукупністю випадкових чисел з імовірнісним середнім μ, тоді для будь-якої вибірки x iіз цієї сукупності μ = E( x i) є математичне очікування цієї вибірки.

На практиці різниця між μ і x ¯ (\displaystyle (\bar(x))) у тому, що μ є типовою змінною, тому що бачити можна швидше вибірку, а не всю генеральну сукупність. Тому, якщо вибірку представляти випадковим чином (у термінах теорії ймовірностей), тоді x (\displaystyle (bar (x))) (але не μ) можна трактувати як випадкову змінну, що має розподіл ймовірностей на вибірці (імовірнісний розподіл середнього).

Обидві ці величини обчислюються тим самим способом:

X = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . (\displaystyle (\bar (x))=(\frac (1)(n))\sum _(i=1)^(n)x_(i)=(\frac (1)(n))(x_ (1)+cdots +x_(n)).)

Якщо X- Випадкова змінна, тоді математичне очікування Xможна розглядати як середнє арифметичне значень у вимірах величини, що повторюються X. Це є виявом закону великих чисел. Тому вибіркове середнє використовується для оцінки невідомого математичного очікування.

В елементарній алгебрі доведено, що середня n+ 1 чисел більше середнього nчисел тоді і тільки тоді, коли нове число більше ніж старе середнє, менше тоді і тільки тоді, коли нове число менше середнього, і не змінюється тоді і лише тоді, коли нове число дорівнює середньому. Чим більше n, тим менше різницю між новим і старим середніми значеннями.

Зауважимо, що є кілька інших «середніх» значень, у тому числі середнє статечне, середнє Колмогорова, гармонійне середнє, арифметико-геометричне середнє та різні середньо-зважені величини (наприклад, середнє арифметичне зважене, середнє геометричне зважене, середнє гармонійне зважене).

Приклади

  • Для трьох чисел необхідно скласти їх і поділити на 3:
x 1 + x 2 + x 3 3 . (\displaystyle (\frac (x_(1)+x_(2)+x_(3))(3)).)
  • Для чотирьох чисел необхідно скласти їх і поділити на 4:
x 1 + x 2 + x 3 + x 4 4 . (\displaystyle (\frac (x_(1)+x_(2)+x_(3)+x_(4))(4)).)

Або простіше 5+5=10, 10:2. Тому що ми складали 2 числа, отже, скільки чисел складаємо, на стільки й ділимо.

Безперервна випадкова величина

Для безперервно розподіленої величини f(x) (displaystyle f(x)) середнє арифметичне на відрізку [ a ; b] (\displaystyle) визначається через певний інтеграл:

F (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x (\displaystyle (\overline (f(x)))_()=(\frac (1)(b-a))\int _(a)^(b) f(x)dx)

Деякі проблеми застосування середнього

Відсутність боязкості

Основна стаття: Робастність у статистиці

Хоча середнє арифметичне часто використовується як середні значення або центральні тенденції, це поняття не відноситься до робастної статистики, що означає, що середнє арифметичне схильна сильному впливу"великих відхилень". Примітно, що для розподілів з великим коефіцієнтом асиметрії середнє арифметичне може не відповідати поняттю «середнього», а значення середнього з робастної статистики (наприклад, медіана) краще описувати центральну тенденцію.

Класичним прикладом є підрахунок середнього прибутку. Арифметичне середнє може бути неправильно витлумачено як медіану, через що може бути зроблено висновок, що людей з більшим доходом більше, ніж насправді. "Середній" дохід тлумачиться таким чином, що доходи більшості людей знаходяться поблизу цього числа. Цей «середній» (себто середнього арифметичного) дохід є вищим, ніж доходи більшості людей, оскільки високий дохід з великим відхиленням від середнього робить сильний перекіс середнього арифметичного (на відміну від цього, середній дохід за медіаною «опирається» такому перекосу). Проте цей «середній» дохід нічого не говорить про кількість людей поблизу медіанного доходу (і не говорить нічого про кількість людей поблизу модального доходу). Проте, якщо легковажно поставитися до понять «середнього» і «більшість народу», можна зробити невірний висновок про те, що більшість людей мають доходи вищі, ніж вони є насправді. Наприклад, звіт про «середній» чистий доход у Медіні, штат Вашингтон, підрахований як середнє арифметичне всіх щорічних чистих доходів жителів, на подив велике число через Білла Гейтса. Розглянемо вибірку (1, 2, 2, 2, 3, 9). Середнє арифметичне дорівнює 3.17, але п'ять значень із шести нижче цього середнього.

Складний відсоток

Основна стаття: Окупність інвестицій

Якщо числа перемножувати, а не складатипотрібно використовувати середнє геометричне, а не середнє арифметичне. Найчастіше цей казус трапляється з розрахунку окупності інвестицій у фінансах.

Наприклад, якщо акції першого року впали на 10 %, а другий рік зросли на 30 %, тоді некоректно обчислювати «середнє» збільшення ці два роки як середнє арифметичне (−10 % + 30 %) / 2 = 10 %; правильне середнє значення у разі дають сукупні щорічні темпи зростання, якими річне зростання виходить лише близько 8,16653826392 % ≈ 8,2 %.

Причина цього в тому, що відсотки мають щоразу нову стартову точку: 30% – це 30% від меншого, ніж ціна на початку першого року, числа:якщо акції спочатку коштували $30 і впали на 10 %, вони на початку другого року коштують $27. Якщо акції зросли на 30%, вони наприкінці другого року коштують $35.1. Арифметичне середнє цього зростання 10%, але оскільки акції зросли за 2 роки лише на $5.1, середнє зростання у 8,2% дає кінцевий результат $35.1:

[$30 (1 – 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Якщо ж використовувати так само середнє арифметичне значення 10 %, ми отримаємо фактичне значення: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

Складний відсоток наприкінці 2 року: 90% * 130% = 117%, тобто загальний приріст 17%, а середньорічний складний відсоток 117% ≈ 108.2% (displaystyle (sqrt (117%)) approx 108.2%) тобто середньорічний приріст 8,2 %.

Напрями

Основна стаття: Статистика напрямків

При розрахунку середнього арифметичного значень певної змінної, що змінюється циклічно (наприклад, фаза або кут), слід виявляти особливу обережність. Наприклад, середнє чисел 1° і 359° дорівнюватиме 1 ∘ + 359 ∘ 2 = (displaystyle (\frac (1^(\circ )+359^(\circ ))(2))=) 180°. Це число неправильне з двох причин.

  • По-перше, кутові заходи визначені лише для діапазону від 0° до 360° (або від 0 до 2π при вимірі радіанах). Таким чином, ту ж пару чисел можна було б записати як (1 і -1) або як (1 і 719). Середні значення кожної з пар відрізнятимуться: 1 ∘ + (− 1 ∘) 2 = 0 ∘ (\displaystyle (\frac (1^(\circ )+(-1^(\circ ))))(2))=0 ^(\circ )) , 1 ∘ + 719 ∘ 2 = 360 ∘ (\displaystyle (\frac (1^(\circ )+719^(\circ ))(2))=360^(\circ )) .
  • По-друге, в даному випадкузначення 0° (еквівалентне 360°) буде геометрично кращим середнім значенням, оскільки числа відхиляються від 0° менше, ніж від будь-якого іншого значення (у значення 0° найменша дисперсія). Порівняйте:
    • число 1° відхиляється від 0° лише на 1°;
    • число 1° відхиляється від обчисленого середнього, що дорівнює 180°, на 179°.

Середнє значення для циклічної змінної, розраховане за наведеною формулою, буде штучно зрушено щодо справжнього середнього до середини числового діапазону. Через це середнє розраховується іншим способом, а саме, як середнє значення вибирається число з найменшою дисперсією (центральна точка). Також замість віднімання використовується модульна відстань (тобто відстань по колу). Наприклад, модульна відстань між 1° і 359° дорівнює 2°, а не 358° (на колі між 359° і 360°==0° - один градус, між 0° та 1° - теж 1°, у сумі - 2° °).

Види середніх величин та методи їх розрахунку

На етапі статистичної обробки можуть бути поставлені різні завдання дослідження, для вирішення яких потрібно вибрати відповідну середню. При цьому необхідно керуватися наступним правилом: величини, які є чисельником і знаменником середньої, повинні бути логічно пов'язані між собою.

  • статечні середні;
  • структурні середні.

Введемо такі умовні позначення:

Величини, котрим обчислюється середня;

Середня, де риса зверху свідчить у тому, що має місце опосередкування індивідуальних значень;

Частота (повторність індивідуальних значень ознаки).

Різні середні виводяться із загальної формули статечної середньої:

(5.1)

при k = 1 – середня арифметична; k = -1 – середня гармонійна; k = 0 – середня геометрична; k = -2 – середня квадратична.

Середні величини бувають прості та зважені. Виваженими середніминазивають величини, які враховують, деякі варіанти значень ознаки може мати різну чисельність, у зв'язку з чим кожен варіант доводиться множити з цього чисельність. Інакше кажучи, «вагами» виступають числа одиниць сукупності у різних групах, тобто. кожен варіант "зважують" за своєю частотою. Частоту f називають статистичною вагоюабо вагою середньою.

Середня арифметична- Найпоширеніший вид середньої. Вона використовується, коли розрахунок здійснюється за несгрупованими статистичними даними, де потрібно отримати середній доданок. Середня арифметична - це середнє значення ознаки, при отриманні якого зберігається незмінним загальний обсяг ознаки в сукупності.

Формула середньої арифметичної ( простий) має вигляд

де n – чисельність сукупності.

Наприклад, середня заробітна плата працівників підприємства обчислюється як середня арифметична:

Визначальними показниками тут є заробітна плата кожного працівника та кількість працівників підприємства. При обчисленні середньої загальна сума заробітної плати залишилася колишньою, але розподіленою між усіма працівниками порівну. Наприклад, необхідно обчислити середню заробітну плату працівників невеликої фірми, де зайнято 8 осіб:

При розрахунку середніх величин окремі значення ознаки, що середня, можуть повторюватися, тому розрахунок середньої величини проводиться за згрупованими даними. У цьому випадку йдеться про використання середньої арифметичної зваженої, яка має вигляд

(5.3)

Так нам необхідно розрахувати середній курс акцій якогось акціонерного товариства на торгах фондової біржі. Відомо, що угоди здійснювалися протягом 5 днів (5 угод), кількість проданих акцій за курсом продажів розподілилася так:

1 – 800 ак. - 1010 руб.

2 - 650 ак. - 990 руб.

3 – 700 ак. - 1015 руб.

4 – 550 ак. - 900 руб.

5 – 850 ак. - 1150 руб.

Вихідним співвідношенням визначення середнього курсу вартості акцій є ставлення загальної суми угод (ОСС) до кількості проданих акцій (КПА):

ОСС = 1010 · 800 +990 · 650 +1015 · 700 +900 · 550 +1150 · 850 = 3634500;

КПА = 800 +650 +700 +550 +850 = 3550.

У цьому випадку середній курс вартості акцій дорівнював

Необхідно знати властивості арифметичної середньої, що дуже важливо як щодо її використання, так і при її розрахунку. Можна виділити три основні властивості, які найбільше зумовили широке застосуванняарифметичної середньої у статистико-економічних розрахунках.

Властивість перша (нульове): сума позитивних відхилень індивідуальних значень ознаки від його середнього значення дорівнює сумі негативних відхилень. Це дуже важлива властивість, оскільки вона показує, що будь-які відхилення (як з +, так і з -), спричинені випадковими причинами, будуть взаємно погашені.

Доведення:

Властивість друга (мінімальне): сума квадратів відхилень індивідуальних значень ознаки від середньої арифметичної менше, ніж будь-якого іншого числа (а), тобто. є мінімальне число.

Доведення.

Складемо суму квадратів відхилень від змінної а:

(5.4)

Щоб знайти екстремум цієї функції, необхідно її похідну а прирівняти нулю:

Звідси отримуємо:

(5.5)

Отже, екстремум суми квадратів відхилень досягається при . Цей екстремум – мінімум, тому що функція не може мати максимуму.

Властивість третя: середня арифметична постійної величини дорівнює цій постійній: при а = const.

Крім цих трьох найважливіших властивостей середньої арифметичної є так звані розрахункові властивості, які поступово втрачають свою значущість у зв'язку з використанням електронно-обчислювальної техніки:

  • якщо індивідуальне значення ознаки кожної одиниці помножити або розділити на постійне число, то середня арифметична збільшиться або зменшиться у стільки ж разів;
  • середня арифметична не зміниться, якщо вага (частоту) кожного значення ознаки поділити на постійне число;
  • якщо індивідуальні значення ознаки кожної одиниці зменшити або збільшити на ту саму величину, то середня арифметична зменшиться або збільшиться на ту саму величину.

Середня гармонійна. Цю середню називають зворотною середньою арифметичною, оскільки ця величина використовується при k = -1.

Проста середня гармонійнавикористовується тоді, коли ваги значень ознаки однакові. Її формулу можна вивести із базової формули, підставивши k = -1:

Наприклад, нам необхідно обчислити середню швидкість двох машин, що пройшли один і той же шлях, але з різною швидкістю: перша - зі швидкістю 100 км/год, друга - 90 км/год. Застосовуючи метод середньої гармонійної, ми обчислюємо середню швидкість:

У статистичній практиці найчастіше використовується гармонійна зважена, формула якої має вигляд

Ця формула використовується у випадках, коли ваги (чи обсяги явищ) за кожним ознакою не рівні. У вихідному співвідношенні до розрахунку середньої відомий чисельник, але невідомий знаменник.

Наприклад, при розрахунку середньої ціни ми маємо користуватися відношенням суми реалізації до кількості реалізованих одиниць. Нам не відомо кількість реалізованих одиниць (йдеться про різні товари), але відомі суми реалізацій цих різних товарів. Допустимо, необхідно дізнатися середню цінуреалізованих товарів:

Отримуємо

Середня геометрична. Найчастіше середня геометрична знаходить своє застосування щодо середніх темпів зростання (середніх коефіцієнтів зростання), коли індивідуальні значення ознаки представлені як відносних величин. Вона використовується також, якщо необхідно знайти середню між мінімальним та максимальним значеннями ознаки (наприклад, між 100 та 1000000). Існують формули для простої та виваженої середньої геометричної.

Для простої середньої геометричної

Для виваженої середньої геометричної

Середня квадратична величина. Основною сферою її застосування є вимірювання варіації ознаки в сукупності (розрахунок середньої квадратичного відхилення).

Формула простої середньої квадратичної

Формула виваженої середньої квадратичної

(5.11)

У результаті можна сказати, що від правильного вибору виду середньої величини у кожному конкретному випадку залежить успішне вирішення завдань статистичного дослідження. Вибір середньої передбачає таку послідовність:

а) встановлення узагальнюючого показника сукупності;

б) визначення даного узагальнюючого показника математичного співвідношення величин;

в) заміна індивідуальних значень середніми величинами;

г) розрахунок середньої за допомогою відповідного рівняння.

Середні величини та варіація

Середня величина- це узагальнюючий показник, який характеризує якісно однорідну сукупність за певною кількісною ознакою. Наприклад, середній вік осіб, засуджених за крадіжку.

У судовій статистиці середні величини використовують для характеристики:

Середніх термінів розгляду справ цієї категорії;

Середній розмір позову;

Середньої кількості відповідачів, що припадають одну справу;

Середній розмір шкоди;

Середнє навантаження суддів, та ін.

Середня величина завжди іменована і має ту ж розмірність, що і ознака в окремої одиниці сукупності. Кожна середня величина характеризує досліджувану сукупність за якою-небудь однією ознакою, що варіює, тому за всякою середньою ховається ряд розподілу одиниць цієї сукупності за досліджуваною ознакою. Вибір виду середньої визначається змістом показника та вихідних даних для розрахунку середньої величини.

Усі види середніх величин, що використовуються у статистичних дослідженнях, поділяються на дві категорії:

1) статечні середні;

2) структурні середні.

Перша категорія середніх величин включає: середню арифметичну, середню гармонійну, середню геометричну і середню квадратичну . Друга категорія – це модаі медіана. При цьому кожен із перерахованих видів статечних середніх величин може мати дві форми: просту і зважену . Проста формасередньої величини використовується щоб одержати середнього значення досліджуваного ознаки, коли розрахунок здійснюється за несгрупованим статистичним даним, чи кожна варіанта разом зустрічається лише один раз. Зваженими середніми називають величини, які враховують, що варіанти значень ознаки можуть мати різну чисельність, у зв'язку з чим кожен варіант доводиться множити на відповідну частоту. Іншими словами, кожен варіант зважують за своєю частотою. Частоту називають статистичною вагою.

Середня арифметична проста- Найпоширеніший вид середньої. Вона дорівнює сумі окремих значень ознаки, поділеної на загальне числоцих значень:

,

де x 1, x 2, …, x N- Індивідуальні значення варіює ознаки (варіанти), а N - число одиниць сукупності.

Середня арифметична зваженазастосовується у тих випадках, коли дані представлені у вигляді рядів розподілу чи угруповань. Вона обчислюється як сума творів варіантів відповідні їм частоти, поділена у сумі частот всіх варіантів:

де x i– значення i-і варіанти ознаки; f i- Частота i-і варіанти.

Таким чином, кожне значення варіанти зважується за частотою, тому частоти іноді називають статистичними вагами.

Зауваження.Коли йдеться про середню арифметичну величину без зазначення її виду, мається на увазі середня арифметична проста.

Таблиця 12

Рішення.Для розрахунку використовуємо формулу середньої арифметичної зваженої:

Таким чином, у середньому на одну кримінальну справу припадає двоє обвинувачених.

Якщо обчислення середньої величини проводять за даними, згрупованими у вигляді інтервальних рядів розподілу, то спочатку треба визначити серединні значення кожного інтервалу х" i , після чого розрахувати середню величину за формулою середньої арифметичної зваженої, яку замість x i підставляють х" i .

приклад.Дані про вік злочинців, засуджених за скоєння крадіжки, наведено в таблиці:

Таблиця 13

Визначити середній вік злочинців, засуджених за вчинення крадіжки.

Рішення.Для того, щоб визначити середній вік злочинців на основі інтервального варіаційного рядунеобхідно спочатку визначити серединні значення інтервалів. Так як дано інтервальний ряд з відкритими першим та останнім інтервалами, то величини цих інтервалів приймаються рівними величинам суміжних закритих інтервалів. У разі величина першого і останнього інтервалів дорівнюють 10.

Тепер знаходимо середній вік злочинців за формулою середньої арифметичної зваженої:

Таким чином, середній вік злочинців, засуджених за скоєння крадіжки, приблизно дорівнює 27 років.

Середня гармонійна проста являє собою величину, обернену до середньої арифметичної зі зворотних значень ознаки:

де 1/ x iзворотні значенняваріантів, а N – число одиниць сукупності.

приклад.Для визначення середнього річного навантаження на суддів районного суду під час розгляду справ провели обстеження навантаження 5 суддів цього суду. Середні витрати часу на одну кримінальну справу для кожного з обстежених суддів виявились рівними (у днях): 6, 0, 5, 6, 6, 3, 4, 9, 5, 4. Знайти середні витрати на одну кримінальну справу та середнє річне навантаження на суддів цього районного суду під час розгляду кримінальних справ.

Рішення.Для визначення середніх витрат часу на одну кримінальну справу, скористаємося формулою середньої гармонійної простий:

Для спрощення розрахунків у прикладі візьмемо число днів у році рівним 365, включаючи вихідні (це не впливає на методику розрахунку, а при обчисленні аналогічного показника на практиці необхідно замість 365 днів підставити кількість робочих днів у конкретному році). Тоді середнє річне навантаження на суддів даного районного суду при розгляді кримінальних справ становитиме: 365(днів): 5,56 ≈ 65,6 (справ).

Якби ми для визначення середніх витрат часу на одну кримінальну справу, скористалися б формулою середньої арифметичної простої, то отримали б:

365 (днів): 5,64 ≈ 64,7 (справи), тобто. середнє навантаження на суддів виявилося меншим.

Перевіримо обґрунтованість такого підходу. Для цього скористаємося даними про витрати часу на одну кримінальну справу для кожного судді та розрахуємо кількість кримінальних, розглянутих кожним із них за рік.

Отримаємо відповідно:

365(днів) : 6 ≈ 61 (справа), 365(днів) : 5,6 ≈ 65,2 (справ), 365(днів) : 6,3 ≈ 58 (справ),

365(днів) : 4,9 ≈ 74,5 (справи), 365(днів) : 5,4 ≈ 68 (справ).

Наразі обчислимо середнє річне навантаження на суддів даного районного суду при розгляді кримінальних справ:

Тобто. середнє річне навантаження таке ж, як і при використанні середньої гармонійної.

Отже, використання середньої арифметичної у разі неправомірно.

У тих випадках, коли відомі варіанти ознаки, їх об'ємні значення (твір варіанти на частоту), але невідомі самі частоти, застосовується формула середньої зваженої гармонійної:

,

де x i– значення варіантів ознаки, а w i – об'ємні значення варіантів ( w i = x i · f i).

приклад.Дані про ціну одиниці однотипного товару, виробленого різними установами кримінально-виконавчої системи, та обсяги його реалізації наведено у таблиці 14.

Таблиця 14

Знайти середню ціну реалізації товару.

Рішення.При розрахунку середньої ціни ми маємо користуватися ставленням суми реалізації до кількості реалізованих одиниць. Нам невідомо кількість реалізованих одиниць, але відомі суми реалізації товарів. Тому для знаходження середньої ціни реалізованих товарів скористаємося формулою середньої гармонійної виваженої. Отримуємо

Якщо тут використовувати формулу середньої арифметичної, можна отримати середню ціну, яка буде нереальна:

Середня геометричнаобчислюється вилученням кореня ступеня N з добутку всіх значень варіантів ознаки:

де x 1, x 2, …, x N- індивідуальні значення варіюючої ознаки (варіанти), а

N- Число одиниць сукупності.

Цей вид середньої використовується обчислення середніх показників зростання рядів динаміки.

Середня квадратичназастосовується для розрахунку середньоквадратичного відхилення, що є показником варіації, та буде розглянуто нижче.

Для визначення структури сукупності використовують спеціальні середні показники, до яких належать медіана і мода , або звані структурні середні. Якщо середня арифметична розраховується з урахуванням використання всіх варіантів значень ознаки, то медіана і мода характеризують величину того варіанта, який займає певне середнє становище ранжированном (упорядкованому) ряду. Упорядкування одиниць статистичної сукупності може бути проведено за зростанням або зменшенням варіантів досліджуваної ознаки.

Медіана (Ме)- Це величина, яка відповідає варіанту, що знаходиться в середині ранжованого ряду. Таким чином, медіана – це той варіант ранжованого ряду, по обидва боки якого в даному рядумає знаходитися однакове число одиниць сукупності.

Для знаходження медіани спочатку необхідно визначити її порядковий номер у ранжованому ряду за формулою:

де N – обсяг низки (кількість одиниць сукупності).

Якщо ряд складається з непарного числа членів, то медіана дорівнює варіанті номером N Me . Якщо ряд складається з парного числа членів, то медіана визначається як середнє арифметичне двох суміжних варіант, розташованих у середині.

приклад.Даний ранжований ряд 1, 2, 3, 3, 6, 7, 9, 9, 10. Обсяг ряду N = 9, отже N Me = (9 + 1) / 2 = 5. Отже, Ме = 6, тобто . п'ятий варіант. Якщо дано ряд 1, 5, 7, 9, 11, 14, 15, 16, тобто. ряд з парною кількістю членів (N = 8), то N Me = (8 + 1) / 2 = 4,5. Отже медіана дорівнює напівсумі четвертої і п'ятої варіант, тобто. Ме = (9 + 11)/2 = 10.

У дискретному варіаційному ряду медіану визначають за накопиченими частотами. Частоти варіант, починаючи з першої, підсумовуються до тих пір, поки не буде перевищено номер медіани. Значення останньої підсумованої варіанти буде медіаною.

приклад.Знайти медіану числа обвинувачених, які припадають однією кримінальну справу, використовуючи дані таблиці 12.

Рішення.У разі обсяг варіаційного ряду N = 154, отже, N Me = (154 + 1) / 2 = 77,5. Підсумувавши частоти першої та другої варіанти, отримаємо: 75 + 43 = 118, тобто. ми перевершили номер медіани. Значить Ме = 2.

В інтервальному варіаційному ряду розподілу спочатку вказують інтервал, у якому буде медіана. Його називають медіанним . Це перший інтервал, накопичена частота якого перевищує половину обсягу інтервального варіаційного ряду. Потім чисельне значення медіани визначається за такою формулою:

де x Ме– нижня межа медіанного інтервалу; i – величина медіанного інтервалу; S Ме-1– накопичена частота інтервалу, що передує медіанному; f Ме- Частота медіанного інтервалу.

приклад.Знайти медіану віку злочинців, засуджених за скоєння крадіжки, з урахуванням статистичних даних, поданих у таблиці 13.

Рішення.Статистичні дані представлені інтервальним варіаційним рядом, отже спочатку визначимо медіанний інтервал. Обсяг сукупності N = 162, отже, медіанним інтервалом є 18-28, т.к. це перший інтервал, накопичена частота якого (15 + 90 = 105) перевищує половину обсягу (162: 2 = 81) інтервального варіаційного ряду. Тепер чисельне значення медіани визначаємо за наведеною вище формулою:

Таким чином, половина засуджених за скоєння крадіжки молодше 25 років.

Модою (Мо)називають значення ознаки, що найчастіше зустрічається в одиниць сукупності. До моди вдаються виявлення величини ознаки, що має найбільшого поширення. Для дискретного рядумодою буде варіант з найбільшою частотою. Наприклад, для дискретного ряду, поданого в таблиці 3 Мо= 1, оскільки цього значення варіанти відповідає найбільша частота - 75. Для визначення моди інтервального ряду спочатку визначають модальний інтервал (інтервал, що має найбільшу частоту). Потім у межах цього інтервалу знаходять значення ознаки, яке може бути модою.

Його значення знаходять за такою формулою:

де x Mo- нижня межа модального інтервалу; i – величина модального інтервалу; f Мо- Частота модального інтервалу; f Мо-1– частота інтервалу, що передує модальному; f Мо+1- Частота інтервалу, наступного за модальним.

приклад.Знайти моду віку злочинців, засуджених за скоєння крадіжки, дані про які представлені в таблиці 13.

Рішення.Найбільша частота відповідає інтервалу 18-28, отже, мода має бути у цьому іртервалі. Її величину визначаємо за наведеною вище формулою:

Таким чином, найбільша кількістьзлочинців, засуджених за вчинення крадіжки, має вік 24 роки.

Середня величина дає узагальнюючу характеристику всієї сукупності явища, що вивчається. Однак дві сукупності, що мають однакові середні значення, можуть значно відрізнятися один від одного за рівнем коливання (варіації) величини ознаки, що вивчається. Наприклад, в одному суді було призначено такі строки позбавлення волі: 3, 3, 3, 4, 5, 5, 5, 12, 12, 15 років, а в іншому – 5, 5, 6, 6, 7, 7, 7 8, 8, 8 років. В обох випадках середня арифметична дорівнює 67 років. Однак ці сукупності суттєво різняться між собою розкидом індивідуальних значень призначеного терміну позбавлення волі щодо середнього значення.

І першого суду, де цей розкид досить великий, середня величина терміну позбавлення волі погано відбиває всю сукупність. Таким чином, якщо індивідуальні значення ознаки мало відрізняються один від одного, то середня арифметична буде досить показовою характеристикою властивостей цієї сукупності. В іншому випадку середня арифметична буде ненадійною характеристикою цієї сукупності та застосування її на практиці малоефективне. Тому необхідно враховувати варіацію значень ознаки, що вивчається.

Варіація- Це відмінності в значеннях будь-якої ознаки у різних одиниць даної сукупності в той самий період або момент часу. Термін «варіація» має латинське походження – variatio, що означає різницю, зміну, коливання. Вона виникає внаслідок того, що індивідуальні значення ознаки складаються під сукупним впливом різноманітних факторів (умов), які по-різному поєднуються у кожному окремому випадку. Для вимірювання варіації ознаки застосовуються різні абсолютні та відносні показники.

До основних показників варіації належать такі:

1) розмах варіації;

2) середнє лінійне відхилення;

3) дисперсія;

4) середнє квадратичне відхилення;

5) коефіцієнт варіації.

Стисло зупинимося на кожному з них.

Розмах варіації R найдоступніший за простотою розрахунку абсолютний показник, який визначається як різницю між найбільшим і найменшим значеннями ознаки у одиниць даної сукупності:

Розмах варіації (розмах коливань) – важливий показникколивають ознаки, але він дає можливість побачити лише крайні відхилення, що обмежує сферу його застосування. Для більш точної характеристики варіації ознаки з урахуванням урахування його коливання використовуються інші показники.

Середнє лінійне відхиленняє середнім арифметичним з абсолютних значень відхилень індивідуальних значень ознаки від середньої і визначається за формулами:

1) для несгрупованих даних

2) для варіаційного ряду

Однак найбільш широко застосовуваним показником варіації є дисперсія . Вона характеризує міру розкиду значень досліджуваного ознаки щодо його середнього значення. Дисперсія визначається як середня із відхилень, зведених у квадрат.

Проста дисперсіядля не згрупованих даних:

.

Зважена дисперсіядля варіаційного ряду:

Зауваження.Насправді для обчислення дисперсії краще використовувати такі формулы:

Для простої дисперсії

.

Для зваженої дисперсії

Середнє квадратичне відхилення- це корінь квадратний із дисперсії:

Середнє квадратичне відхилення є мірилом середньої надійності. Чим менше середнє квадратичне відхилення, тим, однорідніше сукупність і краще середня арифметична відбиває собою всю сукупність.

Розглянуті вище заходи розсіювання (розмах варіації, дисперсія, середнє квадратичне відхилення) є абсолютними показниками, Судити за якими про ступінь коливання ознаки не завжди можливо. У деяких завданнях необхідно використовувати відносні показники розсіювання, одним із яких є коефіцієнт варіації.

Коефіцієнт варіації- Виражене у відсотках відношення середнього квадратичного відхилення до середньої арифметичної:

Коефіцієнт варіації використовують як порівняльної оцінки варіації різних ознак чи однієї й тієї ж ознаки у різних сукупностях, але й характеристики однорідності сукупності. Статистична сукупність вважається кількісно однорідною, якщо коефіцієнт варіації вбирається у 33 % (для розподілів, близьких до нормального розподілу).

приклад.Є такі дані про терміни позбавлення волі 50 засуджених, доставлених для відбування призначеного судом покарання до виправної установи кримінально-виконавчої системи: 5, 4, 2, 1, 6, 3, 4, 3, 2, 2, 5, 6, 4, 3 , 10, 5, 4, 1, 2, 3, 3, 4, 1, 6, 5, 3, 4, 3, 5, 12, 4, 3, 2, 4, 6, 4, 4, 3, 1 5, 4, 3, 12, 6, 7, 3, 4, 5, 5, 3.

1. Побудувати низку розподілу за строками позбавлення волі.

2. Знайти середнє значення, дисперсію та середнє квадратичне відхилення.

3. Обчислити коефіцієнт варіації та зробити висновок про однорідність чи неоднорідність досліджуваної сукупності.

Рішення.Для побудови дискретного ряду розподілу необхідно визначити варіанти та частоти. Варіанта у цьому – це термін позбавлення волі, а частоти – чисельність окремих варіант. Розрахувавши частоти, отримаємо наступний дискретний ряд розподілу:

Знайдемо середнє значення та дисперсію. Оскільки статистичні дані представлені дискретним варіаційним рядом, то їх обчислення будемо використовувати формули середнього арифметичного зваженого і дисперсії. Отримаємо:

= = 4,1;

= 5,21.

Тепер обчислюємо середнє квадратичне відхилення:

Знаходимо коефіцієнт варіації:

Отже, статистична сукупність кількісно неоднорідна.

Середня арифметична проста

Середні величини

Велике поширення у статистиці мають середні величини.

Середня величина- це узагальнюючий показник, у якому знаходять вираз дії загальних умов, закономірностей розвитку досліджуваного явища

Статистичні середні розраховуються на основі масових даних правильно статистично організованого спостереження (суцільного та вибіркового). Проте статистична середня буде об'єктивною і типовою, якщо вона розраховується за масовими даними для якісно однорідної сукупності ( масових явищ). Наприклад, якщо розраховувати середню заробітну плату в акціонерних товариствах і на держпідприємствах, а результат поширити на всю сукупність, то середня фіктивна, оскільки розрахована за неоднорідною сукупністю, і така середня втрачає будь-який сенс.

За допомогою середньої відбувається ніби згладжування відмінностей у величині ознакиякі виникають з тих чи інших причин в окремих одиниць спостереження.

Наприклад, середнє вироблення окремого продавця залежить багатьох причин: кваліфікації, стажу, віку, форми обслуговування, здоров'я тощо. Середнє вироблення відбиває загальну характеристику всієї сукупності.

Середня величина вимірюється у тих самих одиницях, як і сама ознака.

Кожна середня величина характеризує досліджувану сукупність за якоюсь однією ознакою. Щоб отримати повне і всебічне уявлення про сукупність, що вивчається, по ряду істотних ознак, необхідно розташовувати системою середніх величин, які можуть описати явище з різних сторін.

Існують різні види середніх:

    середня арифметична;

    середня гармонійна;

    середня геометрична;

    середня квадратична;

    середня кубічна.

Середні перелічених вище видів, своєю чергою, діляться на прості (невиважені) і зважені.

Розглянемо види середніх, що використовуються у статистиці.

Середня арифметична проста (невиважена) дорівнює сумі окремих значень ознаки, поділеної на число цих значень.

Окремі значення ознаки називають варіантами та позначають через х i (
); число одиниць сукупності позначають через n, середнє значення ознаки через . Отже, середня арифметична проста дорівнює:

або

приклад 1.Таблиця 1

Дані про виробництво робітниками продукції А за зміну

У даному прикладіваріюючий ознака - випуск виробів за зміну.

Чисельні значення ознаки (16, 17 і т. д.) називають варіантами. Визначимо середнє вироблення продукції робітниками цієї групи:

шт.

Проста середня арифметична застосовується у разі, коли є окремі значення ознаки, тобто. дані не згруповані. Якщо дані представлені у вигляді рядів розподілу чи угруповань, то середня обчислюється інакше.

Середня арифметична зважена

Середня арифметична зважена дорівнює сумі творів кожного окремого значення ознаки (варіанту) на відповідну частоту, поділену на суму всіх частот.

Число однакових значень ознаки в рядах розподілу називається частотою або вагою і позначається через f i.

Відповідно, середня арифметична зважена виглядає так:

або

З формули видно, що середня залежить лише від значень ознаки, а й їх частот, тобто. від складу сукупності, з її структури.

приклад 2.Таблиця 2

Дані про заробітну плату робітників

За даними дискретного ряду розподілу видно, що одні й самі значення ознаки (варіанти) повторюються кілька разів. Так, варіанти х 1 зустрічається в сукупності 2 рази, а варіанти х 2 - 6 разів і т.д.

Обчислимо середню заробітну плату одного робітника:

Фонд заробітної плати з кожної групи робочих дорівнює добутку варіанти на частоту (
), а сума цих творів дає загальний фонд заробітної плати всіх робітників (
).

Якби розрахунок був виконаний за формулою простої середньої арифметичної, середній заробітокдорівнював 3 000 руб. (). Порівнюючи отриманий результат з вихідними даними, очевидно, що середня заробітна плата має бути істотно вищою (більше половини робітників отримують заробітну плату вище 3000 руб.). Тому розрахунок за простою середньою арифметичною в таких випадках буде помилковим.

Статистичний матеріал у результаті обробки може бути представлений у вигляді дискретних рядів розподілу, а й у вигляді інтервальних варіаційних рядів із закритими чи відкритими інтервалами.

Розглянемо розрахунок середньої арифметичної для таких рядів.

Середнє значення це:

Середнє значення

Середнє значення- Чисельна характеристика безлічі чисел або функцій; - деяке число, укладене між найменшим та найбільшим із їх значень.

  • 1 Основні відомості
  • 2 Ієрархія середніх значень у математиці
  • 3 У теорії ймовірностей та статистики
  • 4 Див.
  • 5 Примітки

Основні відомості

Вихідним пунктом становлення теорії середніх величин стало дослідження пропорцій школою Піфагора. При цьому не проводилося суворої різниці між поняттями середньої величини та пропорції. Значний поштовх розвитку теорії пропорцій з арифметичної точки зору було надано грецькими математиками - Нікомахом Гераським (кінець I - початок II ст. н. е.) і Паппом Олександрійським (III ст. н. е.). Першим етапом розвитку поняття середньої є етап, коли середня стала вважатися центральним членом безперервної пропорції. Але поняття середньої як центрального значення прогресії не дає можливості вивести поняття середньої по відношенню до послідовності n членів, незалежно від того, в якому порядку вони йдуть один за одним. Для цієї мети необхідно вдатися до формального узагальнення середніх. Наступний етап – перехід від безперервних пропорцій до прогресій – арифметичної, геометричної та гармонійної.

У історії статистики вперше широке вживання середніх величин пов'язані з ім'ям англійського вченого У. Петті. У. Петті одне із перших намагався надати середній величині статистичний сенс, пов'язавши її з економічними категоріями. Але опис поняття середньої величини, його виділення Петті не зробив. Родоначальником теорії середніх величин заведено вважати А. Кетле. Він одним із перших почав послідовно розробляти теорію середніх величин, намагаючись підвести під неї математичну базу. А. Кетле виділяв два види середніх величин - власне середні та середні арифметичні. Власне, середні представляють річ, число, що дійсно існують. Власне, середні або середні статистичні повинні виводитися з явищ одноякісних, однакових за своїм внутрішнім значенням. Середні арифметичні - числа, що дають можливо близьке уявлення про багато чисел, різних, хоча і однорідних.

Кожен із видів середньої може виступати або у формі простої, або у формі виваженої середньої. Правильність вибору форми середньої випливає із матеріальної природи об'єкта дослідження. Формули простих середніх застосовуються у разі, якщо індивідуальні значення ознаки, що усереднюється, не повторюються. Коли в практичних дослідженнях окремі значення ознаки, що вивчається, зустрічаються кілька разів у одиниць досліджуваної сукупності, тоді частота повторень індивідуальних значень ознаки присутня в розрахункових формулах статечних середніх. І тут вони називаються формулами зважених середніх.

Wikimedia Foundation. 2010 року.

У статистиці використовують різні види середніх величин, які поділяються на два великі класи:

Ступінні середні (середня гармонійна, середня геометрична, середня арифметична, середня квадратична, середня кубічна);

Структурні середні (мода, медіана).

Для обчислення статечних середніхнеобхідно використовувати всі наявні значення ознаки. Модаі медіанавизначаються лише структурою розподілу, тому називають структурними, позиційними середніми. Медіану і моду часто використовують як середню характеристику в тих сукупностях, де розрахунок середньої статечної неможливий або недоцільний.

Найпоширеніший вид середньої величини – середня арифметична. Під середньої арифметичноїрозуміється таке значення ознаки, яке мала кожна одиниця сукупності, якби загальний підсумок всіх значень ознаки був розподілений рівномірно між усіма одиницями сукупності. Обчислення даної величини зводиться до підсумовування всіх значень варіюючої ознаки та поділу отриманої суми на Загальна кількістьодиниць сукупності. Наприклад, п'ять робітників виконували замовлення на виготовлення деталей, при цьому перший виготовив 5 деталей, другий – 7, третій – 4, четвертий – 10, п'ятий – 12. Оскільки у вихідних даних значення кожного варіанта зустрічалося лише один раз, для визна-

лення середнього вироблення одного робітника слід застосувати формулу простої середньої арифметичної:

тобто в нашому прикладі середнє вироблення одного робітника дорівнює

Поряд із простою середньою арифметичною вивчають середню арифметичну зважену.Наприклад, розрахуємо середній вік студентів у групі з 20 осіб, вік яких варіюється від 18 до 22 років, де xi- Варіанти ознаки, що осредняється, fi- Частота, яка показує, скільки разів зустрічається i-езначення у сукупності (табл. 5.1).

Таблиця 5.1

Середній вік студентів

Застосовуючи формулу середньої арифметичної зваженої, отримуємо:


Для вибору середньої арифметичної виваженої існує певне правило: якщо є ряд даних за двома показниками, для одного з яких треба вирахувати

середню величину, і при цьому відомі чисельні значення знаменника її логічної формули, а значення чисельника невідомі, але можуть бути знайдені як добуток цих показників, то середня величина повинна вираховуватися за формулою середньої арифметичної зваженої.

У деяких випадках характер вихідних статистичних даних такий, що розрахунок середньої арифметичної втрачає сенс і єдиним узагальнюючим показником може бути лише інший вид середньої величини – середня гармонійна.В даний час обчислювальні властивості середньої арифметичної втратили свою актуальність при розрахунку узагальнюючих статистичних показниківу зв'язку із повсюдним використанням електронно-обчислювальної техніки. Велике практичне значенняпридбала середня гармонійна величина, яка теж буває простою та виваженою. Якщо відомі чисельні значення чисельника логічної формули, а значення знаменника невідомі, але можуть бути знайдені як приватне розподілення одного показника на інший, то середня величина обчислюється за формулою середньої зваженої гармонійної.

Наприклад, нехай відомо, що автомобіль пройшов перші 210 км зі швидкістю 70 км/год, а 150 км зі швидкістю 75 км/год, що залишилися. Визначити середню швидкість автомобіля протягом усього шляху 360 км, використовуючи формулу середньої арифметичної, не можна. Оскільки варіантами є швидкості на окремих ділянках xj= 70 км/год Х2= 75 км/год, а вагами (fi) вважаються відповідні відрізки шляху, то твори варіантів на ваги не матимуть ні фізичного, ні економічного сенсу. В даному випадку сенс набувають приватні від розподілу відрізків колії на відповідні швидкості (варіанти xi), тобто витрати часу на проходження окремих ділянок колії (fi / xi). Якщо відрізки шляху позначити через fi, весь шлях висловитися як?fi, а час, витрачений весь шлях, – як? fi / xi , Тоді середня швидкість може бути знайдена як окреме від розподілу всього шляху на загальні витрати часу:

У нашому прикладі отримаємо:

Якщо при використанні середньої гармонійної ваги всіх варіантів (f) рівні, замість виваженої можна використовувати просту (невиважену) середню гармонійну:

де xi – окремі варіанти; n- Число варіантів осредняемого ознаки. У прикладі зі швидкістю просту середню гармонійну можна було б застосувати, якби дорівнювали відрізки шляху, пройдені з різною швидкістю.

Будь-яка середня величина повинна обчислюватися так, щоб при заміні нею кожного варіанта ознаки, що осредняется, не змінювалася величина деякого підсумкового, узагальнюючого показника, який пов'язаний з середнім показником. Так, при заміні фактичних швидкостей на окремих відрізках шляху їхньою середньою величиною (середньою швидкістю) не повинна змінитися загальна відстань.

Форма (формула) середньої величини визначається характером (механізмом) взаємозв'язку цього підсумкового показника з середнім, тому підсумковий показник, величина якого не повинна змінюватися при заміні варіантів їх середньою величиною, називається визначальним показником.Для висновку середньої формули потрібно скласти і вирішити рівняння, використовуючи взаємозв'язок середнього показника з визначальним. Це рівняння будується шляхом заміни варіантів ознаки (показника) їх середньою величиною.

Крім середньої арифметичної та середньої гармонійної у статистиці використовуються інші види (форми) середньої величини. Усі вони є окремими випадками степеневої середньої.Якщо розраховувати всі види статечних середніх величин для тих самих даних, то значення

їх виявляться однаковими, тут діє правило мажо-рантностісередніх. Зі збільшенням показника ступеня середніх збільшується і сама середня величина. Найчастіше застосовувані у практичних дослідженнях формули обчислення різних видівстатечних середніх величин представлені в табл. 5.2.

Таблиця 5.2

Види статечних середніх


Середня геометрична застосовується, коли є nкоефіцієнтів зростання, при цьому індивідуальні значення ознаки є, як правило, відносні величинидинаміки, побудовані у вигляді ланцюгових величин, як відношення до попереднього рівня кожного рівня у ряді динаміки. Середня характеризує, в такий спосіб, середній коефіцієнт зростання. Середня геометрична простарозраховується за формулою

Формула середньої геометричної зваженоїмає наступний вигляд:

Наведені формули ідентичні, але одна застосовується при поточних коефіцієнтах чи темпах зростання, а друга – за абсолютних значень рівнів ряду.

Середня квадратичназастосовується при розрахунку з величинами квадратних функцій, використовується для вимірювання ступеня коливання індивідуальних значень ознаки навколо середньої арифметичної в рядах розподілу та обчислюється за формулою

Середня квадратична зваженарозраховується за іншою формулою:

Середня кубічназастосовується при розрахунку з величинами кубічних функцій та обчислюється за формулою

середня кубічна зважена:

Усі розглянуті вище середні величини можуть бути представлені у вигляді загальної формули:

де – середня величина; - Індивідуальне значення; n- Число одиниць досліджуваної сукупності; k- Показник ступеня, що визначає вид середньої.

При використанні тих самих вихідних даних, чим більше kу загальній формулі статечної середньої, тим більше середня величина. З цього випливає, що між величинами статечних середніх існує закономірне співвідношення:

Середні величини, описані вище, дають узагальнене уявлення про сукупність, що вивчається, і з цієї точки зору їх теоретичне, прикладне і пізнавальне значення безперечно. Але буває, що величина середньої не збігається з жодним з реально існуючих варіантівтому крім розглянутих середніх у статистичному аналізі доцільно використовувати величини конкретних варіантів, що займають упорядкованому (ранжованому) ряду значень ознаки цілком певне становище. Серед таких величин найуживанішими є структурні,або описові, середні– мода (Мо) та медіана (Ме).

Мода- Величина ознаки, яка найчастіше зустрічається в даній сукупності. Стосовно варіаційного ряду модою є значення ранжованого ряду, що найчастіше зустрічається, тобто варіант, що володіє найбільшою частотою. Мода може застосовуватися щодо магазинів, які частіше відвідуються, найпоширенішої ціни на будь-який товар. Вона показує розмір ознаки, властивий значній частині сукупності, і визначається за формулою

де х0 - нижня межа інтервалу; h- Величина інтервалу; fm- Частота інтервалу; fm_ 1 – частота попереднього інтервалу; fm+ 1 – частота наступного інтервалу.

Медіаноюназивається варіант, розташований у центрі ранжованого ряду. Медіана ділить ряд на дві рівні частини таким чином, що з обох боків від неї знаходиться однакова кількість одиниць сукупності. При цьому в однієї половини одиниць сукупності значення ознаки, що варіює, менше медіани, в іншої - більше її. Медіана використовується при вивченні елемента, значення якого більше або одно або одночасно менше або дорівнює половині елементів ряду розподілу. Медіана дає загальне уявлення про те, де зосереджені значення ознаки, іншими словами, де знаходиться їхній центр.

Описовий характер медіани проявляється в тому, що вона характеризує кількісну межу значень варіюючої ознаки, якими має половина одиниць сукупності. Завдання знаходження медіани для дискретного варіаційного ряду вирішується просто. Якщо всім одиницям ряду додати порядкові номери, то порядковий номер медіанного варіанта визначається як (п +1) / 2 з непарним числом членів п. Якщо ж кількість членів ряду є парним числом, то медіаною буде середнє значення двох варіантів, що мають порядкові номери n/ 2 та n/ 2 + 1.

При визначенні медіани в інтервальних варіаційних лавах спочатку визначається інтервал, у якому вона перебуває (медіанний інтервал). Цей інтервал характерний тим, що його накопичена сума частот дорівнює або перевищує напівсуму всіх частот. Розрахунок медіани інтервального варіаційного ряду здійснюється за формулою

де X0- нижня межа інтервалу; h- Величина інтервалу; fm- Частота інтервалу; f- Число членів ряду;

M -1 - Сума накопичених членів низки, що передують цьому.

Поряд з медіаною для більш повної характеристики структури сукупності, що вивчається, застосовують і інші значення варіантів, що займають в ранжированому ряду цілком певне положення. До них відносяться квартувалиі децилі.Квартилі ділять ряд за сумою частот на 4 рівні частини, а децилі - на 10 рівних частин. Квартилів налічується три, а децилі – дев'ять.

Медіана і мода на відміну від середньої арифметичної не погашають індивідуальних відмінностей у значеннях ознаки, що варіює, і тому є додатковими і дуже важливими характеристиками статистичної сукупності. Насправді вони часто використовуються замість середньої чи поруч із нею. Особливо доцільно обчислювати медіану і моду в тих випадках, коли досліджувана сукупність містить кілька одиниць з дуже великим або дуже малим значенням ознаки, що варіює. Ці не дуже характерні для сукупності значення варіантів, впливаючи на величину середньої арифметичної, не впливають на значення медіани і моди, що робить останні дуже цінними для економіко-статистичного аналізу показниками.

Найчастіше дані концентруються навколо якоїсь центральної точки. Таким чином, щоб описати будь-який набір даних, достатньо вказати середнє значення. Розглянемо послідовно три числові характеристики, що використовуються для оцінки середнього значення розподілу: середнє арифметичне, медіана та мода.

Середнє арифметичне

Середнє арифметичне (часто зване просто середнім) – найпоширеніша оцінка середнього значення розподілу. Вона є результатом розподілу суми всіх числових величин, що спостерігаються, на їх кількість. Для вибірки, що складається з чисел Х 1, Х 2, …, Хn, вибіркове середнє (позначається символом ) одно = (Х 1 + Х 2 + … + Хn) / n, або

де - вибіркове середнє, n- обсяг вибірки, Xi- i-й елемент вибірки.

Завантажити нотатку у форматі або , приклади у форматі

Розглянемо обчислення середнього арифметичного значенняп'ятирічної середньорічної прибутковості 15 взаємних фондів з дуже високим рівнемризику (рис. 1).

Мал. 1. Середньорічна доходність 15 взаємних фондів із дуже високим рівнем ризику

Вибіркове середнє обчислюється так:

Це хороший дохід, особливо в порівнянні з 3–4% доходу, який отримали вкладники банків або кредитних спілок за той же час. Якщо впорядкувати значення прибутковості, то легко помітити, що вісім фондів мають прибутковість вищу, а сім - нижчу за середнє значення. Середнє арифметичне відіграє роль точки рівноваги, отже, фонди з низькими доходами врівноважують фонди з високими доходами. У обчисленні середнього задіяні всі елементи вибірки. Жодна з інших оцінок середнього значення розподілу не має цієї властивості.

Коли слід обчислювати середнє арифметичне.Оскільки середнє арифметичне залежить від усіх елементів вибірки, наявність екстремальних значень впливає на результат. У таких ситуаціях середнє арифметичне може спотворити зміст числових даних. Отже, описуючи набір даних, що містить екстремальні значення, необхідно вказувати медіану або середнє арифметичне та медіану. Наприклад, якщо видалити з вибірки прибутковість фонду RS Emerging Growth, вибіркова середня прибутковість 14 фондів зменшиться майже на 1% і становитиме 5,19%.

Медіана

Медіана є серединним значенням упорядкованого масиву чисел. Якщо масив не містить чисел, що повторюються, то половина його елементів виявиться менше, а половина - більше медіани. Якщо вибірка містить екстремальні значення, для оцінки середнього значення краще використовувати середнє арифметичне, а медіану. Щоб визначити медіану вибірки, її спочатку необхідно впорядкувати.

Ця формула неоднозначна. Її результат залежить від парності чи непарності числа n:

  • Якщо вибірка містить непарну кількість елементів, медіана дорівнює (n+1)/2-му елементу.
  • Якщо вибірка містить парну кількість елементів, медіана лежить між двома середніми елементами вибірки і дорівнює середньому арифметичному, обчисленому за цими двома елементами.

Щоб обчислити медіану вибірки, що містить дані про прибутковість 15 взаємних фондів з дуже високий рівень ризику, спочатку необхідно впорядкувати вихідні дані (рис. 2). Тоді медіана буде навпроти номера середнього елемента вибірки; у прикладі №8. В Excel є спеціальна функція = МЕДІАНА (), яка працює і з невпорядкованими масивами теж.

Мал. 2. Медіана 15 фондів

Таким чином, медіана дорівнює 6,5. Це означає, що доходність однієї половини фондів з дуже високим рівнем ризику не перевищує 6,5, а доходність другої половини – перевищує її. Зверніть увагу на те, що медіана, що дорівнює 6,5, не набагато більше середнього значення, що дорівнює 6,08.

Якщо видалити з вибірки дохідність фонду RS Emerging Growth, то медіана 14 фондів, що залишилися, зменшиться до 6,2%, тобто не так значно, як середня арифметична (рис. 3).

Мал. 3. Медіана 14 фондів

Мода

Термін був вперше введений Пірсоном в 1894 р. Мода - це число, яке найчастіше зустрічається у вибірці (найбільш модне). Мода добре описує, наприклад, типову реакцію водіїв на сигнал світлофора про припинення руху. Класичний приклад використання моди - вибір розміру випускається партії взуття або кольору шпалер. Якщо розподіл має кілька мод, то кажуть, що він мультимодальний або багатомодальний (має два або більше «піка»). Мультимодальність розподілу дає важливу інформаціюпро природу досліджуваної змінної. Наприклад, у соціологічних опитуваннях, якщо змінна є перевагою чи відношенням до чогось, то мультимодальність може означати, що існують дещо виразно різних думок. Мультимодальність також служить індикатором того, що вибірка не є однорідною і спостереження, можливо, породжені двома або більш «накладеними» розподілами. На відміну від середнього арифметичного викиди на моду не впливають. Для безперервно розподілених випадкових величин, наприклад, для показників середньорічної прибутковості взаємних фондів, мода іноді взагалі немає (чи немає сенсу). Оскільки ці показники можуть приймати різні значення, повторювані величини зустрічаються вкрай рідко.

Квартилі

Квартілі - це показники, які найчастіше використовуються з метою оцінки розподілу даних при описі властивостей великих числових вибірок. У той час як медіана розділяє впорядкований масив навпіл (50% елементів масиву менше медіани і 50% - більше), квартилі розбивають впорядкований набір даних на чотири частини. Величини Q 1 медіана і Q 3 є 25-м, 50-м і 75-м перцентилем відповідно. Перший квартиль Q 1 - це число, що розділяє вибірку на дві частини: 25% елементів менше, а 75% - більше за перший квартиль.

Третій квартиль Q 3 - це число, що розділяє вибірку також на дві частини: 75% елементів менше, а 25% - більше за третій квартиль.

Для розрахунку квартилів у версіях Excel до 2007 р. використовувалася функція = КВАРТИЛЬ (масив; частина). Починаючи з версії Excel2010, застосовуються дві функції:

  • =КВАРТИЛЬ.ВКЛ(масив;частина)
  • = КВАРТИЛЬ. ВИКЛ (масив; частина)

Ці дві функції дають трохи різні значення (рис. 4). Наприклад, при обчисленні квартилів вибірки, що містить дані про середньорічну прибутковість 15 взаємних фондів з дуже високим рівнем ризику Q 1 = 1,8 або -0,7 для КВАРТИЛЬ.ВКЛ і КВАРТИЛЬ.ІСКЛ, відповідно. До речі функція КВАРТИЛЬ, що використовувалася раніше, відповідає сучасній функції КВАРТИЛЬ.ВКЛ. Для розрахунку квартилів в Excel за допомогою наведених вище формул масив даних можна не впорядковувати.

Мал. 4. Обчислення квартилів в Excel

Наголосимо ще раз. Excel вміє розраховувати квартілі для одновимірного дискретного ряду, Що містить значення випадкової величини Розрахунок квартилів для розподілу на основі частот наведено нижче у розділі.

Середнє геометричне

На відміну від середнього арифметичного, середнє геометричне дозволяє оцінити ступінь зміни змінної з часом. Середнє геометричне – це корінь n-й ступеня з твору nвеличин (в Excel використовується функція = СРГЕОМ):

G= (X 1 * X 2 * … * X n) 1/n

Схожий параметр – середнє геометричне значення норми прибутку – визначається формулою:

G = [(1 + R 1) * (1 + R 2) * … * (1 + R n)] 1/n – 1,

де R i– норма прибутку за i-й період часу.

Наприклад, припустимо, що обсяг вкладених коштів у вихідний момент часу дорівнює 100 000 дол. До кінця першого року він падає до рівня 50 000 дол., а до кінця другого року відновлюється до вихідної позначки 100 000 дол. дорівнює 0, оскільки початковий та фінальний обсяг коштів рівні між собою. Однак середнє арифметичне річних норм прибутку дорівнює = (-0,5 + 1) / 2 = 0,25 або 25%, оскільки норма прибутку в перший рік R 1 = (50 000 - 100 000) / 100 000 = -0,5 , а другий R 2 = (100 000 – 50 000) / 50 000 = 1. У той самий час, середнє геометричне значення норми прибутку протягом двох років одно: G = [(1–0,5) * (1+1 )] 1/2 – 1 = ½ – 1 = 1 – 1 = 0. Таким чином, середня геометрична точніше відображає зміну (точніше, відсутність змін) обсягу інвестицій за дворічний період, ніж середня арифметична.

Цікаві факти.По-перше, середнє геометричне завжди буде менше середнього арифметичного тих самих чисел. За винятком випадку, коли всі взяті числа дорівнюють один одному. По-друге, розглянувши властивості прямокутного трикутника, можна зрозуміти, чому середнє називається геометричним. Висота прямокутного трикутника, опущена на гіпотенузу, є середнім пропорційним між проекціями катетів на гіпотенузу, а кожен катет є середнім пропорційним між гіпотенузою і його проекцією на гіпотенузу (рис. 5). Це дає геометричний спосіб побудови середнього геометричного двох (довжин) відрізків: потрібно побудувати коло на сумі цих двох відрізків як на діаметрі, тоді висота, відновлена ​​з точки їх з'єднання до перетину з колом, дасть шукану величину:

Мал. 5. Геометрична природа середнього геометричного (рисунок з Вікіпедії)

Друга важлива властивість числових даних - їх варіація, Що характеризує ступінь дисперсії даних Дві різні вибірки можуть відрізнятися середніми значеннями, так і варіаціями. Однак, як показано на рис. 6 і 7, дві вибірки можуть мати однакові варіації, але різні середні значення, або однакові середні значення і різні варіації. Дані, яким відповідає полігон на рис. 7 змінюються набагато менше, ніж дані, за якими побудований полігон А.

Мал. 6. Два симетричні розподіли дзвоноподібної форми з однаковим розкидом і різними середніми значеннями

Мал. 7. Два симетричні розподіли дзвоноподібної форми з однаковими середніми значеннями та різним розкидом

Існує п'ять оцінок варіації даних:

Розмах

Розмахом називається різниця між найбільшим та найменшим елементами вибірки:

Розмах = ХMax – ХMin

Розмах вибірки, що містить дані про середньорічну дохідність 15 взаємних фондів з дуже високим рівнем ризику, можна обчислити, використовуючи впорядкований масив (рис. 4): Розмах = 18,5 – (-6,1) = 24,6. Це означає, що різниця між найбільшою та найменшою середньорічною прибутковістю фондів з дуже високим рівнем ризику дорівнює 24,6%.

Розмах дозволяє виміряти загальний розкид даних. Хоча розмах вибірки є дуже простою оцінкою загального розкиду даних, його слабкість у тому, що він не враховує, як саме розподілені дані між мінімальним і максимальним елементами. Цей ефект добре простежується на рис. 8, який ілюструє вибірки, що мають однаковий розмах. Шкала демонструє, що якщо вибірка містить хоча б одне екстремальне значення, розмах вибірки виявляється дуже неточною оцінкою розкиду даних.

Мал. 8. Порівняння трьох вибірок, що мають однаковий розмах; трикутник символізує опору терезів, і його розташування відповідає середньому значенню вибірки

Міжквартильний розмах

Міжквартильний, або середній, розмах – це різниця між третім та першим квартилями вибірки:

Міжквартильний розмах = Q 3 - Q 1

Ця величина дозволяє оцінити розкид 50% елементів та не враховувати вплив екстремальних елементів. Міжквартильний розмах вибірки, що містить дані про середньорічну прибутковість 15 взаємних фондів з дуже високим рівнем ризику, можна обчислити, використовуючи дані на рис. 4 (наприклад, для функції КВАРТИЛЬ. ВИКЛ): Міжквартильний розмах = 9,8 – (–0,7) = 10,5. Інтервал, обмежений числами 9,8 та –0,7, часто називають середньою половиною.

Слід зазначити, що величини Q 1 і Q 3 , а значить, і міжквартильний розмах, не залежать від наявності викидів, оскільки при їх обчисленні не враховується жодна величина, яка була б меншою за Q 1 або більше за Q 3 . Сумарні кількісні характеристики, такі як медіана, перший та третій квартілі, а також міжквартильний розмах, на які не впливають викиди, називаються стійкими показниками.

Хоча розмах та міжквартильний розмах дозволяють оцінити загальний та середній розкид вибірки відповідно, жодна з цих оцінок не враховує, як саме розподілені дані. Дисперсія та стандартне відхиленняпозбавлені цього недоліку. Ці показники дозволяють оцінити рівень коливання даних навколо середнього значення. Вибіркова дисперсіяє наближенням середнього арифметичного, обчисленого на основі квадратів різниць між кожним елементом вибірки та середнім вибірковим. Для вибірки Х 1 , Х 2 ... Х n вибіркова дисперсія (позначається символом S 2 задається наступною формулою:

У загальному випадкувибіркова дисперсія - це сума квадратів різниць між елементами вибірки та вибірковим середнім, поділена на величину, рівну обсягу вибірки мінус один:

де - арифметичне середнє, n- обсяг вибірки, X i - i-й елемент вибірки X. В Excel до версії 2007 для розрахунку вибіркової дисперсії використовувалася функція = ДИСП(), з версії 2010 використовується функція = ДИСП.

Найбільш практичною та широко поширеною оцінкою розкиду даних є стандартне вибіркове відхилення. Цей показник позначається символом S і дорівнює квадратному кореню з вибіркової дисперсії:

В Excel до версії 2007 для розрахунку стандартного вибіркового відхилення використовувалася функція = СТАНДОТКЛОН(), з версії 2010 використовується функція = СТАНДОТКЛОН. Для розрахунку цих функцій масив даних може бути невпорядкованим.

Ні вибіркова дисперсія, ні стандартне вибіркове відхилення не можуть бути негативними. Єдина ситуація, в якій показники S 2 і S можуть бути нульовими, якщо всі елементи вибірки рівні між собою. У цьому неймовірному випадку розмах і міжквартильний розмах також дорівнюють нулю.

Числові дані за своєю природою мінливі. Будь-яка змінна може набувати безліч різних значень. Наприклад, різні взаємні фонди мають різні показникиприбутковості та збитків. Внаслідок мінливості числових даних дуже важливо вивчати як оцінки середнього значення, які за своєю природою є сумарними, а й оцінки дисперсії, що характеризують розкид даних.

Дисперсія та стандартне відхилення дозволяють оцінити розкид даних навколо середнього значення, інакше кажучи, визначити, скільки елементів вибірки менше середнього, а скільки більше. Дисперсія має деякі цінні математичними властивостями. Проте її величина є квадрат одиниці виміру - квадратний відсоток, квадратний долар, квадратний дюйм і т.п. Отже, природною оцінкою дисперсії є стандартне відхилення, яке виражається у звичайних одиницях вимірів – відсотках доходу, доларах чи дюймах.

Стандартне відхилення дає змогу оцінити величину коливань елементів вибірки навколо середнього значення. Практично у всіх ситуаціях основна кількість величин, що спостерігаються, лежить в інтервалі плюс-мінус одне стандартне відхилення від середнього значення. Отже, знаючи середнє арифметичне елементів вибірки та стандартне вибіркове відхилення, можна визначити інтервал, якому належить основна маса даних.

Стандартне відхилення прибутковості 15 взаємних фондів із дуже високим рівнем ризику дорівнює 6,6 (рис. 9). Це означає, що дохідність основної маси фондів відрізняється від середнього значення не більше ніж на 6,6% (тобто коливається в інтервалі від - S= 6,2 - 6,6 = -0,4 до + S= 12,8). Фактично в цьому інтервалі лежить п'ятирічна середньорічна прибутковість 53,3% (8 із ​​15) фондів.

Мал. 9. Стандартне вибіркове відхилення

Зверніть увагу на те, що в процесі підсумовування квадратів різниць елементи вибірки, що лежать далі від середнього значення, набувають більшої ваги, ніж елементи, що лежать ближче. Ця властивість є основною причиною того, що для оцінки середнього значення розподілу найчастіше використовують середнє арифметичне значення.

Коефіцієнт варіації

На відміну від попередніх оцінок розкиду коефіцієнт варіації є відносною оцінкою. Він завжди вимірюється у відсотках, а не в одиницях виміру вихідних даних. p align="justify"> Коефіцієнт варіації, що позначається символами CV, вимірює розсіювання даних щодо середнього значення. Коефіцієнт варіації дорівнює стандартному відхилення, поділеному на середнє арифметичне та помноженому на 100%:

де S- стандартне вибіркове відхилення, - Вибіркове середнє.

Коефіцієнт варіації дозволяє порівняти дві вибірки, елементи яких виражаються у різних одиницях виміру. Наприклад, керуючий служби доставки кореспонденції має намір оновити парк вантажівок. При завантаженні пакетів слід враховувати два види обмежень: вага (у фунтах) та обсяг (у кубічних футах) кожного пакета. Припустимо, що у вибірці, що містить 200 пакетів, Середня вагадорівнює 26,0 фунтів, стандартне відхилення ваги 3,9 фунтів, середній об'єм пакета 8,8 кубічних футів, а стандартне відхилення обсягу 2,2 кубічних футів. Як порівняти розкид ваги та обсягу пакетів?

Оскільки одиниці виміру ваги та обсягу відрізняються один від одного, керуючий повинен порівняти відносний розкид цих величин. Коефіцієнт варіації ваги дорівнює CV W = 3,9 / 26,0 * 100% = 15%, а коефіцієнт варіації обсягу CV V = 2,2 / 8,8 * 100% = 25%. Таким чином, відносний розкид обсягу пакетів набагато більший від відносного розкиду їх ваги.

Форма розподілу

Третя важлива властивість вибірки – форма її розподілу. Цей розподіл може бути симетричним чи асиметричним. Щоб описати форму розподілу, необхідно обчислити його середнє та медіану. Якщо ці два показники збігаються, змінна вважається симетрично розподіленою. Якщо середнє значення змінної більше за медіану, її розподіл має позитивну асиметрію (рис. 10). Якщо медіана більша за середнє значення, розподіл змінної має негативну асиметрію. Позитивна асиметрія виникає, коли середнє значення збільшується до надзвичайно високих значень. Негативна асиметрія виникає, коли середнє значення зменшується до надзвичайно малих значень. Змінна є симетрично розподіленою, якщо вона не набуває жодних екстремальних значень в жодному з напрямків, так що великі та малі значення змінної врівноважують один одного.

Мал. 10. Три види розподілів

Дані, що зображені на шкалі А, мають негативну асиметрію. На цьому малюнку видно довгий хвіст і перекіс вліво, викликані наявністю надзвичайно малих значень. Ці вкрай малі величини зміщують середнє значення вліво, і воно стає меншим за медіану. Дані, що зображені на шкалі Б, розподілені симетрично. Ліва та права половини розподілу є своїми дзеркальними відображеннями. Великі та малі величини врівноважують одна одну, а середнє значення і медіана рівні між собою. Дані, зображені на шкалі, мають позитивну асиметрію. На цьому малюнку видно довгий хвіст і перекіс праворуч, викликані наявністю надзвичайно високих значень. Ці занадто великі величини зміщують середнє значення вправо, і воно стає більшим за медіану.

В Excel описові статистики можна отримати за допомогою надбудови Пакет аналізу. Пройдіть меню ДаніАналіз даних, у вікні виберіть рядок Описова статистикаі клацніть Ok. У вікні Описова статистикаобов'язково вкажіть Вхідний інтервал(Рис. 11). Якщо ви хочете побачити описові статистики на тому самому аркуші, що й вихідні дані, виберіть перемикач Вихідний інтервалі вкажіть комірку, куди слід помістити лівий верхній кут статистик (у нашому прикладі $C$1). Якщо ви хочете вивести дані на новий лист або в нову книгу, досить просто вибрати відповідний перемикач. Поставте галочку навпроти Підсумкова статистика. За бажанням також можна вибрати Рівень складності,k-й найменший таk-й найбільший.

Якщо на вкладі Данів області Аналізу вас не відображається піктограма Аналіз даних, потрібно попередньо встановити надбудову Пакет аналізу(Див., Наприклад, ).

Мал. 11. Описові статистики п'ятирічної середньорічної доходності фондів з дуже високим рівнем ризику, обчислені за допомогою надбудови Аналіз данихпрограми Excel

Excel обчислює цілий рядстатистик, розглянутих вище: середнє, медіану, моду, стандартне відхилення, дисперсію, розмах ( інтервал), мінімум, максимум та обсяг вибірки ( рахунок). Крім того, Excel обчислює деякі нові для нас статистики: стандартну помилку, ексцес та асиметричність. Стандартна помилкадорівнює стандартному відхилення, поділеному на квадратний корінь обсягу вибірки. Асиметричністьхарактеризує відхилення від симетричності розподілу і є функцією, яка залежить від куба різниць між елементами вибірки та середнім значенням. Ексцес є мірою відносної концентрації даних навколо середнього значення в порівнянні з хвостами розподілу і залежить від різниць між елементами вибірки і середнім значенням, зведених в четвертий ступінь.

Обчислення описових статистик для генеральної сукупності

Середнє значення, розкид і форма розподілу, розглянуті вище, є показниками, зумовлені за вибіркою. Однак, якщо набір даних містить числові вимірювання усієї генеральної сукупності, можна обчислити її параметри. До таких параметрів ставляться математичне очікування, дисперсія і стандартне відхилення генеральної сукупності.

Математичне очікуваннядорівнює сумі всіх значень генеральної сукупності, поділеної на обсяг генеральної сукупності:

де µ - математичне очікування, Xi- i-е спостереження змінної X, N- Обсяг генеральної сукупності. В Excel для обчислення математичного очікування використовується та сама функція, що й для середнього арифметичного: = СРЗНАЧ().

Дисперсія генеральної сукупностідорівнює сумі квадратів різниць між елементами генеральної сукупності та мат. очікуванням, поділеної на обсяг генеральної сукупності:

де σ 2- Дисперсія генеральної сукупності. Excel до версії 2007 для обчислення дисперсії генеральної сукупності використовується функція =ДИСПР(), починаючи з версії 2010 =ДИСП.Г().

Стандартне відхилення генеральної сукупностідорівнює квадратному кореню, витягнутому з дисперсії генеральної сукупності:

В Excel до версії 2007 для обчислення стандартного відхилення генеральної сукупності використовується функція =СТАНДОТКЛОНП(), починаючи з версії 2010=СТАНДОТКЛОН.Г(). Зверніть увагу на те, що формули для дисперсії та стандартного відхилення генеральної сукупності відрізняються від формул для обчислення вибіркової дисперсії та стандартного відхилення. При обчисленні вибіркових статистик S 2і Sзнаменник дробу дорівнює n – 1, а при обчисленні параметрів σ 2і σ - обсягом генеральної сукупності N.

Емпіричне правило

Більшість ситуацій велика частка спостережень концентрується навколо медіани, утворюючи кластер. У наборах даних, що мають позитивну асиметрію, цей кластер розташований лівіше (тобто нижче) математичного очікування, а в наборах, що мають негативну асиметрію, цей кластер розташований правіше (тобто вище) математичного очікування. У симетричних даних математичне очікування і медіана збігаються, а спостереження концентруються навколо математичного очікування, формуючи дзвоновий розподіл. Якщо розподіл не має яскраво вираженої асиметрії, а дані концентруються навколо якогось центру тяжкості, для оцінки мінливості можна застосовувати емпіричне правило, яке свідчить: якщо дані мають дзвоновий розподіл, то приблизно 68% спостережень відстоять від математичного очікування не більше ніж на одне стандартне відхилення, приблизно 95% спостережень відстоять від математичного очікування лише на два стандартних відхилення і 99,7% спостережень відстоять від математичного очікування лише на три стандартних відхилення.

Таким чином, стандартне відхилення, що є оцінкою середнього коливання навколо математичного очікування, допомагає зрозуміти, як розподілені спостереження, і ідентифікувати викиди. З емпіричного правила випливає, що для дзвонових розподілів лише одне значення з двадцяти відрізняється від математичного очікування більше, ніж на два стандартні відхилення. Отже, значення, що лежать за межами інтервалу µ ± 2σ, можна вважати викидами. Крім того, лише три з 1000 спостережень відрізняються від математичного очікування більш ніж на три стандартні відхилення. Таким чином, значення, що лежать за межами інтервалу µ ± 3σМайже завжди є викидами. Для розподілів, що мають сильну асиметрію або не мають дзвоноподібної форми, можна застосовувати емпіричне правило Бьенаме-Чебишева.

Понад сто років тому математики Б'єнаме та Чебишев незалежно один від одного відкрили корисна властивістьстандартного відхилення. Вони виявили, що для будь-якого набору даних, незалежно від форми розподілу, відсоток спостережень, що лежать на відстані, що не перевищує kстандартних відхилень від математичного очікування, не менше (1 – 1/ k 2) * 100%.

Наприклад, якщо k= 2, правило Бьенаме-Чебишева говорить, що як мінімум (1 – (1/2) 2) х 100% = 75% спостережень має лежати в інтервалі µ ± 2σ. Це правило справедливе для будь-кого k, Що перевищує одиницю. Правило Бьенаме-Чебишева носить дуже загальний характері справедливо для розподілу будь-якого виду. Воно вказує на мінімальну кількість спостережень, відстань від яких до математичного очікування не перевищує заданої величини. Однак, якщо розподіл має дзвонову форму, емпіричне правило більш точно оцінює концентрацію даних навколо математичного очікування.

Обчислення описових статистик для розподілу на основі частот

Якщо вихідні дані недоступні, єдиним джерелом інформації стає розподілення частот. У таких ситуаціях можна вирахувати наближені значення кількісних показників розподілу, таких як середнє арифметичне, стандартне відхилення, квартили.

Якщо вибіркові дані представлені у вигляді розподілу частот, наближене значення середнього арифметичного можна обчислити, припускаючи, що всі значення всередині кожного класу зосереджені в середній точці:

де - вибіркове середнє, n- кількість спостережень, чи обсяг вибірки, з- кількість класів у розподілі частот, m j- середня точка j-го класу, fj- Частота, відповідна j-му класу.

Для обчислення стандартного відхилення щодо розподілу частот також передбачається, що всі значення всередині кожного класу зосереджені в середній точці класу.

Щоб зрозуміти, як визначаються квартилі ряду на основі частот, розглянемо розрахунок нижнього квартилю на основі даних за 2013 про розподіл населення Росії за величиною середньодушових грошових доходів (рис. 12).

Мал. 12. Частка населення Росії із середньодушовими грошовими доходами в середньому за місяць, рублів

Для розрахунку першого квартилю інтервального варіаційного ряду можна скористатися формулою:

де Q1 – величина першого квартилю, хQ1 – нижня межа інтервалу, що містить перший квартиль (інтервал визначається за накопиченою частотою, першою, що перевищує 25%); i – величина інтервалу; Σf – сума частот усієї вибірки; мабуть, завжди дорівнює 100%; SQ1–1 – накопичена частота інтервалу, що передує інтервалу, що містить нижній квартиль; fQ1 – частота інтервалу, що містить нижній квартиль. Формула для третього квартилю відрізняється тим, що у всіх місцях замість Q1 потрібно використовувати Q3, а замість ¼ підставити ¾.

У прикладі (рис. 12) нижній квартиль перебуває у інтервалі 7000,1 – 10 000, накопичена частота якого дорівнює 26,4%. Нижня межа цього інтервалу - 7000 руб., Величина інтервалу - 3000 руб., Накопичена частота інтервалу, що передує інтервалу, що містить нижній квартиль - 13,4%, частота інтервалу, що містить нижній квартиль - 13,0%. Таким чином: Q1 = 7000 + 3000 * (¼ * 100 - 13,4) / 13 = 9677 руб.

Пастки, пов'язані з описовими статистиками

У цій нотатці ми розглянули, як описати набір даних за допомогою різних статистик, що оцінюють його середнє значення, розкид та вид розподілу. Наступним етапомє аналіз та інтерпретація даних. Досі ми вивчали об'єктивні властивості даних, а тепер переходимо до їхнього суб'єктивного трактування. Дослідника підстерігають дві помилки: неправильно обраний предмет аналізу та неправильна інтерпретація результатів.

Аналіз прибутковості 15 взаємних фондів із дуже високим рівнем ризику є цілком неупередженим. Він привів до абсолютно об'єктивних висновків: всі взаємні фонди мають різну доходність, розкид доходності фондів коливається від -6,1 до 18,5, а середня доходність дорівнює 6,08. Об'єктивність аналізу даних забезпечується правильним вибором сумарних кількісних показників розподілу. Було розглянуто кілька способів оцінки середнього значення та розкиду даних, зазначені їхні переваги та недоліки. Як вибрати правильну статистику, що забезпечує об'єктивний і неупереджений аналіз? Якщо розподіл даних має невелику асиметрію, чи слід вибирати медіану, а чи не середнє арифметичне? Який показник точніше характеризує розкид даних: стандартне відхилення чи розмах? Чи слід зазначати позитивну асиметрію розподілу?

З іншого боку, інтерпретація даних суб'єктивним процесом. Різні людиприходять до різних висновків, тлумачачи одні й самі результати. У кожного своя думка. Хтось вважає сумарні показники середньорічної прибутковості 15 фондів із дуже високим рівнем ризику добрими та цілком задоволений отриманим доходом. Іншим може здатися, що ці фонди мають надто низьку прибутковість. Таким чином, суб'єктивність слід компенсувати чесністю, нейтральністю та ясністю висновків.

Етичні проблеми

Аналіз даних нерозривно пов'язані з етичними питаннями. Слід критично ставитися до інформації, що розповсюджується газетами, радіо, телебаченням та Інтернетом. Згодом ви навчитеся скептично ставитися не тільки до результатів, але й до цілей, предмету та об'єктивності досліджень. Найкраще про це сказав відомий британський політик Бенджамін Дізраелі: «Існують три види брехні: брехня, Нагла брехнята статистика».

Як було зазначено у замітці, етичні проблеми виникають при виборі результатів, які слід навести у звіті. Слід публікувати як позитивні, і негативні результати. Крім того, роблячи доповідь або письмовий звіт, результати слід викладати чесно, нейтрально та об'єктивно. Слід розрізняти невдалу та нечесну презентації. Для цього необхідно визначити, якими були наміри доповідача. Іноді важливу інформацію доповідач пропускає з невігластва, а іноді - навмисне (наприклад, якщо він застосовує середнє арифметичне для оцінки середнього значення явно асиметричних даних, щоб отримати бажаний результат). Нечесно також замовчувати результати, які відповідають точці зору дослідника.

Використовуються матеріали книги Левін та ін. Статистика менеджерів. - М.: Вільямс, 2004. - с. 178–209

Функція КВАРТИЛЬ залишена для суміщення з попередніми версіями Excel

Велике поширення у статистиці мають середні величини. Середні величини характеризують якісні показники комерційної діяльності: витрати звернення, прибуток, рентабельність та інших.

Середня - це один із поширених прийомів узагальнень. Правильне розуміння сутності середньої визначає її особливу значущість в умовах ринкової економіки, коли середня через одиничне та випадкове дозволяє виявити загальне та необхідне, виявити тенденцію закономірностей економічного розвитку.

Середня величина - це узагальнюючі показники, у яких знаходять вираз дії загальних умов, закономірностей досліджуваного явища.

Статистичні середні розраховуються на основі масових даних правильно статистично організованого масового спостереження (суцільного та вибіркового). Однак статистична середня буде об'єктивною і типовою, якщо вона розраховується за масовими даними для якісно однорідної сукупності (масових явищ). Наприклад, якщо розраховувати середню заробітну плату в кооперативах і на держпідприємствах, а результат поширити на всю сукупність, то середня фіктивна, оскільки розрахована за неоднорідною сукупністю, і така середня втрачає будь-який сенс.

За допомогою середньої відбувається як би згладжування відмінностей у величині ознаки, що виникають з тих чи інших причин в окремих одиниць спостереження.

Наприклад, середнє вироблення продавця залежить багатьох причин: кваліфікації, стажу, віку, форми обслуговування, здоров'я тощо.

Середнє вироблення відбиває загальне властивість всієї сукупності.

Середня величина є відображенням значень досліджуваного ознаки, отже, вимірюється у тому розмірності, як і це ознака.

Кожна середня величина характеризує досліджувану сукупність за якоюсь однією ознакою. Щоб отримати повне і всебічне уявлення про сукупність, що вивчається, по ряду істотних ознак, в цілому необхідно розташовувати системою середніх величин, які можуть описати явище з різних сторін.

Існують різні середні:

    середня арифметична;

    середня геометрична;

    середня гармонійна;

    середня квадратична;

    середня хронологічна.

Розглянемо деякі види середніх, які найчастіше використовуються у статистиці.

Середня арифметична

Середня арифметична проста (невиважена) дорівнює сумі окремих значень ознаки, поділеної на число цих значень.

Окремі значення ознаки називають варіантами та позначають через х(); число одиниць сукупності позначають через n, середнє значення ознаки через . Отже, середня арифметична проста дорівнює:

За даними дискретного ряду розподілу видно, що одні й самі значення ознаки (варіанти) повторюються кілька разів. Так, варіанти х зустрічається в сукупності 2 рази, а варіанти х-16 разів і т.д.

Число однакових значень ознаки в рядах розподілу називається частотою або вагою та позначається символом n.

Обчислимо середню заробітну плату одного робітника у руб.:

Фонд заробітної плати за кожною групою робітників дорівнює добутку варіанти на частоту, а сума цих творів дає загальний фонд заробітної плати всіх робітників.

Відповідно до цього, розрахунки можна подати у загальному вигляді:

Отримана формула називається середньою арифметичною завислою.

Статистичний матеріал у результаті обробки може бути представлений у вигляді дискретних рядів розподілу, а й у вигляді інтервальних варіаційних рядів із закритими чи відкритими інтервалами.

Обчислення середньої за згрупованими даними проводиться за формулою середньої арифметичної зваженої:

У практиці економічної статистики іноді доводиться обчислювати середню за груповим середнім або середнім окремих частин сукупності (приватним середнім). У разі за варіанти (х) приймаються групові чи приватні середні, виходячи з яких обчислюється загальна середня як звичайна середня арифметична зважена.

Основні властивості середньої арифметичної .

Середня арифметична має ряд властивостей:

1. Від зменшення або збільшення частот кожного значення ознаки х у п раз величина середньої арифметичної не зміниться.

Якщо всі частоти розділити або помножити на якесь число, то величина середньої не зміниться.

2. Загальний множник індивідуальних значень ознаки може бути винесений за середній знак:

3. Середня суми (різниці) двох або декількох величин дорівнює сумі (різниці) їх середніх:

4. Якщо х = с, де с – постійна величина, то
.

5. Сума відхилень значень ознаки Х від середньої арифметичної х дорівнює нулю:

Середня гармонійна.

Поряд із середньою арифметичною, у статистиці застосовується середня гармонійна величина, обернена середньою арифметичною зі зворотних значень ознаки. Як і середня арифметична, вона може бути простою та виваженою.

Характеристиками варіаційних рядів, поряд із середніми, є мода та медіана.

Мода - це величина ознаки (варіанту), що найчастіше повторюється в досліджуваній сукупності. Для дискретних рядів розподілу модою буде значення варіанта із найбільшою частотою.

Для інтервальних рядів розподілу з рівними інтерваламимода визначається за формулою:

де
- Початкове значення інтервалу, що містить моду;

- Величина модального інтервалу;

- Частота модального інтервалу;

- частота інтервалу, що передує модальному;

- Частота інтервалу, наступного за модальним.

Медіана - Це варіанта, розташована в середині варіаційного ряду. Якщо ряд розподілу дискретний і має непарне число членів, то медіаною буде варіанта, що знаходиться в середині впорядкованого ряду (упорядкований ряд - це розташування одиниць сукупності у порядку, що зростає або спадає).



Схожі статті

2024 parki48.ru. Будуємо каркасний будинок. Ландшафтний дизайн. Будівництво. Фундамент.